1323 lines
32 KiB
C
1323 lines
32 KiB
C
/* Target-dependent code for Mitsubishi D10V, for GDB.
|
|
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
|
|
/* Local functions */
|
|
|
|
extern void _initialize_d10v_tdep PARAMS ((void));
|
|
|
|
static void d10v_eva_prepare_to_trace PARAMS ((void));
|
|
|
|
static void d10v_eva_get_trace_data PARAMS ((void));
|
|
|
|
int
|
|
d10v_frame_chain_valid (chain, frame)
|
|
CORE_ADDR chain;
|
|
struct frame_info *frame; /* not used here */
|
|
{
|
|
return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
|
|
}
|
|
|
|
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
|
and TYPE is the type (which is known to be struct, union or array).
|
|
|
|
The d10v returns anything less than 8 bytes in size in
|
|
registers. */
|
|
|
|
int
|
|
d10v_use_struct_convention (gcc_p, type)
|
|
int gcc_p;
|
|
struct type *type;
|
|
{
|
|
return (TYPE_LENGTH (type) > 8);
|
|
}
|
|
|
|
|
|
unsigned char *
|
|
d10v_breakpoint_from_pc (pcptr, lenptr)
|
|
CORE_ADDR *pcptr;
|
|
int *lenptr;
|
|
{
|
|
static unsigned char breakpoint [] = {0x2f, 0x90, 0x5e, 0x00};
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
char *
|
|
d10v_register_name (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10","r11","r12", "r13", "r14","r15",
|
|
"psw","bpsw","pc","bpc", "cr4", "cr5", "cr6", "rpt_c",
|
|
"rpt_s","rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
|
|
"imap0","imap1","dmap","a0", "a1"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names [reg_nr];
|
|
}
|
|
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register REG_NR. */
|
|
|
|
int
|
|
d10v_register_byte (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (reg_nr > A0_REGNUM)
|
|
return ((reg_nr - A0_REGNUM) * 8 + (A0_REGNUM * 2));
|
|
else
|
|
return (reg_nr * 2);
|
|
}
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register REG_NR. */
|
|
|
|
int
|
|
d10v_register_raw_size (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (reg_nr >= A0_REGNUM)
|
|
return 8;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
for register N. */
|
|
|
|
int
|
|
d10v_register_virtual_size (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (reg_nr >= A0_REGNUM)
|
|
return 8;
|
|
else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
|
|
return 4;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
struct type *
|
|
d10v_register_virtual_type (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (reg_nr >= A0_REGNUM)
|
|
return builtin_type_long_long;
|
|
else if (reg_nr == PC_REGNUM || reg_nr == SP_REGNUM)
|
|
return builtin_type_long;
|
|
else
|
|
return builtin_type_short;
|
|
}
|
|
|
|
/* convert $pc and $sp to/from virtual addresses */
|
|
int
|
|
d10v_register_convertible (nr)
|
|
int nr;
|
|
{
|
|
return ((nr) == PC_REGNUM || (nr) == SP_REGNUM);
|
|
}
|
|
|
|
void
|
|
d10v_register_convert_to_virtual (regnum, type, from, to)
|
|
int regnum;
|
|
struct type *type;
|
|
char *from;
|
|
char *to;
|
|
{
|
|
ULONGEST x = extract_unsigned_integer (from, REGISTER_RAW_SIZE (regnum));
|
|
if (regnum == PC_REGNUM)
|
|
x = (x << 2) | IMEM_START;
|
|
else
|
|
x |= DMEM_START;
|
|
store_unsigned_integer (to, TYPE_LENGTH (type), x);
|
|
}
|
|
|
|
void
|
|
d10v_register_convert_to_raw (type, regnum, from, to)
|
|
struct type *type;
|
|
int regnum;
|
|
char *from;
|
|
char *to;
|
|
{
|
|
ULONGEST x = extract_unsigned_integer (from, TYPE_LENGTH (type));
|
|
x &= 0x3ffff;
|
|
if (regnum == PC_REGNUM)
|
|
x >>= 2;
|
|
store_unsigned_integer (to, 2, x);
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_make_daddr (x)
|
|
CORE_ADDR x;
|
|
{
|
|
return ((x) | DMEM_START);
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_make_iaddr (x)
|
|
CORE_ADDR x;
|
|
{
|
|
return (((x) << 2) | IMEM_START);
|
|
}
|
|
|
|
int
|
|
d10v_daddr_p (x)
|
|
CORE_ADDR x;
|
|
{
|
|
return (((x) & 0x3000000) == DMEM_START);
|
|
}
|
|
|
|
int
|
|
d10v_iaddr_p (x)
|
|
CORE_ADDR x;
|
|
{
|
|
return (((x) & 0x3000000) == IMEM_START);
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_convert_iaddr_to_raw (x)
|
|
CORE_ADDR x;
|
|
{
|
|
return (((x) >> 2) & 0xffff);
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_convert_daddr_to_raw(x)
|
|
CORE_ADDR x;
|
|
{
|
|
return ((x) & 0xffff);
|
|
}
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
subroutine will return. This is called from call_function.
|
|
|
|
We store structs through a pointer passed in the first Argument
|
|
register. */
|
|
|
|
void
|
|
d10v_store_struct_return (addr, sp)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR sp;
|
|
{
|
|
write_register (ARG1_REGNUM, (addr));
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
|
|
|
|
void
|
|
d10v_store_return_value (type,valbuf)
|
|
struct type *type;
|
|
char *valbuf;
|
|
{
|
|
write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
|
|
valbuf,
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
|
|
CORE_ADDR
|
|
d10v_extract_struct_value_address (regbuf)
|
|
char *regbuf;
|
|
{
|
|
return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
|
|
REGISTER_RAW_SIZE (ARG1_REGNUM))
|
|
| DMEM_START);
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_frame_saved_pc (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
return ((frame)->return_pc);
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_frame_args_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
return (fi)->frame;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_frame_locals_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
return (fi)->frame;
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc. We can't
|
|
use frame->return_pc beause that is determined by reading R13 off
|
|
the stack and that may not be written yet. */
|
|
|
|
CORE_ADDR
|
|
d10v_saved_pc_after_call (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
return ((read_register(LR_REGNUM) << 2)
|
|
| IMEM_START);
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame, restoring all saved
|
|
registers. */
|
|
|
|
void
|
|
d10v_pop_frame (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
struct frame_saved_regs fsr;
|
|
char raw_buffer[8];
|
|
|
|
fp = FRAME_FP (frame);
|
|
/* fill out fsr with the address of where each */
|
|
/* register was stored in the frame */
|
|
get_frame_saved_regs (frame, &fsr);
|
|
|
|
/* now update the current registers with the old values */
|
|
for (regnum = A0_REGNUM; regnum < A0_REGNUM+2 ; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
read_memory (fsr.regs[regnum], raw_buffer, REGISTER_RAW_SIZE(regnum));
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE(regnum));
|
|
}
|
|
}
|
|
for (regnum = 0; regnum < SP_REGNUM; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_unsigned_integer (fsr.regs[regnum], REGISTER_RAW_SIZE(regnum)));
|
|
}
|
|
}
|
|
if (fsr.regs[PSW_REGNUM])
|
|
{
|
|
write_register (PSW_REGNUM, read_memory_unsigned_integer (fsr.regs[PSW_REGNUM], REGISTER_RAW_SIZE(PSW_REGNUM)));
|
|
}
|
|
|
|
write_register (PC_REGNUM, read_register (LR_REGNUM));
|
|
write_register (SP_REGNUM, fp + frame->size);
|
|
target_store_registers (-1);
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
static int
|
|
check_prologue (op)
|
|
unsigned short op;
|
|
{
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
return 1;
|
|
|
|
/* st2w rn, @-sp */
|
|
if ((op & 0x7E3F) == 0x6E1F)
|
|
return 1;
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
return 1;
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
return 1;
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
return 1;
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_skip_prologue (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
|
|
/* If we have line debugging information, then the end of the */
|
|
/* prologue should the first assembly instruction of the first source line */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if ( sal.end && sal.end < func_end)
|
|
return sal.end;
|
|
}
|
|
|
|
if (target_read_memory (pc, (char *)&op, 4))
|
|
return pc; /* Can't access it -- assume no prologue. */
|
|
|
|
while (1)
|
|
{
|
|
op = (unsigned long)read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ( ((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
|
|
((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
|
|
((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (check_prologue(op1))
|
|
{
|
|
if (!check_prologue(op2))
|
|
{
|
|
/* if the previous opcode was really part of the prologue */
|
|
/* and not just a NOP, then we want to break after both instructions */
|
|
if (op1 != 0x5E00)
|
|
pc += 4;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
*/
|
|
|
|
CORE_ADDR
|
|
d10v_frame_chain (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
struct frame_saved_regs fsr;
|
|
|
|
d10v_frame_find_saved_regs (frame, &fsr);
|
|
|
|
if (frame->return_pc == IMEM_START || inside_entry_file(frame->return_pc))
|
|
return (CORE_ADDR)0;
|
|
|
|
if (!fsr.regs[FP_REGNUM])
|
|
{
|
|
if (!fsr.regs[SP_REGNUM] || fsr.regs[SP_REGNUM] == STACK_START)
|
|
return (CORE_ADDR)0;
|
|
|
|
return fsr.regs[SP_REGNUM];
|
|
}
|
|
|
|
if (!read_memory_unsigned_integer(fsr.regs[FP_REGNUM], REGISTER_RAW_SIZE(FP_REGNUM)))
|
|
return (CORE_ADDR)0;
|
|
|
|
return D10V_MAKE_DADDR (read_memory_unsigned_integer (fsr.regs[FP_REGNUM], REGISTER_RAW_SIZE (FP_REGNUM)));
|
|
}
|
|
|
|
static int next_addr, uses_frame;
|
|
|
|
static int
|
|
prologue_find_regs (op, fsr, addr)
|
|
unsigned short op;
|
|
struct frame_saved_regs *fsr;
|
|
CORE_ADDR addr;
|
|
{
|
|
int n;
|
|
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 2;
|
|
fsr->regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @-sp */
|
|
else if ((op & 0x7E3F) == 0x6E1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 4;
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr+2;
|
|
return 1;
|
|
}
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
{
|
|
n = (op & 0x1E) >> 1;
|
|
if (n == 0)
|
|
n = 16;
|
|
next_addr -= n;
|
|
return 1;
|
|
}
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
{
|
|
uses_frame = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fsr->regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fsr->regs[n] = next_addr;
|
|
fsr->regs[n+1] = next_addr+2;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs, the
|
|
addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special: the address we
|
|
return for it IS the sp for the next frame. */
|
|
void
|
|
d10v_frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
CORE_ADDR fp, pc;
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
int i;
|
|
|
|
fp = fi->frame;
|
|
memset (fsr, 0, sizeof (*fsr));
|
|
next_addr = 0;
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
|
|
uses_frame = 0;
|
|
while (1)
|
|
{
|
|
op = (unsigned long)read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ((op & 0x3FFF0000) == 0x01FF0000)
|
|
{
|
|
/* add3 sp,sp,n */
|
|
short n = op & 0xFFFF;
|
|
next_addr += n;
|
|
}
|
|
else if ((op & 0x3F0F0000) == 0x340F0000)
|
|
{
|
|
/* st rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fsr->regs[n] = next_addr + offset;
|
|
}
|
|
else if ((op & 0x3F1F0000) == 0x350F0000)
|
|
{
|
|
/* st2w rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fsr->regs[n] = next_addr + offset;
|
|
fsr->regs[n+1] = next_addr + offset + 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (!prologue_find_regs(op1,fsr,pc) || !prologue_find_regs(op2,fsr,pc))
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
|
|
fi->size = -next_addr;
|
|
|
|
if (!(fp & 0xffff))
|
|
fp = D10V_MAKE_DADDR (read_register(SP_REGNUM));
|
|
|
|
for (i=0; i<NUM_REGS-1; i++)
|
|
if (fsr->regs[i])
|
|
{
|
|
fsr->regs[i] = fp - (next_addr - fsr->regs[i]);
|
|
}
|
|
|
|
if (fsr->regs[LR_REGNUM])
|
|
{
|
|
CORE_ADDR return_pc = read_memory_unsigned_integer (fsr->regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
|
|
fi->return_pc = D10V_MAKE_IADDR (return_pc);
|
|
}
|
|
else
|
|
{
|
|
fi->return_pc = D10V_MAKE_IADDR (read_register(LR_REGNUM));
|
|
}
|
|
|
|
/* th SP is not normally (ever?) saved, but check anyway */
|
|
if (!fsr->regs[SP_REGNUM])
|
|
{
|
|
/* if the FP was saved, that means the current FP is valid, */
|
|
/* otherwise, it isn't being used, so we use the SP instead */
|
|
if (uses_frame)
|
|
fsr->regs[SP_REGNUM] = read_register(FP_REGNUM) + fi->size;
|
|
else
|
|
{
|
|
fsr->regs[SP_REGNUM] = fp + fi->size;
|
|
fi->frameless = 1;
|
|
fsr->regs[FP_REGNUM] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
d10v_init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
fi->frameless = 0;
|
|
fi->size = 0;
|
|
fi->return_pc = 0;
|
|
|
|
/* The call dummy doesn't save any registers on the stack, so we can
|
|
return now. */
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
{
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
struct frame_saved_regs dummy;
|
|
d10v_frame_find_saved_regs (fi, &dummy);
|
|
}
|
|
}
|
|
|
|
static void
|
|
show_regs (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
int a;
|
|
printf_filtered ("PC=%04x (0x%x) PSW=%04x RPT_S=%04x RPT_E=%04x RPT_C=%04x\n",
|
|
read_register (PC_REGNUM), D10V_MAKE_IADDR (read_register (PC_REGNUM)),
|
|
read_register (PSW_REGNUM),
|
|
read_register (24),
|
|
read_register (25),
|
|
read_register (23));
|
|
printf_filtered ("R0-R7 %04x %04x %04x %04x %04x %04x %04x %04x\n",
|
|
read_register (0),
|
|
read_register (1),
|
|
read_register (2),
|
|
read_register (3),
|
|
read_register (4),
|
|
read_register (5),
|
|
read_register (6),
|
|
read_register (7));
|
|
printf_filtered ("R8-R15 %04x %04x %04x %04x %04x %04x %04x %04x\n",
|
|
read_register (8),
|
|
read_register (9),
|
|
read_register (10),
|
|
read_register (11),
|
|
read_register (12),
|
|
read_register (13),
|
|
read_register (14),
|
|
read_register (15));
|
|
printf_filtered ("IMAP0 %04x IMAP1 %04x DMAP %04x\n",
|
|
read_register (IMAP0_REGNUM),
|
|
read_register (IMAP1_REGNUM),
|
|
read_register (DMAP_REGNUM));
|
|
printf_filtered ("A0-A1");
|
|
for (a = A0_REGNUM; a <= A0_REGNUM + 1; a++)
|
|
{
|
|
char num[MAX_REGISTER_RAW_SIZE];
|
|
int i;
|
|
printf_filtered (" ");
|
|
read_register_gen (a, (char *)&num);
|
|
for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
|
|
{
|
|
printf_filtered ("%02x", (num[i] & 0xff));
|
|
}
|
|
}
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_read_pc (pid)
|
|
int pid;
|
|
{
|
|
int save_pid;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR retval;
|
|
|
|
save_pid = inferior_pid;
|
|
inferior_pid = pid;
|
|
pc = (int) read_register (PC_REGNUM);
|
|
inferior_pid = save_pid;
|
|
retval = D10V_MAKE_IADDR (pc);
|
|
return retval;
|
|
}
|
|
|
|
void
|
|
d10v_write_pc (val, pid)
|
|
CORE_ADDR val;
|
|
int pid;
|
|
{
|
|
int save_pid;
|
|
|
|
save_pid = inferior_pid;
|
|
inferior_pid = pid;
|
|
write_register (PC_REGNUM, D10V_CONVERT_IADDR_TO_RAW (val));
|
|
inferior_pid = save_pid;
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_read_sp ()
|
|
{
|
|
return (D10V_MAKE_DADDR (read_register (SP_REGNUM)));
|
|
}
|
|
|
|
void
|
|
d10v_write_sp (val)
|
|
CORE_ADDR val;
|
|
{
|
|
write_register (SP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
|
|
}
|
|
|
|
void
|
|
d10v_write_fp (val)
|
|
CORE_ADDR val;
|
|
{
|
|
write_register (FP_REGNUM, D10V_CONVERT_DADDR_TO_RAW (val));
|
|
}
|
|
|
|
CORE_ADDR
|
|
d10v_read_fp ()
|
|
{
|
|
return (D10V_MAKE_DADDR (read_register(FP_REGNUM)));
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
CORE_ADDR
|
|
d10v_push_return_address (pc, sp)
|
|
CORE_ADDR pc;
|
|
CORE_ADDR sp;
|
|
{
|
|
write_register (LR_REGNUM, D10V_CONVERT_IADDR_TO_RAW (CALL_DUMMY_ADDRESS ()));
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
|
order. The below implements a FILO (stack) to do this. */
|
|
|
|
struct stack_item
|
|
{
|
|
int len;
|
|
struct stack_item *prev;
|
|
void *data;
|
|
};
|
|
|
|
static struct stack_item *push_stack_item PARAMS ((struct stack_item *prev, void *contents, int len));
|
|
static struct stack_item *
|
|
push_stack_item (prev, contents, len)
|
|
struct stack_item *prev;
|
|
void *contents;
|
|
int len;
|
|
{
|
|
struct stack_item *si;
|
|
si = xmalloc (sizeof (struct stack_item));
|
|
si->data = xmalloc (len);
|
|
si->len = len;
|
|
si->prev = prev;
|
|
memcpy (si->data, contents, len);
|
|
return si;
|
|
}
|
|
|
|
static struct stack_item *pop_stack_item PARAMS ((struct stack_item *si));
|
|
static struct stack_item *
|
|
pop_stack_item (si)
|
|
struct stack_item *si;
|
|
{
|
|
struct stack_item *dead = si;
|
|
si = si->prev;
|
|
free (dead->data);
|
|
free (dead);
|
|
return si;
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
d10v_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
value_ptr *args;
|
|
CORE_ADDR sp;
|
|
int struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int i;
|
|
int regnum = ARG1_REGNUM;
|
|
struct stack_item *si = NULL;
|
|
|
|
/* Fill in registers and arg lists */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
value_ptr arg = args[i];
|
|
struct type *type = check_typedef (VALUE_TYPE (arg));
|
|
char *contents = VALUE_CONTENTS (arg);
|
|
int len = TYPE_LENGTH (type);
|
|
/* printf ("push: type=%d len=%d\n", type->code, len); */
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
{
|
|
/* pointers require special handling - first convert and
|
|
then store */
|
|
long val = extract_signed_integer (contents, len);
|
|
len = 2;
|
|
if (TYPE_TARGET_TYPE (type)
|
|
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
|
|
{
|
|
/* function pointer */
|
|
val = D10V_CONVERT_IADDR_TO_RAW (val);
|
|
}
|
|
else if (D10V_IADDR_P (val))
|
|
{
|
|
/* also function pointer! */
|
|
val = D10V_CONVERT_DADDR_TO_RAW (val);
|
|
}
|
|
else
|
|
{
|
|
/* data pointer */
|
|
val &= 0xFFFF;
|
|
}
|
|
if (regnum <= ARGN_REGNUM)
|
|
write_register (regnum++, val & 0xffff);
|
|
else
|
|
{
|
|
char ptr[2];
|
|
/* arg will go onto stack */
|
|
store_address (ptr, val & 0xffff, 2);
|
|
si = push_stack_item (si, ptr, 2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int aligned_regnum = (regnum + 1) & ~1;
|
|
if (len <= 2 && regnum <= ARGN_REGNUM)
|
|
/* fits in a single register, do not align */
|
|
{
|
|
long val = extract_unsigned_integer (contents, len);
|
|
write_register (regnum++, val);
|
|
}
|
|
else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
|
|
/* value fits in remaining registers, store keeping left
|
|
aligned */
|
|
{
|
|
int b;
|
|
regnum = aligned_regnum;
|
|
for (b = 0; b < (len & ~1); b += 2)
|
|
{
|
|
long val = extract_unsigned_integer (&contents[b], 2);
|
|
write_register (regnum++, val);
|
|
}
|
|
if (b < len)
|
|
{
|
|
long val = extract_unsigned_integer (&contents[b], 1);
|
|
write_register (regnum++, (val << 8));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* arg will go onto stack */
|
|
regnum = ARGN_REGNUM + 1;
|
|
si = push_stack_item (si, contents, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
while (si)
|
|
{
|
|
sp = (sp - si->len) & ~1;
|
|
write_memory (sp, si->data, si->len);
|
|
si = pop_stack_item (si);
|
|
}
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
void
|
|
d10v_extract_return_value (type, regbuf, valbuf)
|
|
struct type *type;
|
|
char regbuf[REGISTER_BYTES];
|
|
char *valbuf;
|
|
{
|
|
int len;
|
|
/* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
|
&& TYPE_TARGET_TYPE (type)
|
|
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
|
|
{
|
|
/* pointer to function */
|
|
int num;
|
|
short snum;
|
|
snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
|
|
store_address ( valbuf, 4, D10V_MAKE_IADDR(snum));
|
|
}
|
|
else if (TYPE_CODE(type) == TYPE_CODE_PTR)
|
|
{
|
|
/* pointer to data */
|
|
int num;
|
|
short snum;
|
|
snum = extract_address (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
|
|
store_address ( valbuf, 4, D10V_MAKE_DADDR(snum));
|
|
}
|
|
else
|
|
{
|
|
len = TYPE_LENGTH (type);
|
|
if (len == 1)
|
|
{
|
|
unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
|
|
store_unsigned_integer (valbuf, 1, c);
|
|
}
|
|
else if ((len & 1) == 0)
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
|
|
else
|
|
{
|
|
/* For return values of odd size, the first byte is in the
|
|
least significant part of the first register. The
|
|
remaining bytes in remaining registers. Interestingly,
|
|
when such values are passed in, the last byte is in the
|
|
most significant byte of that same register - wierd. */
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The following code implements access to, and display of, the D10V's
|
|
instruction trace buffer. The buffer consists of 64K or more
|
|
4-byte words of data, of which each words includes an 8-bit count,
|
|
an 8-bit segment number, and a 16-bit instruction address.
|
|
|
|
In theory, the trace buffer is continuously capturing instruction
|
|
data that the CPU presents on its "debug bus", but in practice, the
|
|
ROMified GDB stub only enables tracing when it continues or steps
|
|
the program, and stops tracing when the program stops; so it
|
|
actually works for GDB to read the buffer counter out of memory and
|
|
then read each trace word. The counter records where the tracing
|
|
stops, but there is no record of where it started, so we remember
|
|
the PC when we resumed and then search backwards in the trace
|
|
buffer for a word that includes that address. This is not perfect,
|
|
because you will miss trace data if the resumption PC is the target
|
|
of a branch. (The value of the buffer counter is semi-random, any
|
|
trace data from a previous program stop is gone.) */
|
|
|
|
/* The address of the last word recorded in the trace buffer. */
|
|
|
|
#define DBBC_ADDR (0xd80000)
|
|
|
|
/* The base of the trace buffer, at least for the "Board_0". */
|
|
|
|
#define TRACE_BUFFER_BASE (0xf40000)
|
|
|
|
static void trace_command PARAMS ((char *, int));
|
|
|
|
static void untrace_command PARAMS ((char *, int));
|
|
|
|
static void trace_info PARAMS ((char *, int));
|
|
|
|
static void tdisassemble_command PARAMS ((char *, int));
|
|
|
|
static void display_trace PARAMS ((int, int));
|
|
|
|
/* True when instruction traces are being collected. */
|
|
|
|
static int tracing;
|
|
|
|
/* Remembered PC. */
|
|
|
|
static CORE_ADDR last_pc;
|
|
|
|
/* True when trace output should be displayed whenever program stops. */
|
|
|
|
static int trace_display;
|
|
|
|
/* True when trace listing should include source lines. */
|
|
|
|
static int default_trace_show_source = 1;
|
|
|
|
struct trace_buffer {
|
|
int size;
|
|
short *counts;
|
|
CORE_ADDR *addrs;
|
|
} trace_data;
|
|
|
|
static void
|
|
trace_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
/* Clear the host-side trace buffer, allocating space if needed. */
|
|
trace_data.size = 0;
|
|
if (trace_data.counts == NULL)
|
|
trace_data.counts = (short *) xmalloc (65536 * sizeof(short));
|
|
if (trace_data.addrs == NULL)
|
|
trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof(CORE_ADDR));
|
|
|
|
tracing = 1;
|
|
|
|
printf_filtered ("Tracing is now on.\n");
|
|
}
|
|
|
|
static void
|
|
untrace_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
tracing = 0;
|
|
|
|
printf_filtered ("Tracing is now off.\n");
|
|
}
|
|
|
|
static void
|
|
trace_info (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
int i;
|
|
|
|
if (trace_data.size)
|
|
{
|
|
printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
|
|
|
|
for (i = 0; i < trace_data.size; ++i)
|
|
{
|
|
printf_filtered ("%d: %d instruction%s at 0x%x\n",
|
|
i, trace_data.counts[i],
|
|
(trace_data.counts[i] == 1 ? "" : "s"),
|
|
trace_data.addrs[i]);
|
|
}
|
|
}
|
|
else
|
|
printf_filtered ("No entries in trace buffer.\n");
|
|
|
|
printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
|
|
}
|
|
|
|
/* Print the instruction at address MEMADDR in debugged memory,
|
|
on STREAM. Returns length of the instruction, in bytes. */
|
|
|
|
static int
|
|
print_insn (memaddr, stream)
|
|
CORE_ADDR memaddr;
|
|
GDB_FILE *stream;
|
|
{
|
|
/* If there's no disassembler, something is very wrong. */
|
|
if (tm_print_insn == NULL)
|
|
abort ();
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
|
|
else
|
|
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
|
|
return (*tm_print_insn) (memaddr, &tm_print_insn_info);
|
|
}
|
|
|
|
static void
|
|
d10v_eva_prepare_to_trace ()
|
|
{
|
|
if (!tracing)
|
|
return;
|
|
|
|
last_pc = read_register (PC_REGNUM);
|
|
}
|
|
|
|
/* Collect trace data from the target board and format it into a form
|
|
more useful for display. */
|
|
|
|
static void
|
|
d10v_eva_get_trace_data ()
|
|
{
|
|
int count, i, j, oldsize;
|
|
int trace_addr, trace_seg, trace_cnt, next_cnt;
|
|
unsigned int last_trace, trace_word, next_word;
|
|
unsigned int *tmpspace;
|
|
|
|
if (!tracing)
|
|
return;
|
|
|
|
tmpspace = xmalloc (65536 * sizeof(unsigned int));
|
|
|
|
last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
|
|
|
|
/* Collect buffer contents from the target, stopping when we reach
|
|
the word recorded when execution resumed. */
|
|
|
|
count = 0;
|
|
while (last_trace > 0)
|
|
{
|
|
QUIT;
|
|
trace_word =
|
|
read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
|
|
trace_addr = trace_word & 0xffff;
|
|
last_trace -= 4;
|
|
/* Ignore an apparently nonsensical entry. */
|
|
if (trace_addr == 0xffd5)
|
|
continue;
|
|
tmpspace[count++] = trace_word;
|
|
if (trace_addr == last_pc)
|
|
break;
|
|
if (count > 65535)
|
|
break;
|
|
}
|
|
|
|
/* Move the data to the host-side trace buffer, adjusting counts to
|
|
include the last instruction executed and transforming the address
|
|
into something that GDB likes. */
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
trace_word = tmpspace[i];
|
|
next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
|
|
trace_addr = trace_word & 0xffff;
|
|
next_cnt = (next_word >> 24) & 0xff;
|
|
j = trace_data.size + count - i - 1;
|
|
trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
|
|
trace_data.counts[j] = next_cnt + 1;
|
|
}
|
|
|
|
oldsize = trace_data.size;
|
|
trace_data.size += count;
|
|
|
|
free (tmpspace);
|
|
|
|
if (trace_display)
|
|
display_trace (oldsize, trace_data.size);
|
|
}
|
|
|
|
static void
|
|
tdisassemble_command (arg, from_tty)
|
|
char *arg;
|
|
int from_tty;
|
|
{
|
|
int i, count;
|
|
CORE_ADDR low, high;
|
|
char *space_index;
|
|
|
|
if (!arg)
|
|
{
|
|
low = 0;
|
|
high = trace_data.size;
|
|
}
|
|
else if (!(space_index = (char *) strchr (arg, ' ')))
|
|
{
|
|
low = parse_and_eval_address (arg);
|
|
high = low + 5;
|
|
}
|
|
else
|
|
{
|
|
/* Two arguments. */
|
|
*space_index = '\0';
|
|
low = parse_and_eval_address (arg);
|
|
high = parse_and_eval_address (space_index + 1);
|
|
if (high < low)
|
|
high = low;
|
|
}
|
|
|
|
printf_filtered ("Dump of trace from %d to %d:\n", low, high);
|
|
|
|
display_trace (low, high);
|
|
|
|
printf_filtered ("End of trace dump.\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
display_trace (low, high)
|
|
int low, high;
|
|
{
|
|
int i, count, trace_show_source, first, suppress;
|
|
CORE_ADDR next_address;
|
|
|
|
trace_show_source = default_trace_show_source;
|
|
if (!have_full_symbols () && !have_partial_symbols())
|
|
{
|
|
trace_show_source = 0;
|
|
printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
|
|
printf_filtered ("Trace will not display any source.\n");
|
|
}
|
|
|
|
first = 1;
|
|
suppress = 0;
|
|
for (i = low; i < high; ++i)
|
|
{
|
|
next_address = trace_data.addrs[i];
|
|
count = trace_data.counts[i];
|
|
while (count-- > 0)
|
|
{
|
|
QUIT;
|
|
if (trace_show_source)
|
|
{
|
|
struct symtab_and_line sal, sal_prev;
|
|
|
|
sal_prev = find_pc_line (next_address - 4, 0);
|
|
sal = find_pc_line (next_address, 0);
|
|
|
|
if (sal.symtab)
|
|
{
|
|
if (first || sal.line != sal_prev.line)
|
|
print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
|
|
suppress = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!suppress)
|
|
/* FIXME-32x64--assumes sal.pc fits in long. */
|
|
printf_filtered ("No source file for address %s.\n",
|
|
local_hex_string((unsigned long) sal.pc));
|
|
suppress = 1;
|
|
}
|
|
}
|
|
first = 0;
|
|
print_address (next_address, gdb_stdout);
|
|
printf_filtered (":");
|
|
printf_filtered ("\t");
|
|
wrap_here (" ");
|
|
next_address = next_address + print_insn (next_address, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void (*target_resume_hook) PARAMS ((void));
|
|
extern void (*target_wait_loop_hook) PARAMS ((void));
|
|
|
|
void
|
|
_initialize_d10v_tdep ()
|
|
{
|
|
tm_print_insn = print_insn_d10v;
|
|
|
|
target_resume_hook = d10v_eva_prepare_to_trace;
|
|
target_wait_loop_hook = d10v_eva_get_trace_data;
|
|
|
|
add_com ("regs", class_vars, show_regs, "Print all registers");
|
|
|
|
add_com ("trace", class_support, trace_command,
|
|
"Enable tracing of instruction execution.");
|
|
|
|
add_com ("untrace", class_support, untrace_command,
|
|
"Disable tracing of instruction execution.");
|
|
|
|
add_com ("tdisassemble", class_vars, tdisassemble_command,
|
|
"Disassemble the trace buffer.\n\
|
|
Two optional arguments specify a range of trace buffer entries\n\
|
|
as reported by info trace (NOT addresses!).");
|
|
|
|
add_info ("trace", trace_info,
|
|
"Display info about the trace data buffer.");
|
|
|
|
add_show_from_set (add_set_cmd ("tracedisplay", no_class,
|
|
var_integer, (char *)&trace_display,
|
|
"Set automatic display of trace.\n", &setlist),
|
|
&showlist);
|
|
add_show_from_set (add_set_cmd ("tracesource", no_class,
|
|
var_integer, (char *)&default_trace_show_source,
|
|
"Set display of source code with trace.\n", &setlist),
|
|
&showlist);
|
|
|
|
}
|