e8ab51f713
* gdbarch.sh (FIX_CALL_DUMMY): Change to function with predicate. * gdbarch.h, gdbarch.c: Regenerate. * inferior.h (FIX_CALL_DUMMY): Delete macro. * valops.c (hand_function_call): Only call FIX_CALL_DUMMY when available. * frame.h (generic_fix_call_dummy): Delete declaration. * dummy-frame.h: Update comment. * dummy-frame.c (generic_fix_call_dummy): Delete function. * xstormy16-tdep.c (xstormy16_gdbarch_init): Do not set fix_call_dummy. * sh-tdep.c (sh_gdbarch_init): Ditto. * s390-tdep.c (s390_gdbarch_init): Ditto. * mn10300-tdep.c (mn10300_gdbarch_init): Ditto. * mcore-tdep.c (mcore_gdbarch_init): Ditto. * m68hc11-tdep.c (m68hc11_gdbarch_init): Ditto. * ia64-tdep.c (ia64_gdbarch_init): Ditto. * i386-tdep.c (i386_gdbarch_init): Ditto. * h8300-tdep.c (h8300_gdbarch_init): Ditto. * frv-tdep.c (frv_gdbarch_init): Ditto. * d10v-tdep.c (d10v_gdbarch_init): Ditto. * cris-tdep.c (cris_gdbarch_init): Ditto. * avr-tdep.c (avr_gdbarch_init): Ditto. * arm-tdep.c (arm_gdbarch_init): Ditto.
1754 lines
47 KiB
C
1754 lines
47 KiB
C
/* Target-dependent code for Mitsubishi D10V, for GDB.
|
|
|
|
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
|
|
Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "language.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "remote.h"
|
|
#include "floatformat.h"
|
|
#include "gdb/sim-d10v.h"
|
|
#include "sim-regno.h"
|
|
|
|
#include "gdb_assert.h"
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
int a0_regnum;
|
|
int nr_dmap_regs;
|
|
unsigned long (*dmap_register) (int nr);
|
|
unsigned long (*imap_register) (int nr);
|
|
};
|
|
|
|
/* These are the addresses the D10V-EVA board maps data and
|
|
instruction memory to. */
|
|
|
|
enum memspace {
|
|
DMEM_START = 0x2000000,
|
|
IMEM_START = 0x1000000,
|
|
STACK_START = 0x200bffe
|
|
};
|
|
|
|
/* d10v register names. */
|
|
|
|
enum
|
|
{
|
|
R0_REGNUM = 0,
|
|
R3_REGNUM = 3,
|
|
D10V_FP_REGNUM = 11,
|
|
LR_REGNUM = 13,
|
|
_SP_REGNUM = 15,
|
|
PSW_REGNUM = 16,
|
|
_PC_REGNUM = 18,
|
|
NR_IMAP_REGS = 2,
|
|
NR_A_REGS = 2,
|
|
TS2_NUM_REGS = 37,
|
|
TS3_NUM_REGS = 42,
|
|
/* d10v calling convention. */
|
|
ARG1_REGNUM = R0_REGNUM,
|
|
ARGN_REGNUM = R3_REGNUM,
|
|
RET1_REGNUM = R0_REGNUM,
|
|
};
|
|
|
|
#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
|
|
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
|
|
|
|
/* Local functions */
|
|
|
|
extern void _initialize_d10v_tdep (void);
|
|
|
|
static CORE_ADDR d10v_read_sp (void);
|
|
|
|
static CORE_ADDR d10v_read_fp (void);
|
|
|
|
static void d10v_eva_prepare_to_trace (void);
|
|
|
|
static void d10v_eva_get_trace_data (void);
|
|
|
|
static CORE_ADDR
|
|
d10v_stack_align (CORE_ADDR len)
|
|
{
|
|
return (len + 1) & ~1;
|
|
}
|
|
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
|
and TYPE is the type (which is known to be struct, union or array).
|
|
|
|
The d10v returns anything less than 8 bytes in size in
|
|
registers. */
|
|
|
|
static int
|
|
d10v_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
long alignment;
|
|
int i;
|
|
/* The d10v only passes a struct in a register when that structure
|
|
has an alignment that matches the size of a register. */
|
|
/* If the structure doesn't fit in 4 registers, put it on the
|
|
stack. */
|
|
if (TYPE_LENGTH (type) > 8)
|
|
return 1;
|
|
/* If the struct contains only one field, don't put it on the stack
|
|
- gcc can fit it in one or more registers. */
|
|
if (TYPE_NFIELDS (type) == 1)
|
|
return 0;
|
|
alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
|
|
for (i = 1; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
/* If the alignment changes, just assume it goes on the
|
|
stack. */
|
|
if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
|
|
return 1;
|
|
}
|
|
/* If the alignment is suitable for the d10v's 16 bit registers,
|
|
don't put it on the stack. */
|
|
if (alignment == 2 || alignment == 4)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static const unsigned char *
|
|
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] =
|
|
{0x2f, 0x90, 0x5e, 0x00};
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Map the REG_NR onto an ascii name. Return NULL or an empty string
|
|
when the reg_nr isn't valid. */
|
|
|
|
enum ts2_regnums
|
|
{
|
|
TS2_IMAP0_REGNUM = 32,
|
|
TS2_DMAP_REGNUM = 34,
|
|
TS2_NR_DMAP_REGS = 1,
|
|
TS2_A0_REGNUM = 35
|
|
};
|
|
|
|
static const char *
|
|
d10v_ts2_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
|
|
"rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
|
|
"imap0", "imap1", "dmap", "a0", "a1"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
enum ts3_regnums
|
|
{
|
|
TS3_IMAP0_REGNUM = 36,
|
|
TS3_DMAP0_REGNUM = 38,
|
|
TS3_NR_DMAP_REGS = 4,
|
|
TS3_A0_REGNUM = 32
|
|
};
|
|
|
|
static const char *
|
|
d10v_ts3_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
|
|
"rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
|
|
"a0", "a1",
|
|
"spi", "spu",
|
|
"imap0", "imap1",
|
|
"dmap0", "dmap1", "dmap2", "dmap3"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
/* Access the DMAP/IMAP registers in a target independent way.
|
|
|
|
Divide the D10V's 64k data space into four 16k segments:
|
|
0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
|
|
0xc000 -- 0xffff.
|
|
|
|
On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
|
|
0x7fff) always map to the on-chip data RAM, and the fourth always
|
|
maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
|
|
unified memory or instruction memory, under the control of the
|
|
single DMAP register.
|
|
|
|
On the TS3, there are four DMAP registers, each of which controls
|
|
one of the segments. */
|
|
|
|
static unsigned long
|
|
d10v_ts2_dmap_register (int reg_nr)
|
|
{
|
|
switch (reg_nr)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
return 0x2000;
|
|
case 2:
|
|
return read_register (TS2_DMAP_REGNUM);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts3_dmap_register (int reg_nr)
|
|
{
|
|
return read_register (TS3_DMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_dmap_register (int reg_nr)
|
|
{
|
|
return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts2_imap_register (int reg_nr)
|
|
{
|
|
return read_register (TS2_IMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts3_imap_register (int reg_nr)
|
|
{
|
|
return read_register (TS3_IMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_imap_register (int reg_nr)
|
|
{
|
|
return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
|
|
}
|
|
|
|
/* MAP GDB's internal register numbering (determined by the layout fo
|
|
the REGISTER_BYTE array) onto the simulator's register
|
|
numbering. */
|
|
|
|
static int
|
|
d10v_ts2_register_sim_regno (int nr)
|
|
{
|
|
/* Only makes sense to supply raw registers. */
|
|
gdb_assert (nr >= 0 && nr < NUM_REGS);
|
|
if (nr >= TS2_IMAP0_REGNUM
|
|
&& nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
|
|
return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
|
|
if (nr == TS2_DMAP_REGNUM)
|
|
return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
|
|
if (nr >= TS2_A0_REGNUM
|
|
&& nr < TS2_A0_REGNUM + NR_A_REGS)
|
|
return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
|
|
return nr;
|
|
}
|
|
|
|
static int
|
|
d10v_ts3_register_sim_regno (int nr)
|
|
{
|
|
/* Only makes sense to supply raw registers. */
|
|
gdb_assert (nr >= 0 && nr < NUM_REGS);
|
|
if (nr >= TS3_IMAP0_REGNUM
|
|
&& nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
|
|
return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
|
|
if (nr >= TS3_DMAP0_REGNUM
|
|
&& nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
|
|
return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
|
|
if (nr >= TS3_A0_REGNUM
|
|
&& nr < TS3_A0_REGNUM + NR_A_REGS)
|
|
return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
|
|
return nr;
|
|
}
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register REG_NR. */
|
|
|
|
static int
|
|
d10v_register_byte (int reg_nr)
|
|
{
|
|
if (reg_nr < A0_REGNUM)
|
|
return (reg_nr * 2);
|
|
else if (reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return (A0_REGNUM * 2
|
|
+ (reg_nr - A0_REGNUM) * 8);
|
|
else
|
|
return (A0_REGNUM * 2
|
|
+ NR_A_REGS * 8
|
|
+ (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
|
|
}
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register REG_NR. */
|
|
|
|
static int
|
|
d10v_register_raw_size (int reg_nr)
|
|
{
|
|
if (reg_nr < A0_REGNUM)
|
|
return 2;
|
|
else if (reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return 8;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
static struct type *
|
|
d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if (reg_nr == PC_REGNUM)
|
|
return builtin_type_void_func_ptr;
|
|
if (reg_nr == _SP_REGNUM || reg_nr == D10V_FP_REGNUM)
|
|
return builtin_type_void_data_ptr;
|
|
else if (reg_nr >= A0_REGNUM
|
|
&& reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return builtin_type_int64;
|
|
else
|
|
return builtin_type_int16;
|
|
}
|
|
|
|
static int
|
|
d10v_daddr_p (CORE_ADDR x)
|
|
{
|
|
return (((x) & 0x3000000) == DMEM_START);
|
|
}
|
|
|
|
static int
|
|
d10v_iaddr_p (CORE_ADDR x)
|
|
{
|
|
return (((x) & 0x3000000) == IMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_make_daddr (CORE_ADDR x)
|
|
{
|
|
return ((x) | DMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_make_iaddr (CORE_ADDR x)
|
|
{
|
|
if (d10v_iaddr_p (x))
|
|
return x; /* Idempotency -- x is already in the IMEM space. */
|
|
else
|
|
return (((x) << 2) | IMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_convert_iaddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return (((x) >> 2) & 0xffff);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_convert_daddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return ((x) & 0xffff);
|
|
}
|
|
|
|
static void
|
|
d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
|
|
{
|
|
/* Is it a code address? */
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
|
|
{
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
|
d10v_convert_iaddr_to_raw (addr));
|
|
}
|
|
else
|
|
{
|
|
/* Strip off any upper segment bits. */
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
|
d10v_convert_daddr_to_raw (addr));
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_pointer_to_address (struct type *type, const void *buf)
|
|
{
|
|
CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
|
|
|
|
/* Is it a code address? */
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
|
|
|| TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
|
|
return d10v_make_iaddr (addr);
|
|
else
|
|
return d10v_make_daddr (addr);
|
|
}
|
|
|
|
/* Don't do anything if we have an integer, this way users can type 'x
|
|
<addr>' w/o having gdb outsmart them. The internal gdb conversions
|
|
to the correct space are taken care of in the pointer_to_address
|
|
function. If we don't do this, 'x $fp' wouldn't work. */
|
|
static CORE_ADDR
|
|
d10v_integer_to_address (struct type *type, void *buf)
|
|
{
|
|
LONGEST val;
|
|
val = unpack_long (type, buf);
|
|
return val;
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
|
|
|
|
static void
|
|
d10v_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
/* Only char return values need to be shifted right within the first
|
|
regnum. */
|
|
if (TYPE_LENGTH (type) == 1
|
|
&& TYPE_CODE (type) == TYPE_CODE_INT)
|
|
{
|
|
bfd_byte tmp[2];
|
|
tmp[1] = *(bfd_byte *)valbuf;
|
|
regcache_cooked_write (regcache, RET1_REGNUM, tmp);
|
|
}
|
|
else
|
|
{
|
|
int reg;
|
|
/* A structure is never more than 8 bytes long. See
|
|
use_struct_convention(). */
|
|
gdb_assert (TYPE_LENGTH (type) <= 8);
|
|
/* Write out most registers, stop loop before trying to write
|
|
out any dangling byte at the end of the buffer. */
|
|
for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
|
|
{
|
|
regcache_cooked_write (regcache, RET1_REGNUM + reg,
|
|
(bfd_byte *) valbuf + reg * 2);
|
|
}
|
|
/* Write out any dangling byte at the end of the buffer. */
|
|
if ((reg * 2) + 1 == TYPE_LENGTH (type))
|
|
regcache_cooked_write_part (regcache, reg, 0, 1,
|
|
(bfd_byte *) valbuf + reg * 2);
|
|
}
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
|
|
static CORE_ADDR
|
|
d10v_extract_struct_value_address (struct regcache *regcache)
|
|
{
|
|
ULONGEST addr;
|
|
regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
|
|
return (addr | DMEM_START);
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc. We can't
|
|
use frame->return_pc beause that is determined by reading R13 off
|
|
the stack and that may not be written yet. */
|
|
|
|
static CORE_ADDR
|
|
d10v_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return ((read_register (LR_REGNUM) << 2)
|
|
| IMEM_START);
|
|
}
|
|
|
|
static int
|
|
check_prologue (unsigned short op)
|
|
{
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
return 1;
|
|
|
|
/* st2w rn, @-sp */
|
|
if ((op & 0x7E3F) == 0x6E1F)
|
|
return 1;
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
return 1;
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
return 1;
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
return 1;
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
|
|
/* If we have line debugging information, then the end of the */
|
|
/* prologue should the first assembly instruction of the first source line */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.end && sal.end < func_end)
|
|
return sal.end;
|
|
}
|
|
|
|
if (target_read_memory (pc, (char *) &op, 4))
|
|
return pc; /* Can't access it -- assume no prologue. */
|
|
|
|
while (1)
|
|
{
|
|
op = (unsigned long) read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
|
|
((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
|
|
((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (check_prologue (op1))
|
|
{
|
|
if (!check_prologue (op2))
|
|
{
|
|
/* if the previous opcode was really part of the prologue */
|
|
/* and not just a NOP, then we want to break after both instructions */
|
|
if (op1 != 0x5E00)
|
|
pc += 4;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
struct d10v_unwind_cache
|
|
{
|
|
CORE_ADDR return_pc;
|
|
/* The frame's base. Used when constructing a frame ID. */
|
|
CORE_ADDR base;
|
|
int size;
|
|
CORE_ADDR *saved_regs;
|
|
/* How far the SP and r11 (FP) have been offset from the start of
|
|
the stack frame (as defined by the previous frame's stack
|
|
pointer). */
|
|
LONGEST sp_offset;
|
|
LONGEST r11_offset;
|
|
int uses_frame;
|
|
void **regs;
|
|
};
|
|
|
|
static int
|
|
prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
|
|
CORE_ADDR addr)
|
|
{
|
|
int n;
|
|
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
info->sp_offset -= 2;
|
|
info->saved_regs[n] = info->sp_offset;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @-sp */
|
|
else if ((op & 0x7E3F) == 0x6E1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
info->sp_offset -= 4;
|
|
info->saved_regs[n] = info->sp_offset;
|
|
info->saved_regs[n + 1] = info->sp_offset + 2;
|
|
return 1;
|
|
}
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
{
|
|
n = (op & 0x1E) >> 1;
|
|
if (n == 0)
|
|
n = 16;
|
|
info->sp_offset -= n;
|
|
return 1;
|
|
}
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
{
|
|
info->uses_frame = 1;
|
|
info->r11_offset = info->sp_offset;
|
|
return 1;
|
|
}
|
|
|
|
/* st rn, @r11 */
|
|
if ((op & 0x7E1F) == 0x6816)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
info->saved_regs[n] = info->r11_offset;
|
|
return 1;
|
|
}
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
info->saved_regs[n] = info->sp_offset;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
info->saved_regs[n] = info->sp_offset;
|
|
info->saved_regs[n + 1] = info->sp_offset + 2;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
|
the saved registers of frame described by FRAME_INFO. This
|
|
includes special registers such as pc and fp saved in special ways
|
|
in the stack frame. sp is even more special: the address we return
|
|
for it IS the sp for the next frame. */
|
|
|
|
struct d10v_unwind_cache *
|
|
d10v_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR pc;
|
|
ULONGEST prev_sp;
|
|
ULONGEST this_base;
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
int i;
|
|
struct d10v_unwind_cache *info;
|
|
|
|
if ((*this_prologue_cache))
|
|
return (*this_prologue_cache);
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
|
|
(*this_prologue_cache) = info;
|
|
info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
|
|
|
|
info->size = 0;
|
|
info->return_pc = 0;
|
|
info->sp_offset = 0;
|
|
|
|
pc = get_pc_function_start (frame_pc_unwind (next_frame));
|
|
|
|
info->uses_frame = 0;
|
|
while (1)
|
|
{
|
|
op = (unsigned long) read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ((op & 0x3FFF0000) == 0x01FF0000)
|
|
{
|
|
/* add3 sp,sp,n */
|
|
short n = op & 0xFFFF;
|
|
info->sp_offset += n;
|
|
}
|
|
else if ((op & 0x3F0F0000) == 0x340F0000)
|
|
{
|
|
/* st rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
info->saved_regs[n] = info->sp_offset + offset;
|
|
}
|
|
else if ((op & 0x3F1F0000) == 0x350F0000)
|
|
{
|
|
/* st2w rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
info->saved_regs[n] = info->sp_offset + offset;
|
|
info->saved_regs[n + 1] = info->sp_offset + offset + 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (!prologue_find_regs (info, op1, pc)
|
|
|| !prologue_find_regs (info, op2, pc))
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
|
|
info->size = -info->sp_offset;
|
|
|
|
/* Compute the frame's base, and the previous frame's SP. */
|
|
if (info->uses_frame)
|
|
{
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
|
was created. Get THIS frame's FP value by unwinding it from
|
|
the next frame. */
|
|
frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
|
|
/* The FP points at the last saved register. Adjust the FP back
|
|
to before the first saved register giving the SP. */
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
else if (info->saved_regs[SP_REGNUM])
|
|
{
|
|
/* The SP was saved (which is very unusual), the frame base is
|
|
just the PREV's frame's TOP-OF-STACK. */
|
|
this_base = read_memory_unsigned_integer (info->saved_regs[SP_REGNUM],
|
|
register_size (current_gdbarch,
|
|
SP_REGNUM));
|
|
prev_sp = this_base;
|
|
}
|
|
else
|
|
{
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
|
stack space added back. */
|
|
frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
|
|
prev_sp = this_base + info->size;
|
|
}
|
|
|
|
info->base = d10v_make_daddr (this_base);
|
|
prev_sp = d10v_make_daddr (prev_sp);
|
|
|
|
/* Adjust all the saved registers so that they contain addresses and
|
|
not offsets. */
|
|
for (i = 0; i < NUM_REGS - 1; i++)
|
|
if (info->saved_regs[i])
|
|
{
|
|
info->saved_regs[i] = (prev_sp + info->saved_regs[i]);
|
|
}
|
|
|
|
if (info->saved_regs[LR_REGNUM])
|
|
{
|
|
CORE_ADDR return_pc
|
|
= read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
|
|
register_size (current_gdbarch, LR_REGNUM));
|
|
info->return_pc = d10v_make_iaddr (return_pc);
|
|
}
|
|
else
|
|
{
|
|
ULONGEST return_pc;
|
|
frame_unwind_unsigned_register (next_frame, LR_REGNUM, &return_pc);
|
|
info->return_pc = d10v_make_iaddr (return_pc);
|
|
}
|
|
|
|
/* The SP_REGNUM is special. Instead of the address of the SP, the
|
|
previous frame's SP value is saved. */
|
|
info->saved_regs[SP_REGNUM] = prev_sp;
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int all)
|
|
{
|
|
if (regnum >= 0)
|
|
{
|
|
default_print_registers_info (gdbarch, file, frame, regnum, all);
|
|
return;
|
|
}
|
|
|
|
{
|
|
ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
|
|
frame_read_unsigned_register (frame, PC_REGNUM, &pc);
|
|
frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
|
|
frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
|
|
frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
|
|
frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
|
|
fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
|
|
(long) pc, (long) d10v_make_iaddr (pc), (long) psw,
|
|
(long) rpt_s, (long) rpt_e, (long) rpt_c);
|
|
}
|
|
|
|
{
|
|
int group;
|
|
for (group = 0; group < 16; group += 8)
|
|
{
|
|
int r;
|
|
fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
|
|
for (r = group; r < group + 8; r++)
|
|
{
|
|
ULONGEST tmp;
|
|
frame_read_unsigned_register (frame, r, &tmp);
|
|
fprintf_filtered (file, " %04lx", (long) tmp);
|
|
}
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Note: The IMAP/DMAP registers don't participate in function
|
|
calls. Don't bother trying to unwind them. */
|
|
|
|
{
|
|
int a;
|
|
for (a = 0; a < NR_IMAP_REGS; a++)
|
|
{
|
|
if (a > 0)
|
|
fprintf_filtered (file, " ");
|
|
fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
|
|
}
|
|
if (NR_DMAP_REGS == 1)
|
|
/* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
|
|
fprintf_filtered (file, " DMAP %04lx\n", d10v_dmap_register (2));
|
|
else
|
|
{
|
|
for (a = 0; a < NR_DMAP_REGS; a++)
|
|
{
|
|
fprintf_filtered (file, " DMAP%d %04lx", a, d10v_dmap_register (a));
|
|
}
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
}
|
|
|
|
{
|
|
char *num = alloca (max_register_size (gdbarch));
|
|
int a;
|
|
fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
|
|
for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
|
|
{
|
|
int i;
|
|
fprintf_filtered (file, " ");
|
|
frame_register_read (frame, a, num);
|
|
for (i = 0; i < max_register_size (current_gdbarch); i++)
|
|
{
|
|
fprintf_filtered (file, "%02x", (num[i] & 0xff));
|
|
}
|
|
}
|
|
}
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
show_regs (char *args, int from_tty)
|
|
{
|
|
d10v_print_registers_info (current_gdbarch, gdb_stdout,
|
|
get_current_frame (), -1, 1);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_pc (ptid_t ptid)
|
|
{
|
|
ptid_t save_ptid;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR retval;
|
|
|
|
save_ptid = inferior_ptid;
|
|
inferior_ptid = ptid;
|
|
pc = (int) read_register (PC_REGNUM);
|
|
inferior_ptid = save_ptid;
|
|
retval = d10v_make_iaddr (pc);
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
d10v_write_pc (CORE_ADDR val, ptid_t ptid)
|
|
{
|
|
ptid_t save_ptid;
|
|
|
|
save_ptid = inferior_ptid;
|
|
inferior_ptid = ptid;
|
|
write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
|
|
inferior_ptid = save_ptid;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_sp (void)
|
|
{
|
|
return (d10v_make_daddr (read_register (SP_REGNUM)));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_fp (void)
|
|
{
|
|
return (d10v_make_daddr (read_register (D10V_FP_REGNUM)));
|
|
}
|
|
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
|
order. The below implements a FILO (stack) to do this. */
|
|
|
|
struct stack_item
|
|
{
|
|
int len;
|
|
struct stack_item *prev;
|
|
void *data;
|
|
};
|
|
|
|
static struct stack_item *push_stack_item (struct stack_item *prev,
|
|
void *contents, int len);
|
|
static struct stack_item *
|
|
push_stack_item (struct stack_item *prev, void *contents, int len)
|
|
{
|
|
struct stack_item *si;
|
|
si = xmalloc (sizeof (struct stack_item));
|
|
si->data = xmalloc (len);
|
|
si->len = len;
|
|
si->prev = prev;
|
|
memcpy (si->data, contents, len);
|
|
return si;
|
|
}
|
|
|
|
static struct stack_item *pop_stack_item (struct stack_item *si);
|
|
static struct stack_item *
|
|
pop_stack_item (struct stack_item *si)
|
|
{
|
|
struct stack_item *dead = si;
|
|
si = si->prev;
|
|
xfree (dead->data);
|
|
xfree (dead);
|
|
return si;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
d10v_push_dummy_call (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
CORE_ADDR dummy_addr, int nargs, struct value **args,
|
|
CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
int regnum = ARG1_REGNUM;
|
|
struct stack_item *si = NULL;
|
|
long val;
|
|
|
|
/* Set the return address. For the d10v, the return breakpoint is
|
|
always at DUMMY_ADDR. */
|
|
regcache_cooked_write_unsigned (regcache, LR_REGNUM,
|
|
d10v_convert_iaddr_to_raw (dummy_addr));
|
|
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
|
Both adjust the register count and store that value. */
|
|
if (struct_return)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
|
|
regnum++;
|
|
}
|
|
|
|
/* Fill in registers and arg lists */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (VALUE_TYPE (arg));
|
|
char *contents = VALUE_CONTENTS (arg);
|
|
int len = TYPE_LENGTH (type);
|
|
int aligned_regnum = (regnum + 1) & ~1;
|
|
|
|
/* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
|
|
if (len <= 2 && regnum <= ARGN_REGNUM)
|
|
/* fits in a single register, do not align */
|
|
{
|
|
val = extract_unsigned_integer (contents, len);
|
|
regcache_cooked_write_unsigned (regcache, regnum++, val);
|
|
}
|
|
else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
|
|
/* value fits in remaining registers, store keeping left
|
|
aligned */
|
|
{
|
|
int b;
|
|
regnum = aligned_regnum;
|
|
for (b = 0; b < (len & ~1); b += 2)
|
|
{
|
|
val = extract_unsigned_integer (&contents[b], 2);
|
|
regcache_cooked_write_unsigned (regcache, regnum++, val);
|
|
}
|
|
if (b < len)
|
|
{
|
|
val = extract_unsigned_integer (&contents[b], 1);
|
|
regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* arg will go onto stack */
|
|
regnum = ARGN_REGNUM + 1;
|
|
si = push_stack_item (si, contents, len);
|
|
}
|
|
}
|
|
|
|
while (si)
|
|
{
|
|
sp = (sp - si->len) & ~1;
|
|
write_memory (sp, si->data, si->len);
|
|
si = pop_stack_item (si);
|
|
}
|
|
|
|
/* Finally, update the SP register. */
|
|
regcache_cooked_write_unsigned (regcache, SP_REGNUM,
|
|
d10v_convert_daddr_to_raw (sp));
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
static void
|
|
d10v_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
int len;
|
|
#if 0
|
|
printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
|
|
TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
|
|
(int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
|
|
register_size (current_gdbarch, RET1_REGNUM)));
|
|
#endif
|
|
if (TYPE_LENGTH (type) == 1)
|
|
{
|
|
ULONGEST c;
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, 1, c);
|
|
}
|
|
else
|
|
{
|
|
/* For return values of odd size, the first byte is in the
|
|
least significant part of the first register. The
|
|
remaining bytes in remaining registers. Interestingly, when
|
|
such values are passed in, the last byte is in the most
|
|
significant byte of that same register - wierd. */
|
|
int reg = RET1_REGNUM;
|
|
int off = 0;
|
|
if (TYPE_LENGTH (type) & 1)
|
|
{
|
|
regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
|
|
(bfd_byte *)valbuf + off);
|
|
off++;
|
|
reg++;
|
|
}
|
|
/* Transfer the remaining registers. */
|
|
for (; off < TYPE_LENGTH (type); reg++, off += 2)
|
|
{
|
|
regcache_cooked_read (regcache, RET1_REGNUM + reg,
|
|
(bfd_byte *) valbuf + off);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Translate a GDB virtual ADDR/LEN into a format the remote target
|
|
understands. Returns number of bytes that can be transfered
|
|
starting at TARG_ADDR. Return ZERO if no bytes can be transfered
|
|
(segmentation fault). Since the simulator knows all about how the
|
|
VM system works, we just call that to do the translation. */
|
|
|
|
static void
|
|
remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
|
|
CORE_ADDR *targ_addr, int *targ_len)
|
|
{
|
|
long out_addr;
|
|
long out_len;
|
|
out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
|
|
&out_addr,
|
|
d10v_dmap_register,
|
|
d10v_imap_register);
|
|
*targ_addr = out_addr;
|
|
*targ_len = out_len;
|
|
}
|
|
|
|
|
|
/* The following code implements access to, and display of, the D10V's
|
|
instruction trace buffer. The buffer consists of 64K or more
|
|
4-byte words of data, of which each words includes an 8-bit count,
|
|
an 8-bit segment number, and a 16-bit instruction address.
|
|
|
|
In theory, the trace buffer is continuously capturing instruction
|
|
data that the CPU presents on its "debug bus", but in practice, the
|
|
ROMified GDB stub only enables tracing when it continues or steps
|
|
the program, and stops tracing when the program stops; so it
|
|
actually works for GDB to read the buffer counter out of memory and
|
|
then read each trace word. The counter records where the tracing
|
|
stops, but there is no record of where it started, so we remember
|
|
the PC when we resumed and then search backwards in the trace
|
|
buffer for a word that includes that address. This is not perfect,
|
|
because you will miss trace data if the resumption PC is the target
|
|
of a branch. (The value of the buffer counter is semi-random, any
|
|
trace data from a previous program stop is gone.) */
|
|
|
|
/* The address of the last word recorded in the trace buffer. */
|
|
|
|
#define DBBC_ADDR (0xd80000)
|
|
|
|
/* The base of the trace buffer, at least for the "Board_0". */
|
|
|
|
#define TRACE_BUFFER_BASE (0xf40000)
|
|
|
|
static void trace_command (char *, int);
|
|
|
|
static void untrace_command (char *, int);
|
|
|
|
static void trace_info (char *, int);
|
|
|
|
static void tdisassemble_command (char *, int);
|
|
|
|
static void display_trace (int, int);
|
|
|
|
/* True when instruction traces are being collected. */
|
|
|
|
static int tracing;
|
|
|
|
/* Remembered PC. */
|
|
|
|
static CORE_ADDR last_pc;
|
|
|
|
/* True when trace output should be displayed whenever program stops. */
|
|
|
|
static int trace_display;
|
|
|
|
/* True when trace listing should include source lines. */
|
|
|
|
static int default_trace_show_source = 1;
|
|
|
|
struct trace_buffer
|
|
{
|
|
int size;
|
|
short *counts;
|
|
CORE_ADDR *addrs;
|
|
}
|
|
trace_data;
|
|
|
|
static void
|
|
trace_command (char *args, int from_tty)
|
|
{
|
|
/* Clear the host-side trace buffer, allocating space if needed. */
|
|
trace_data.size = 0;
|
|
if (trace_data.counts == NULL)
|
|
trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
|
|
if (trace_data.addrs == NULL)
|
|
trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
|
|
|
|
tracing = 1;
|
|
|
|
printf_filtered ("Tracing is now on.\n");
|
|
}
|
|
|
|
static void
|
|
untrace_command (char *args, int from_tty)
|
|
{
|
|
tracing = 0;
|
|
|
|
printf_filtered ("Tracing is now off.\n");
|
|
}
|
|
|
|
static void
|
|
trace_info (char *args, int from_tty)
|
|
{
|
|
int i;
|
|
|
|
if (trace_data.size)
|
|
{
|
|
printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
|
|
|
|
for (i = 0; i < trace_data.size; ++i)
|
|
{
|
|
printf_filtered ("%d: %d instruction%s at 0x%s\n",
|
|
i,
|
|
trace_data.counts[i],
|
|
(trace_data.counts[i] == 1 ? "" : "s"),
|
|
paddr_nz (trace_data.addrs[i]));
|
|
}
|
|
}
|
|
else
|
|
printf_filtered ("No entries in trace buffer.\n");
|
|
|
|
printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
|
|
}
|
|
|
|
/* Print the instruction at address MEMADDR in debugged memory,
|
|
on STREAM. Returns length of the instruction, in bytes. */
|
|
|
|
static int
|
|
print_insn (CORE_ADDR memaddr, struct ui_file *stream)
|
|
{
|
|
/* If there's no disassembler, something is very wrong. */
|
|
if (tm_print_insn == NULL)
|
|
internal_error (__FILE__, __LINE__,
|
|
"print_insn: no disassembler");
|
|
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
|
|
else
|
|
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
|
|
return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
|
|
}
|
|
|
|
static void
|
|
d10v_eva_prepare_to_trace (void)
|
|
{
|
|
if (!tracing)
|
|
return;
|
|
|
|
last_pc = read_register (PC_REGNUM);
|
|
}
|
|
|
|
/* Collect trace data from the target board and format it into a form
|
|
more useful for display. */
|
|
|
|
static void
|
|
d10v_eva_get_trace_data (void)
|
|
{
|
|
int count, i, j, oldsize;
|
|
int trace_addr, trace_seg, trace_cnt, next_cnt;
|
|
unsigned int last_trace, trace_word, next_word;
|
|
unsigned int *tmpspace;
|
|
|
|
if (!tracing)
|
|
return;
|
|
|
|
tmpspace = xmalloc (65536 * sizeof (unsigned int));
|
|
|
|
last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
|
|
|
|
/* Collect buffer contents from the target, stopping when we reach
|
|
the word recorded when execution resumed. */
|
|
|
|
count = 0;
|
|
while (last_trace > 0)
|
|
{
|
|
QUIT;
|
|
trace_word =
|
|
read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
|
|
trace_addr = trace_word & 0xffff;
|
|
last_trace -= 4;
|
|
/* Ignore an apparently nonsensical entry. */
|
|
if (trace_addr == 0xffd5)
|
|
continue;
|
|
tmpspace[count++] = trace_word;
|
|
if (trace_addr == last_pc)
|
|
break;
|
|
if (count > 65535)
|
|
break;
|
|
}
|
|
|
|
/* Move the data to the host-side trace buffer, adjusting counts to
|
|
include the last instruction executed and transforming the address
|
|
into something that GDB likes. */
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
trace_word = tmpspace[i];
|
|
next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
|
|
trace_addr = trace_word & 0xffff;
|
|
next_cnt = (next_word >> 24) & 0xff;
|
|
j = trace_data.size + count - i - 1;
|
|
trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
|
|
trace_data.counts[j] = next_cnt + 1;
|
|
}
|
|
|
|
oldsize = trace_data.size;
|
|
trace_data.size += count;
|
|
|
|
xfree (tmpspace);
|
|
|
|
if (trace_display)
|
|
display_trace (oldsize, trace_data.size);
|
|
}
|
|
|
|
static void
|
|
tdisassemble_command (char *arg, int from_tty)
|
|
{
|
|
int i, count;
|
|
CORE_ADDR low, high;
|
|
|
|
if (!arg)
|
|
{
|
|
low = 0;
|
|
high = trace_data.size;
|
|
}
|
|
else
|
|
{
|
|
char *space_index = strchr (arg, ' ');
|
|
if (space_index == NULL)
|
|
{
|
|
low = parse_and_eval_address (arg);
|
|
high = low + 5;
|
|
}
|
|
else
|
|
{
|
|
/* Two arguments. */
|
|
*space_index = '\0';
|
|
low = parse_and_eval_address (arg);
|
|
high = parse_and_eval_address (space_index + 1);
|
|
if (high < low)
|
|
high = low;
|
|
}
|
|
}
|
|
|
|
printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
|
|
|
|
display_trace (low, high);
|
|
|
|
printf_filtered ("End of trace dump.\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
display_trace (int low, int high)
|
|
{
|
|
int i, count, trace_show_source, first, suppress;
|
|
CORE_ADDR next_address;
|
|
|
|
trace_show_source = default_trace_show_source;
|
|
if (!have_full_symbols () && !have_partial_symbols ())
|
|
{
|
|
trace_show_source = 0;
|
|
printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
|
|
printf_filtered ("Trace will not display any source.\n");
|
|
}
|
|
|
|
first = 1;
|
|
suppress = 0;
|
|
for (i = low; i < high; ++i)
|
|
{
|
|
next_address = trace_data.addrs[i];
|
|
count = trace_data.counts[i];
|
|
while (count-- > 0)
|
|
{
|
|
QUIT;
|
|
if (trace_show_source)
|
|
{
|
|
struct symtab_and_line sal, sal_prev;
|
|
|
|
sal_prev = find_pc_line (next_address - 4, 0);
|
|
sal = find_pc_line (next_address, 0);
|
|
|
|
if (sal.symtab)
|
|
{
|
|
if (first || sal.line != sal_prev.line)
|
|
print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
|
|
suppress = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!suppress)
|
|
/* FIXME-32x64--assumes sal.pc fits in long. */
|
|
printf_filtered ("No source file for address %s.\n",
|
|
local_hex_string ((unsigned long) sal.pc));
|
|
suppress = 1;
|
|
}
|
|
}
|
|
first = 0;
|
|
print_address (next_address, gdb_stdout);
|
|
printf_filtered (":");
|
|
printf_filtered ("\t");
|
|
wrap_here (" ");
|
|
next_address = next_address + print_insn (next_address, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST pc;
|
|
frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
|
|
return d10v_make_iaddr (pc);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
d10v_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct d10v_unwind_cache *info
|
|
= d10v_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
CORE_ADDR base;
|
|
CORE_ADDR pc;
|
|
|
|
/* Start with a NULL frame ID. */
|
|
(*this_id) = null_frame_id;
|
|
|
|
/* The PC is easy. */
|
|
pc = frame_pc_unwind (next_frame);
|
|
|
|
/* This is meant to halt the backtrace at "_start". Make sure we
|
|
don't halt it at a generic dummy frame. */
|
|
if (pc == IMEM_START || pc <= IMEM_START || inside_entry_file (pc))
|
|
return;
|
|
|
|
/* Hopefully the prologue analysis either correctly determined the
|
|
frame's base (which is the SP from the previous frame), or set
|
|
that base to "NULL". */
|
|
base = info->base;
|
|
if (base == STACK_START || base == 0)
|
|
return;
|
|
|
|
/* Check that we're not going round in circles with the same frame
|
|
ID (but avoid applying the test to sentinel frames which do go
|
|
round in circles). Can't use frame_id_eq() as that doesn't yet
|
|
compare the frame's PC value. */
|
|
if (frame_relative_level (next_frame) >= 0
|
|
&& get_frame_type (next_frame) != DUMMY_FRAME
|
|
&& get_frame_id (next_frame).pc == pc
|
|
&& get_frame_id (next_frame).base == base)
|
|
return;
|
|
|
|
this_id->base = base;
|
|
this_id->pc = pc;
|
|
}
|
|
|
|
static void
|
|
saved_regs_unwinder (struct frame_info *next_frame,
|
|
CORE_ADDR *this_saved_regs,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
if (this_saved_regs[regnum] != 0)
|
|
{
|
|
if (regnum == SP_REGNUM)
|
|
{
|
|
/* SP register treated specially. */
|
|
*optimizedp = 0;
|
|
*lvalp = not_lval;
|
|
*addrp = 0;
|
|
*realnump = -1;
|
|
if (bufferp != NULL)
|
|
store_address (bufferp, register_size (current_gdbarch, regnum),
|
|
this_saved_regs[regnum]);
|
|
}
|
|
else
|
|
{
|
|
/* Any other register is saved in memory, fetch it but cache
|
|
a local copy of its value. */
|
|
*optimizedp = 0;
|
|
*lvalp = lval_memory;
|
|
*addrp = this_saved_regs[regnum];
|
|
*realnump = -1;
|
|
if (bufferp != NULL)
|
|
{
|
|
/* Read the value in from memory. */
|
|
read_memory (this_saved_regs[regnum], bufferp,
|
|
register_size (current_gdbarch, regnum));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* No luck, assume this and the next frame have the same register
|
|
value. If a value is needed, pass the request on down the chain;
|
|
otherwise just return an indication that the value is in the same
|
|
register as the next frame. */
|
|
frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
|
|
realnump, bufferp);
|
|
}
|
|
|
|
|
|
static void
|
|
d10v_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
struct d10v_unwind_cache *info
|
|
= d10v_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
if (regnum == PC_REGNUM)
|
|
{
|
|
/* The call instruction saves the caller's PC in LR. The
|
|
function prologue of the callee may then save the LR on the
|
|
stack. Find that possibly saved LR value and return it. */
|
|
saved_regs_unwinder (next_frame, info->saved_regs, LR_REGNUM, optimizedp,
|
|
lvalp, addrp, realnump, bufferp);
|
|
}
|
|
else
|
|
{
|
|
saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
|
|
lvalp, addrp, realnump, bufferp);
|
|
}
|
|
}
|
|
|
|
|
|
static struct frame_unwind d10v_frame_unwind = {
|
|
d10v_frame_this_id,
|
|
d10v_frame_prev_register
|
|
};
|
|
|
|
const struct frame_unwind *
|
|
d10v_frame_p (CORE_ADDR pc)
|
|
{
|
|
return &d10v_frame_unwind;
|
|
}
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST base;
|
|
struct frame_id id;
|
|
id.pc = frame_pc_unwind (next_frame);
|
|
frame_unwind_unsigned_register (next_frame, SP_REGNUM, &base);
|
|
id.base = d10v_make_daddr (base);
|
|
return id;
|
|
}
|
|
|
|
static gdbarch_init_ftype d10v_gdbarch_init;
|
|
|
|
static struct gdbarch *
|
|
d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
int d10v_num_regs;
|
|
struct gdbarch_tdep *tdep;
|
|
gdbarch_register_name_ftype *d10v_register_name;
|
|
gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
|
|
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_d10v_ts2:
|
|
d10v_num_regs = 37;
|
|
d10v_register_name = d10v_ts2_register_name;
|
|
d10v_register_sim_regno = d10v_ts2_register_sim_regno;
|
|
tdep->a0_regnum = TS2_A0_REGNUM;
|
|
tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
|
|
tdep->dmap_register = d10v_ts2_dmap_register;
|
|
tdep->imap_register = d10v_ts2_imap_register;
|
|
break;
|
|
default:
|
|
case bfd_mach_d10v_ts3:
|
|
d10v_num_regs = 42;
|
|
d10v_register_name = d10v_ts3_register_name;
|
|
d10v_register_sim_regno = d10v_ts3_register_sim_regno;
|
|
tdep->a0_regnum = TS3_A0_REGNUM;
|
|
tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
|
|
tdep->dmap_register = d10v_ts3_dmap_register;
|
|
tdep->imap_register = d10v_ts3_imap_register;
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
|
|
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
|
|
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
|
|
|
|
set_gdbarch_num_regs (gdbarch, d10v_num_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, 15);
|
|
set_gdbarch_pc_regnum (gdbarch, 18);
|
|
set_gdbarch_register_name (gdbarch, d10v_register_name);
|
|
set_gdbarch_register_size (gdbarch, 2);
|
|
set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
|
|
set_gdbarch_register_byte (gdbarch, d10v_register_byte);
|
|
set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
|
|
set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
|
|
set_gdbarch_register_type (gdbarch, d10v_register_type);
|
|
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
|
|
set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
|
|
set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
/* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
|
|
double'' is 64 bits. */
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
switch (info.byte_order)
|
|
{
|
|
case BFD_ENDIAN_BIG:
|
|
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
|
|
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
|
|
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
|
|
break;
|
|
case BFD_ENDIAN_LITTLE:
|
|
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
|
|
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
|
|
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
"d10v_gdbarch_init: bad byte order for float format");
|
|
}
|
|
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
|
|
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
|
|
set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
|
|
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
|
|
set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 4);
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
|
|
|
|
set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
|
|
|
|
set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
set_gdbarch_stack_align (gdbarch, d10v_stack_align);
|
|
|
|
set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
|
|
|
|
frame_unwind_append_predicate (gdbarch, d10v_frame_p);
|
|
|
|
/* Methods for saving / extracting a dummy frame's ID. */
|
|
set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
|
|
|
/* Return the unwound PC value. */
|
|
set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_d10v_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
|
|
|
|
tm_print_insn = print_insn_d10v;
|
|
|
|
target_resume_hook = d10v_eva_prepare_to_trace;
|
|
target_wait_loop_hook = d10v_eva_get_trace_data;
|
|
|
|
deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
|
|
"info registers");
|
|
|
|
add_com ("itrace", class_support, trace_command,
|
|
"Enable tracing of instruction execution.");
|
|
|
|
add_com ("iuntrace", class_support, untrace_command,
|
|
"Disable tracing of instruction execution.");
|
|
|
|
add_com ("itdisassemble", class_vars, tdisassemble_command,
|
|
"Disassemble the trace buffer.\n\
|
|
Two optional arguments specify a range of trace buffer entries\n\
|
|
as reported by info trace (NOT addresses!).");
|
|
|
|
add_info ("itrace", trace_info,
|
|
"Display info about the trace data buffer.");
|
|
|
|
add_show_from_set (add_set_cmd ("itracedisplay", no_class,
|
|
var_integer, (char *) &trace_display,
|
|
"Set automatic display of trace.\n", &setlist),
|
|
&showlist);
|
|
add_show_from_set (add_set_cmd ("itracesource", no_class,
|
|
var_integer, (char *) &default_trace_show_source,
|
|
"Set display of source code with trace.\n", &setlist),
|
|
&showlist);
|
|
|
|
}
|