binutils-gdb/bfd/elf32-mep.c

764 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* MeP-specific support for 32-bit ELF.
Copyright (C) 2001-2020 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/mep.h"
#include "libiberty.h"
/* Forward declarations. */
/* Private relocation functions. */
#define MEPREL(type, size, bits, right, left, pcrel, overflow, mask) \
HOWTO (type, right, size, bits, pcrel, left, overflow, bfd_elf_generic_reloc, #type, FALSE, 0, mask, 0)
#define N complain_overflow_dont
#define S complain_overflow_signed
#define U complain_overflow_unsigned
static reloc_howto_type mep_elf_howto_table [] =
{
/* type, size, bits, leftshift, rightshift, pcrel, OD/OS/OU, mask. */
MEPREL (R_MEP_NONE, 3, 0, 0, 0, 0, N, 0),
MEPREL (R_RELC, 0, 0, 0, 0, 0, N, 0),
/* MEPRELOC:HOWTO */
/* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */
MEPREL (R_MEP_8, 0, 8, 0, 0, 0, U, 0xff),
MEPREL (R_MEP_16, 1, 16, 0, 0, 0, U, 0xffff),
MEPREL (R_MEP_32, 2, 32, 0, 0, 0, U, 0xffffffff),
MEPREL (R_MEP_PCREL8A2, 1, 8, 1, 1, 1, S, 0x00fe),
MEPREL (R_MEP_PCREL12A2,1, 12, 1, 1, 1, S, 0x0ffe),
MEPREL (R_MEP_PCREL17A2,2, 17, 0, 1, 1, S, 0x0000ffff),
MEPREL (R_MEP_PCREL24A2,2, 24, 0, 1, 1, S, 0x07f0ffff),
MEPREL (R_MEP_PCABS24A2,2, 24, 0, 1, 0, U, 0x07f0ffff),
MEPREL (R_MEP_LOW16, 2, 16, 0, 0, 0, N, 0x0000ffff),
MEPREL (R_MEP_HI16U, 2, 32, 0,16, 0, N, 0x0000ffff),
MEPREL (R_MEP_HI16S, 2, 32, 0,16, 0, N, 0x0000ffff),
MEPREL (R_MEP_GPREL, 2, 16, 0, 0, 0, S, 0x0000ffff),
MEPREL (R_MEP_TPREL, 2, 16, 0, 0, 0, S, 0x0000ffff),
MEPREL (R_MEP_TPREL7, 1, 7, 0, 0, 0, U, 0x007f),
MEPREL (R_MEP_TPREL7A2, 1, 7, 1, 1, 0, U, 0x007e),
MEPREL (R_MEP_TPREL7A4, 1, 7, 2, 2, 0, U, 0x007c),
MEPREL (R_MEP_UIMM24, 2, 24, 0, 0, 0, U, 0x00ffffff),
MEPREL (R_MEP_ADDR24A4, 2, 24, 0, 2, 0, U, 0x00fcffff),
MEPREL (R_MEP_GNU_VTINHERIT,1, 0,16,32, 0, N, 0x0000),
MEPREL (R_MEP_GNU_VTENTRY,1, 0,16,32, 0, N, 0x0000),
/* MEPRELOC:END */
};
#define VALID_MEP_RELOC(N) ((N) >= 0 \
&& (N) < ARRAY_SIZE (mep_elf_howto_table)
#undef N
#undef S
#undef U
#define BFD_RELOC_MEP_NONE BFD_RELOC_NONE
#if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
#define MAP(n) case BFD_RELOC_MEP_##n: type = R_MEP_##n; break
#else
#define MAP(n) case BFD_RELOC_MEP_/**/n: type = R_MEP_/**/n; break
#endif
static reloc_howto_type *
mep_reloc_type_lookup
(bfd * abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
unsigned int type = 0;
switch (code)
{
MAP(NONE);
case BFD_RELOC_8:
type = R_MEP_8;
break;
case BFD_RELOC_16:
type = R_MEP_16;
break;
case BFD_RELOC_32:
type = R_MEP_32;
break;
case BFD_RELOC_VTABLE_ENTRY:
type = R_MEP_GNU_VTENTRY;
break;
case BFD_RELOC_VTABLE_INHERIT:
type = R_MEP_GNU_VTINHERIT;
break;
case BFD_RELOC_RELC:
type = R_RELC;
break;
/* MEPRELOC:MAP */
/* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */
MAP(8);
MAP(16);
MAP(32);
MAP(PCREL8A2);
MAP(PCREL12A2);
MAP(PCREL17A2);
MAP(PCREL24A2);
MAP(PCABS24A2);
MAP(LOW16);
MAP(HI16U);
MAP(HI16S);
MAP(GPREL);
MAP(TPREL);
MAP(TPREL7);
MAP(TPREL7A2);
MAP(TPREL7A4);
MAP(UIMM24);
MAP(ADDR24A4);
MAP(GNU_VTINHERIT);
MAP(GNU_VTENTRY);
/* MEPRELOC:END */
default:
/* Pacify gcc -Wall. */
_bfd_error_handler (_("mep: no reloc for code %d"), code);
return NULL;
}
if (mep_elf_howto_table[type].type != type)
{
/* xgettext:c-format */
_bfd_error_handler (_("MeP: howto %d has type %d"),
type, mep_elf_howto_table[type].type);
abort ();
}
return mep_elf_howto_table + type;
}
#undef MAP
static reloc_howto_type *
mep_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
{
unsigned int i;
for (i = 0;
i < sizeof (mep_elf_howto_table) / sizeof (mep_elf_howto_table[0]);
i++)
if (mep_elf_howto_table[i].name != NULL
&& strcasecmp (mep_elf_howto_table[i].name, r_name) == 0)
return &mep_elf_howto_table[i];
return NULL;
}
/* Perform a single relocation. */
static struct bfd_link_info *mep_info;
static int warn_tp = 0, warn_sda = 0;
static bfd_vma
mep_lookup_global
(char * name,
bfd_vma ofs,
bfd_vma * cache,
int * warn)
{
struct bfd_link_hash_entry *h;
if (*cache || *warn)
return *cache;
h = bfd_link_hash_lookup (mep_info->hash, name, FALSE, FALSE, TRUE);
if (h == 0 || h->type != bfd_link_hash_defined)
{
*warn = ofs + 1;
return 0;
}
*cache = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
return *cache;
}
static bfd_vma
mep_tpoff_base (bfd_vma ofs)
{
static bfd_vma cache = 0;
return mep_lookup_global ("__tpbase", ofs, &cache, &warn_tp);
}
static bfd_vma
mep_sdaoff_base (bfd_vma ofs)
{
static bfd_vma cache = 0;
return mep_lookup_global ("__sdabase", ofs, &cache, &warn_sda);
}
static bfd_reloc_status_type
mep_final_link_relocate
(reloc_howto_type * howto,
bfd * input_bfd,
asection * input_section,
bfd_byte * contents,
Elf_Internal_Rela * rel,
bfd_vma relocation)
{
unsigned long u;
long s;
unsigned char *byte;
bfd_vma pc;
bfd_reloc_status_type r = bfd_reloc_ok;
int e2, e4;
if (bfd_big_endian (input_bfd))
{
e2 = 0;
e4 = 0;
}
else
{
e2 = 1;
e4 = 3;
}
pc = (input_section->output_section->vma
+ input_section->output_offset
+ rel->r_offset);
s = relocation + rel->r_addend;
byte = (unsigned char *)contents + rel->r_offset;
if (howto->type == R_MEP_PCREL24A2
&& s == 0
&& pc >= 0x800000)
{
/* This is an unreachable branch to an undefined weak function.
Silently ignore it, since the opcode can't do that but should
never be executed anyway. */
return bfd_reloc_ok;
}
if (howto->pc_relative)
s -= pc;
u = (unsigned long) s;
switch (howto->type)
{
/* MEPRELOC:APPLY */
/* This section generated from bfd/mep-relocs.pl from include/elf/mep.h. */
case R_MEP_8: /* 76543210 */
if (u > 255) r = bfd_reloc_overflow;
byte[0] = (u & 0xff);
break;
case R_MEP_16: /* fedcba9876543210 */
if (u > 65535) r = bfd_reloc_overflow;
byte[0^e2] = ((u >> 8) & 0xff);
byte[1^e2] = (u & 0xff);
break;
case R_MEP_32: /* vutsrqponmlkjihgfedcba9876543210 */
byte[0^e4] = ((u >> 24) & 0xff);
byte[1^e4] = ((u >> 16) & 0xff);
byte[2^e4] = ((u >> 8) & 0xff);
byte[3^e4] = (u & 0xff);
break;
case R_MEP_PCREL8A2: /* --------7654321- */
if (-128 > s || s > 127) r = bfd_reloc_overflow;
byte[1^e2] = (byte[1^e2] & 0x01) | (s & 0xfe);
break;
case R_MEP_PCREL12A2: /* ----ba987654321- */
if (-2048 > s || s > 2047) r = bfd_reloc_overflow;
byte[0^e2] = (byte[0^e2] & 0xf0) | ((s >> 8) & 0x0f);
byte[1^e2] = (byte[1^e2] & 0x01) | (s & 0xfe);
break;
case R_MEP_PCREL17A2: /* ----------------gfedcba987654321 */
if (-65536 > s || s > 65535) r = bfd_reloc_overflow;
byte[2^e2] = ((s >> 9) & 0xff);
byte[3^e2] = ((s >> 1) & 0xff);
break;
case R_MEP_PCREL24A2: /* -----7654321----nmlkjihgfedcba98 */
if (-8388608 > s || s > 8388607) r = bfd_reloc_overflow;
byte[0^e2] = (byte[0^e2] & 0xf8) | ((s >> 5) & 0x07);
byte[1^e2] = (byte[1^e2] & 0x0f) | ((s << 3) & 0xf0);
byte[2^e2] = ((s >> 16) & 0xff);
byte[3^e2] = ((s >> 8) & 0xff);
break;
case R_MEP_PCABS24A2: /* -----7654321----nmlkjihgfedcba98 */
if (u > 16777215) r = bfd_reloc_overflow;
byte[0^e2] = (byte[0^e2] & 0xf8) | ((u >> 5) & 0x07);
byte[1^e2] = (byte[1^e2] & 0x0f) | ((u << 3) & 0xf0);
byte[2^e2] = ((u >> 16) & 0xff);
byte[3^e2] = ((u >> 8) & 0xff);
break;
case R_MEP_LOW16: /* ----------------fedcba9876543210 */
byte[2^e2] = ((u >> 8) & 0xff);
byte[3^e2] = (u & 0xff);
break;
case R_MEP_HI16U: /* ----------------vutsrqponmlkjihg */
byte[2^e2] = ((u >> 24) & 0xff);
byte[3^e2] = ((u >> 16) & 0xff);
break;
case R_MEP_HI16S: /* ----------------vutsrqponmlkjihg */
if (s & 0x8000)
s += 0x10000;
byte[2^e2] = ((s >> 24) & 0xff);
byte[3^e2] = ((s >> 16) & 0xff);
break;
case R_MEP_GPREL: /* ----------------fedcba9876543210 */
s -= mep_sdaoff_base(rel->r_offset);
if (-32768 > s || s > 32767) r = bfd_reloc_overflow;
byte[2^e2] = ((s >> 8) & 0xff);
byte[3^e2] = (s & 0xff);
break;
case R_MEP_TPREL: /* ----------------fedcba9876543210 */
s -= mep_tpoff_base(rel->r_offset);
if (-32768 > s || s > 32767) r = bfd_reloc_overflow;
byte[2^e2] = ((s >> 8) & 0xff);
byte[3^e2] = (s & 0xff);
break;
case R_MEP_TPREL7: /* ---------6543210 */
u -= mep_tpoff_base(rel->r_offset);
if (u > 127) r = bfd_reloc_overflow;
byte[1^e2] = (byte[1^e2] & 0x80) | (u & 0x7f);
break;
case R_MEP_TPREL7A2: /* ---------654321- */
u -= mep_tpoff_base(rel->r_offset);
if (u > 127) r = bfd_reloc_overflow;
byte[1^e2] = (byte[1^e2] & 0x81) | (u & 0x7e);
break;
case R_MEP_TPREL7A4: /* ---------65432-- */
u -= mep_tpoff_base(rel->r_offset);
if (u > 127) r = bfd_reloc_overflow;
byte[1^e2] = (byte[1^e2] & 0x83) | (u & 0x7c);
break;
case R_MEP_UIMM24: /* --------76543210nmlkjihgfedcba98 */
if (u > 16777215) r = bfd_reloc_overflow;
byte[1^e2] = (u & 0xff);
byte[2^e2] = ((u >> 16) & 0xff);
byte[3^e2] = ((u >> 8) & 0xff);
break;
case R_MEP_ADDR24A4: /* --------765432--nmlkjihgfedcba98 */
if (u > 16777215) r = bfd_reloc_overflow;
byte[1^e2] = (byte[1^e2] & 0x03) | (u & 0xfc);
byte[2^e2] = ((u >> 16) & 0xff);
byte[3^e2] = ((u >> 8) & 0xff);
break;
case R_MEP_GNU_VTINHERIT: /* ---------------- */
break;
case R_MEP_GNU_VTENTRY: /* ---------------- */
break;
/* MEPRELOC:END */
default:
abort ();
}
return r;
}
/* Set the howto pointer for a MEP ELF reloc. */
static bfd_boolean
mep_info_to_howto_rela (bfd * abfd,
arelent * cache_ptr,
Elf_Internal_Rela * dst)
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
if (r_type >= R_MEP_max)
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
cache_ptr->howto = & mep_elf_howto_table [r_type];
return TRUE;
}
/* Relocate a MEP ELF section.
There is some attempt to make this function usable for many architectures,
both USE_REL and USE_RELA ['twould be nice if such a critter existed],
if only to serve as a learning tool.
The RELOCATE_SECTION function is called by the new ELF backend linker
to handle the relocations for a section.
The relocs are always passed as Rela structures; if the section
actually uses Rel structures, the r_addend field will always be
zero.
This function is responsible for adjusting the section contents as
necessary, and (if using Rela relocs and generating a relocatable
output file) adjusting the reloc addend as necessary.
This function does not have to worry about setting the reloc
address or the reloc symbol index.
LOCAL_SYMS is a pointer to the swapped in local symbols.
LOCAL_SECTIONS is an array giving the section in the input file
corresponding to the st_shndx field of each local symbol.
The global hash table entry for the global symbols can be found
via elf_sym_hashes (input_bfd).
When generating relocatable output, this function must handle
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
going to be the section symbol corresponding to the output
section, which means that the addend must be adjusted
accordingly. */
static bfd_boolean
mep_elf_relocate_section
(bfd * output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info * info,
bfd * input_bfd,
asection * input_section,
bfd_byte * contents,
Elf_Internal_Rela * relocs,
Elf_Internal_Sym * local_syms,
asection ** local_sections)
{
Elf_Internal_Shdr * symtab_hdr;
struct elf_link_hash_entry ** sym_hashes;
Elf_Internal_Rela * rel;
Elf_Internal_Rela * relend;
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
relend = relocs + input_section->reloc_count;
mep_info = info;
for (rel = relocs; rel < relend; rel ++)
{
reloc_howto_type * howto;
unsigned long r_symndx;
Elf_Internal_Sym * sym;
asection * sec;
struct elf_link_hash_entry * h;
bfd_vma relocation;
bfd_reloc_status_type r;
const char * name = NULL;
int r_type;
r_type = ELF32_R_TYPE (rel->r_info);
r_symndx = ELF32_R_SYM (rel->r_info);
howto = mep_elf_howto_table + ELF32_R_TYPE (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections [r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
name = bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name);
name = name == NULL ? bfd_section_name (sec) : name;
}
else
{
bfd_boolean warned, unresolved_reloc, ignored;
RELOC_FOR_GLOBAL_SYMBOL(info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
name = h->root.root.string;
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
if (r_type == R_RELC)
r = bfd_elf_perform_complex_relocation (input_bfd, input_section,
contents, rel, relocation);
else
r = mep_final_link_relocate (howto, input_bfd, input_section,
contents, rel, relocation);
if (r != bfd_reloc_ok)
{
const char * msg = (const char *) NULL;
switch (r)
{
case bfd_reloc_overflow:
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset);
break;
case bfd_reloc_undefined:
(*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section, rel->r_offset, TRUE);
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
break;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
break;
case bfd_reloc_dangerous:
msg = _("internal error: dangerous relocation");
break;
default:
msg = _("internal error: unknown error");
break;
}
if (msg)
(*info->callbacks->warning) (info, msg, name, input_bfd,
input_section, rel->r_offset);
}
}
if (warn_tp)
info->callbacks->undefined_symbol
(info, "__tpbase", input_bfd, input_section, warn_tp-1, TRUE);
if (warn_sda)
info->callbacks->undefined_symbol
(info, "__sdabase", input_bfd, input_section, warn_sda-1, TRUE);
if (warn_sda || warn_tp)
return FALSE;
return TRUE;
}
/* Function to set the ELF flag bits. */
static bfd_boolean
mep_elf_set_private_flags (bfd * abfd,
flagword flags)
{
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = TRUE;
return TRUE;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
static bfd_boolean
mep_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
static bfd *last_ibfd = 0;
flagword old_flags, new_flags;
flagword old_partial, new_partial;
/* Check if we have the same endianness. */
if (!_bfd_generic_verify_endian_match (ibfd, info))
return FALSE;
new_flags = elf_elfheader (ibfd)->e_flags;
old_flags = elf_elfheader (obfd)->e_flags;
#ifdef DEBUG
_bfd_error_handler ("%pB: old_flags = 0x%.8x, new_flags = 0x%.8x, init = %s",
ibfd, old_flags, new_flags, elf_flags_init (obfd) ? "yes" : "no");
#endif
/* First call, no flags set. */
if (!elf_flags_init (obfd))
{
elf_flags_init (obfd) = TRUE;
old_flags = new_flags;
}
else if ((new_flags | old_flags) & EF_MEP_LIBRARY)
{
/* Non-library flags trump library flags. The choice doesn't really
matter if both OLD_FLAGS and NEW_FLAGS have EF_MEP_LIBRARY set. */
if (old_flags & EF_MEP_LIBRARY)
old_flags = new_flags;
}
else
{
/* Make sure they're for the same mach. Allow upgrade from the "mep"
mach. */
new_partial = (new_flags & EF_MEP_CPU_MASK);
old_partial = (old_flags & EF_MEP_CPU_MASK);
if (new_partial == old_partial)
;
else if (new_partial == EF_MEP_CPU_MEP)
;
else if (old_partial == EF_MEP_CPU_MEP)
old_flags = (old_flags & ~EF_MEP_CPU_MASK) | new_partial;
else
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB and %pB are for different cores"),
last_ibfd, ibfd);
bfd_set_error (bfd_error_invalid_target);
return FALSE;
}
/* Make sure they're for the same me_module. Allow basic config to
mix with any other. */
new_partial = (new_flags & EF_MEP_INDEX_MASK);
old_partial = (old_flags & EF_MEP_INDEX_MASK);
if (new_partial == old_partial)
;
else if (new_partial == 0)
;
else if (old_partial == 0)
old_flags = (old_flags & ~EF_MEP_INDEX_MASK) | new_partial;
else
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB and %pB are for different configurations"),
last_ibfd, ibfd);
bfd_set_error (bfd_error_invalid_target);
return FALSE;
}
}
elf_elfheader (obfd)->e_flags = old_flags;
last_ibfd = ibfd;
return TRUE;
}
/* This will be edited by the MeP configration tool. */
static const char * config_names[] =
{
"basic"
/* start-mepcfgtool */
,"default"
/* end-mepcfgtool */
};
static const char * core_names[] =
{
"MeP", "MeP-c2", "MeP-c3", "MeP-h1"
};
static bfd_boolean
mep_elf_print_private_bfd_data (bfd * abfd, void * ptr)
{
FILE * file = (FILE *) ptr;
flagword flags, partial_flags;
BFD_ASSERT (abfd != NULL && ptr != NULL);
/* Print normal ELF private data. */
_bfd_elf_print_private_bfd_data (abfd, ptr);
flags = elf_elfheader (abfd)->e_flags;
fprintf (file, _("private flags = 0x%lx"), (unsigned long) flags);
partial_flags = (flags & EF_MEP_CPU_MASK) >> 24;
if (partial_flags < ARRAY_SIZE (core_names))
fprintf (file, " core: %s", core_names[(long)partial_flags]);
partial_flags = flags & EF_MEP_INDEX_MASK;
if (partial_flags < ARRAY_SIZE (config_names))
fprintf (file, " me_module: %s", config_names[(long)partial_flags]);
fputc ('\n', file);
return TRUE;
}
/* Return the machine subcode from the ELF e_flags header. */
static int
elf32_mep_machine (bfd * abfd)
{
switch (elf_elfheader (abfd)->e_flags & EF_MEP_CPU_MASK)
{
default: break;
case EF_MEP_CPU_C2: return bfd_mach_mep;
case EF_MEP_CPU_C3: return bfd_mach_mep;
case EF_MEP_CPU_C4: return bfd_mach_mep;
case EF_MEP_CPU_C5: return bfd_mach_mep_c5;
case EF_MEP_CPU_H1: return bfd_mach_mep_h1;
}
return bfd_mach_mep;
}
static bfd_boolean
mep_elf_object_p (bfd * abfd)
{
bfd_default_set_arch_mach (abfd, bfd_arch_mep, elf32_mep_machine (abfd));
return TRUE;
}
static bfd_boolean
mep_elf_section_flags (flagword * flags, const Elf_Internal_Shdr * hdr)
{
if (hdr->sh_flags & SHF_MEP_VLIW)
* flags |= SEC_MEP_VLIW;
return TRUE;
}
static bfd_boolean
mep_elf_fake_sections (bfd * abfd ATTRIBUTE_UNUSED,
Elf_Internal_Shdr * hdr,
asection * sec)
{
if (sec->flags & SEC_MEP_VLIW)
hdr->sh_flags |= SHF_MEP_VLIW;
return TRUE;
}
#define ELF_ARCH bfd_arch_mep
#define ELF_MACHINE_CODE EM_CYGNUS_MEP
#define ELF_MAXPAGESIZE 0x1000
#define TARGET_BIG_SYM mep_elf32_vec
#define TARGET_BIG_NAME "elf32-mep"
#define TARGET_LITTLE_SYM mep_elf32_le_vec
#define TARGET_LITTLE_NAME "elf32-mep-little"
#define elf_info_to_howto_rel NULL
#define elf_info_to_howto mep_info_to_howto_rela
#define elf_backend_relocate_section mep_elf_relocate_section
#define elf_backend_object_p mep_elf_object_p
#define elf_backend_section_flags mep_elf_section_flags
#define elf_backend_fake_sections mep_elf_fake_sections
#define bfd_elf32_bfd_reloc_type_lookup mep_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup mep_reloc_name_lookup
#define bfd_elf32_bfd_set_private_flags mep_elf_set_private_flags
#define bfd_elf32_bfd_merge_private_bfd_data mep_elf_merge_private_bfd_data
#define bfd_elf32_bfd_print_private_bfd_data mep_elf_print_private_bfd_data
#define elf_backend_rela_normal 1
#include "elf32-target.h"