bb321bb1c4
* output.cc (Output_segment::Output_segment): If PT_TLS, set the flags to PF_R. (Output_segment::add_output_section): Don't change the flags if the type is PT_TLS.
4484 lines
124 KiB
C++
4484 lines
124 KiB
C++
// output.cc -- manage the output file for gold
|
|
|
|
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#include "gold.h"
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cerrno>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <algorithm>
|
|
#include "libiberty.h"
|
|
|
|
#include "parameters.h"
|
|
#include "object.h"
|
|
#include "symtab.h"
|
|
#include "reloc.h"
|
|
#include "merge.h"
|
|
#include "descriptors.h"
|
|
#include "output.h"
|
|
|
|
// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
|
|
#ifndef MAP_ANONYMOUS
|
|
# define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
#ifndef HAVE_POSIX_FALLOCATE
|
|
// A dummy, non general, version of posix_fallocate. Here we just set
|
|
// the file size and hope that there is enough disk space. FIXME: We
|
|
// could allocate disk space by walking block by block and writing a
|
|
// zero byte into each block.
|
|
static int
|
|
posix_fallocate(int o, off_t offset, off_t len)
|
|
{
|
|
return ftruncate(o, offset + len);
|
|
}
|
|
#endif // !defined(HAVE_POSIX_FALLOCATE)
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// Output_data variables.
|
|
|
|
bool Output_data::allocated_sizes_are_fixed;
|
|
|
|
// Output_data methods.
|
|
|
|
Output_data::~Output_data()
|
|
{
|
|
}
|
|
|
|
// Return the default alignment for the target size.
|
|
|
|
uint64_t
|
|
Output_data::default_alignment()
|
|
{
|
|
return Output_data::default_alignment_for_size(
|
|
parameters->target().get_size());
|
|
}
|
|
|
|
// Return the default alignment for a size--32 or 64.
|
|
|
|
uint64_t
|
|
Output_data::default_alignment_for_size(int size)
|
|
{
|
|
if (size == 32)
|
|
return 4;
|
|
else if (size == 64)
|
|
return 8;
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Output_section_header methods. This currently assumes that the
|
|
// segment and section lists are complete at construction time.
|
|
|
|
Output_section_headers::Output_section_headers(
|
|
const Layout* layout,
|
|
const Layout::Segment_list* segment_list,
|
|
const Layout::Section_list* section_list,
|
|
const Layout::Section_list* unattached_section_list,
|
|
const Stringpool* secnamepool,
|
|
const Output_section* shstrtab_section)
|
|
: layout_(layout),
|
|
segment_list_(segment_list),
|
|
section_list_(section_list),
|
|
unattached_section_list_(unattached_section_list),
|
|
secnamepool_(secnamepool),
|
|
shstrtab_section_(shstrtab_section)
|
|
{
|
|
}
|
|
|
|
// Compute the current data size.
|
|
|
|
off_t
|
|
Output_section_headers::do_size() const
|
|
{
|
|
// Count all the sections. Start with 1 for the null section.
|
|
off_t count = 1;
|
|
if (!parameters->options().relocatable())
|
|
{
|
|
for (Layout::Segment_list::const_iterator p =
|
|
this->segment_list_->begin();
|
|
p != this->segment_list_->end();
|
|
++p)
|
|
if ((*p)->type() == elfcpp::PT_LOAD)
|
|
count += (*p)->output_section_count();
|
|
}
|
|
else
|
|
{
|
|
for (Layout::Section_list::const_iterator p =
|
|
this->section_list_->begin();
|
|
p != this->section_list_->end();
|
|
++p)
|
|
if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
|
|
++count;
|
|
}
|
|
count += this->unattached_section_list_->size();
|
|
|
|
const int size = parameters->target().get_size();
|
|
int shdr_size;
|
|
if (size == 32)
|
|
shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
|
|
else if (size == 64)
|
|
shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
|
|
else
|
|
gold_unreachable();
|
|
|
|
return count * shdr_size;
|
|
}
|
|
|
|
// Write out the section headers.
|
|
|
|
void
|
|
Output_section_headers::do_write(Output_file* of)
|
|
{
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->do_sized_write<32, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->do_sized_write<32, true>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->do_sized_write<64, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->do_sized_write<64, true>(of);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_section_headers::do_sized_write(Output_file* of)
|
|
{
|
|
off_t all_shdrs_size = this->data_size();
|
|
unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
|
|
|
|
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
|
|
unsigned char* v = view;
|
|
|
|
{
|
|
typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
oshdr.put_sh_name(0);
|
|
oshdr.put_sh_type(elfcpp::SHT_NULL);
|
|
oshdr.put_sh_flags(0);
|
|
oshdr.put_sh_addr(0);
|
|
oshdr.put_sh_offset(0);
|
|
|
|
size_t section_count = (this->data_size()
|
|
/ elfcpp::Elf_sizes<size>::shdr_size);
|
|
if (section_count < elfcpp::SHN_LORESERVE)
|
|
oshdr.put_sh_size(0);
|
|
else
|
|
oshdr.put_sh_size(section_count);
|
|
|
|
unsigned int shstrndx = this->shstrtab_section_->out_shndx();
|
|
if (shstrndx < elfcpp::SHN_LORESERVE)
|
|
oshdr.put_sh_link(0);
|
|
else
|
|
oshdr.put_sh_link(shstrndx);
|
|
|
|
oshdr.put_sh_info(0);
|
|
oshdr.put_sh_addralign(0);
|
|
oshdr.put_sh_entsize(0);
|
|
}
|
|
|
|
v += shdr_size;
|
|
|
|
unsigned int shndx = 1;
|
|
if (!parameters->options().relocatable())
|
|
{
|
|
for (Layout::Segment_list::const_iterator p =
|
|
this->segment_list_->begin();
|
|
p != this->segment_list_->end();
|
|
++p)
|
|
v = (*p)->write_section_headers<size, big_endian>(this->layout_,
|
|
this->secnamepool_,
|
|
v,
|
|
&shndx);
|
|
}
|
|
else
|
|
{
|
|
for (Layout::Section_list::const_iterator p =
|
|
this->section_list_->begin();
|
|
p != this->section_list_->end();
|
|
++p)
|
|
{
|
|
// We do unallocated sections below, except that group
|
|
// sections have to come first.
|
|
if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
|
|
&& (*p)->type() != elfcpp::SHT_GROUP)
|
|
continue;
|
|
gold_assert(shndx == (*p)->out_shndx());
|
|
elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
(*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
|
|
v += shdr_size;
|
|
++shndx;
|
|
}
|
|
}
|
|
|
|
for (Layout::Section_list::const_iterator p =
|
|
this->unattached_section_list_->begin();
|
|
p != this->unattached_section_list_->end();
|
|
++p)
|
|
{
|
|
// For a relocatable link, we did unallocated group sections
|
|
// above, since they have to come first.
|
|
if ((*p)->type() == elfcpp::SHT_GROUP
|
|
&& parameters->options().relocatable())
|
|
continue;
|
|
gold_assert(shndx == (*p)->out_shndx());
|
|
elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
(*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
|
|
v += shdr_size;
|
|
++shndx;
|
|
}
|
|
|
|
of->write_output_view(this->offset(), all_shdrs_size, view);
|
|
}
|
|
|
|
// Output_segment_header methods.
|
|
|
|
Output_segment_headers::Output_segment_headers(
|
|
const Layout::Segment_list& segment_list)
|
|
: segment_list_(segment_list)
|
|
{
|
|
}
|
|
|
|
void
|
|
Output_segment_headers::do_write(Output_file* of)
|
|
{
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->do_sized_write<32, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->do_sized_write<32, true>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->do_sized_write<64, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->do_sized_write<64, true>(of);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_segment_headers::do_sized_write(Output_file* of)
|
|
{
|
|
const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
|
|
off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
|
|
gold_assert(all_phdrs_size == this->data_size());
|
|
unsigned char* view = of->get_output_view(this->offset(),
|
|
all_phdrs_size);
|
|
unsigned char* v = view;
|
|
for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
|
|
p != this->segment_list_.end();
|
|
++p)
|
|
{
|
|
elfcpp::Phdr_write<size, big_endian> ophdr(v);
|
|
(*p)->write_header(&ophdr);
|
|
v += phdr_size;
|
|
}
|
|
|
|
gold_assert(v - view == all_phdrs_size);
|
|
|
|
of->write_output_view(this->offset(), all_phdrs_size, view);
|
|
}
|
|
|
|
off_t
|
|
Output_segment_headers::do_size() const
|
|
{
|
|
const int size = parameters->target().get_size();
|
|
int phdr_size;
|
|
if (size == 32)
|
|
phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
|
|
else if (size == 64)
|
|
phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
|
|
else
|
|
gold_unreachable();
|
|
|
|
return this->segment_list_.size() * phdr_size;
|
|
}
|
|
|
|
// Output_file_header methods.
|
|
|
|
Output_file_header::Output_file_header(const Target* target,
|
|
const Symbol_table* symtab,
|
|
const Output_segment_headers* osh,
|
|
const char* entry)
|
|
: target_(target),
|
|
symtab_(symtab),
|
|
segment_header_(osh),
|
|
section_header_(NULL),
|
|
shstrtab_(NULL),
|
|
entry_(entry)
|
|
{
|
|
this->set_data_size(this->do_size());
|
|
}
|
|
|
|
// Set the section table information for a file header.
|
|
|
|
void
|
|
Output_file_header::set_section_info(const Output_section_headers* shdrs,
|
|
const Output_section* shstrtab)
|
|
{
|
|
this->section_header_ = shdrs;
|
|
this->shstrtab_ = shstrtab;
|
|
}
|
|
|
|
// Write out the file header.
|
|
|
|
void
|
|
Output_file_header::do_write(Output_file* of)
|
|
{
|
|
gold_assert(this->offset() == 0);
|
|
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->do_sized_write<32, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->do_sized_write<32, true>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->do_sized_write<64, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->do_sized_write<64, true>(of);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Write out the file header with appropriate size and endianess.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_file_header::do_sized_write(Output_file* of)
|
|
{
|
|
gold_assert(this->offset() == 0);
|
|
|
|
int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
|
|
unsigned char* view = of->get_output_view(0, ehdr_size);
|
|
elfcpp::Ehdr_write<size, big_endian> oehdr(view);
|
|
|
|
unsigned char e_ident[elfcpp::EI_NIDENT];
|
|
memset(e_ident, 0, elfcpp::EI_NIDENT);
|
|
e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
|
|
e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
|
|
e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
|
|
e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
|
|
if (size == 32)
|
|
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
|
|
else if (size == 64)
|
|
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
|
|
else
|
|
gold_unreachable();
|
|
e_ident[elfcpp::EI_DATA] = (big_endian
|
|
? elfcpp::ELFDATA2MSB
|
|
: elfcpp::ELFDATA2LSB);
|
|
e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
|
|
oehdr.put_e_ident(e_ident);
|
|
|
|
elfcpp::ET e_type;
|
|
if (parameters->options().relocatable())
|
|
e_type = elfcpp::ET_REL;
|
|
else if (parameters->options().output_is_position_independent())
|
|
e_type = elfcpp::ET_DYN;
|
|
else
|
|
e_type = elfcpp::ET_EXEC;
|
|
oehdr.put_e_type(e_type);
|
|
|
|
oehdr.put_e_machine(this->target_->machine_code());
|
|
oehdr.put_e_version(elfcpp::EV_CURRENT);
|
|
|
|
oehdr.put_e_entry(this->entry<size>());
|
|
|
|
if (this->segment_header_ == NULL)
|
|
oehdr.put_e_phoff(0);
|
|
else
|
|
oehdr.put_e_phoff(this->segment_header_->offset());
|
|
|
|
oehdr.put_e_shoff(this->section_header_->offset());
|
|
oehdr.put_e_flags(this->target_->processor_specific_flags());
|
|
oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
|
|
|
|
if (this->segment_header_ == NULL)
|
|
{
|
|
oehdr.put_e_phentsize(0);
|
|
oehdr.put_e_phnum(0);
|
|
}
|
|
else
|
|
{
|
|
oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
|
|
oehdr.put_e_phnum(this->segment_header_->data_size()
|
|
/ elfcpp::Elf_sizes<size>::phdr_size);
|
|
}
|
|
|
|
oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
|
|
size_t section_count = (this->section_header_->data_size()
|
|
/ elfcpp::Elf_sizes<size>::shdr_size);
|
|
|
|
if (section_count < elfcpp::SHN_LORESERVE)
|
|
oehdr.put_e_shnum(this->section_header_->data_size()
|
|
/ elfcpp::Elf_sizes<size>::shdr_size);
|
|
else
|
|
oehdr.put_e_shnum(0);
|
|
|
|
unsigned int shstrndx = this->shstrtab_->out_shndx();
|
|
if (shstrndx < elfcpp::SHN_LORESERVE)
|
|
oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
|
|
else
|
|
oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
|
|
|
|
// Let the target adjust the ELF header, e.g., to set EI_OSABI in
|
|
// the e_ident field.
|
|
parameters->target().adjust_elf_header(view, ehdr_size);
|
|
|
|
of->write_output_view(0, ehdr_size, view);
|
|
}
|
|
|
|
// Return the value to use for the entry address. THIS->ENTRY_ is the
|
|
// symbol specified on the command line, if any.
|
|
|
|
template<int size>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
Output_file_header::entry()
|
|
{
|
|
const bool should_issue_warning = (this->entry_ != NULL
|
|
&& !parameters->options().relocatable()
|
|
&& !parameters->options().shared());
|
|
|
|
// FIXME: Need to support target specific entry symbol.
|
|
const char* entry = this->entry_;
|
|
if (entry == NULL)
|
|
entry = "_start";
|
|
|
|
Symbol* sym = this->symtab_->lookup(entry);
|
|
|
|
typename Sized_symbol<size>::Value_type v;
|
|
if (sym != NULL)
|
|
{
|
|
Sized_symbol<size>* ssym;
|
|
ssym = this->symtab_->get_sized_symbol<size>(sym);
|
|
if (!ssym->is_defined() && should_issue_warning)
|
|
gold_warning("entry symbol '%s' exists but is not defined", entry);
|
|
v = ssym->value();
|
|
}
|
|
else
|
|
{
|
|
// We couldn't find the entry symbol. See if we can parse it as
|
|
// a number. This supports, e.g., -e 0x1000.
|
|
char* endptr;
|
|
v = strtoull(entry, &endptr, 0);
|
|
if (*endptr != '\0')
|
|
{
|
|
if (should_issue_warning)
|
|
gold_warning("cannot find entry symbol '%s'", entry);
|
|
v = 0;
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
// Compute the current data size.
|
|
|
|
off_t
|
|
Output_file_header::do_size() const
|
|
{
|
|
const int size = parameters->target().get_size();
|
|
if (size == 32)
|
|
return elfcpp::Elf_sizes<32>::ehdr_size;
|
|
else if (size == 64)
|
|
return elfcpp::Elf_sizes<64>::ehdr_size;
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Output_data_const methods.
|
|
|
|
void
|
|
Output_data_const::do_write(Output_file* of)
|
|
{
|
|
of->write(this->offset(), this->data_.data(), this->data_.size());
|
|
}
|
|
|
|
// Output_data_const_buffer methods.
|
|
|
|
void
|
|
Output_data_const_buffer::do_write(Output_file* of)
|
|
{
|
|
of->write(this->offset(), this->p_, this->data_size());
|
|
}
|
|
|
|
// Output_section_data methods.
|
|
|
|
// Record the output section, and set the entry size and such.
|
|
|
|
void
|
|
Output_section_data::set_output_section(Output_section* os)
|
|
{
|
|
gold_assert(this->output_section_ == NULL);
|
|
this->output_section_ = os;
|
|
this->do_adjust_output_section(os);
|
|
}
|
|
|
|
// Return the section index of the output section.
|
|
|
|
unsigned int
|
|
Output_section_data::do_out_shndx() const
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
return this->output_section_->out_shndx();
|
|
}
|
|
|
|
// Set the alignment, which means we may need to update the alignment
|
|
// of the output section.
|
|
|
|
void
|
|
Output_section_data::set_addralign(uint64_t addralign)
|
|
{
|
|
this->addralign_ = addralign;
|
|
if (this->output_section_ != NULL
|
|
&& this->output_section_->addralign() < addralign)
|
|
this->output_section_->set_addralign(addralign);
|
|
}
|
|
|
|
// Output_data_strtab methods.
|
|
|
|
// Set the final data size.
|
|
|
|
void
|
|
Output_data_strtab::set_final_data_size()
|
|
{
|
|
this->strtab_->set_string_offsets();
|
|
this->set_data_size(this->strtab_->get_strtab_size());
|
|
}
|
|
|
|
// Write out a string table.
|
|
|
|
void
|
|
Output_data_strtab::do_write(Output_file* of)
|
|
{
|
|
this->strtab_->write(of, this->offset());
|
|
}
|
|
|
|
// Output_reloc methods.
|
|
|
|
// A reloc against a global symbol.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Symbol* gsym,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(GSYM_CODE), type_(type),
|
|
is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
|
|
{
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.gsym = gsym;
|
|
this->u2_.od = od;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Symbol* gsym,
|
|
unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx,
|
|
Address address,
|
|
bool is_relative)
|
|
: address_(address), local_sym_index_(GSYM_CODE), type_(type),
|
|
is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
|
|
{
|
|
gold_assert(shndx != INVALID_CODE);
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.gsym = gsym;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
}
|
|
|
|
// A reloc against a local symbol.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address,
|
|
bool is_relative,
|
|
bool is_section_symbol)
|
|
: address_(address), local_sym_index_(local_sym_index), type_(type),
|
|
is_relative_(is_relative), is_section_symbol_(is_section_symbol),
|
|
shndx_(INVALID_CODE)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != INVALID_CODE);
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.relobj = relobj;
|
|
this->u2_.od = od;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int local_sym_index,
|
|
unsigned int type,
|
|
unsigned int shndx,
|
|
Address address,
|
|
bool is_relative,
|
|
bool is_section_symbol)
|
|
: address_(address), local_sym_index_(local_sym_index), type_(type),
|
|
is_relative_(is_relative), is_section_symbol_(is_section_symbol),
|
|
shndx_(shndx)
|
|
{
|
|
gold_assert(local_sym_index != GSYM_CODE
|
|
&& local_sym_index != INVALID_CODE);
|
|
gold_assert(shndx != INVALID_CODE);
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.relobj = relobj;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
}
|
|
|
|
// A reloc against the STT_SECTION symbol of an output section.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Output_section* os,
|
|
unsigned int type,
|
|
Output_data* od,
|
|
Address address)
|
|
: address_(address), local_sym_index_(SECTION_CODE), type_(type),
|
|
is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
|
|
{
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.os = os;
|
|
this->u2_.od = od;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
else
|
|
os->set_needs_symtab_index();
|
|
}
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
|
|
Output_section* os,
|
|
unsigned int type,
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
unsigned int shndx,
|
|
Address address)
|
|
: address_(address), local_sym_index_(SECTION_CODE), type_(type),
|
|
is_relative_(false), is_section_symbol_(true), shndx_(shndx)
|
|
{
|
|
gold_assert(shndx != INVALID_CODE);
|
|
// this->type_ is a bitfield; make sure TYPE fits.
|
|
gold_assert(this->type_ == type);
|
|
this->u1_.os = os;
|
|
this->u2_.relobj = relobj;
|
|
if (dynamic)
|
|
this->set_needs_dynsym_index();
|
|
else
|
|
os->set_needs_symtab_index();
|
|
}
|
|
|
|
// Record that we need a dynamic symbol index for this relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
|
|
set_needs_dynsym_index()
|
|
{
|
|
if (this->is_relative_)
|
|
return;
|
|
switch (this->local_sym_index_)
|
|
{
|
|
case INVALID_CODE:
|
|
gold_unreachable();
|
|
|
|
case GSYM_CODE:
|
|
this->u1_.gsym->set_needs_dynsym_entry();
|
|
break;
|
|
|
|
case SECTION_CODE:
|
|
this->u1_.os->set_needs_dynsym_index();
|
|
break;
|
|
|
|
case 0:
|
|
break;
|
|
|
|
default:
|
|
{
|
|
const unsigned int lsi = this->local_sym_index_;
|
|
if (!this->is_section_symbol_)
|
|
this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
|
|
else
|
|
this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get the symbol index of a relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
unsigned int
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
|
|
const
|
|
{
|
|
unsigned int index;
|
|
switch (this->local_sym_index_)
|
|
{
|
|
case INVALID_CODE:
|
|
gold_unreachable();
|
|
|
|
case GSYM_CODE:
|
|
if (this->u1_.gsym == NULL)
|
|
index = 0;
|
|
else if (dynamic)
|
|
index = this->u1_.gsym->dynsym_index();
|
|
else
|
|
index = this->u1_.gsym->symtab_index();
|
|
break;
|
|
|
|
case SECTION_CODE:
|
|
if (dynamic)
|
|
index = this->u1_.os->dynsym_index();
|
|
else
|
|
index = this->u1_.os->symtab_index();
|
|
break;
|
|
|
|
case 0:
|
|
// Relocations without symbols use a symbol index of 0.
|
|
index = 0;
|
|
break;
|
|
|
|
default:
|
|
{
|
|
const unsigned int lsi = this->local_sym_index_;
|
|
if (!this->is_section_symbol_)
|
|
{
|
|
if (dynamic)
|
|
index = this->u1_.relobj->dynsym_index(lsi);
|
|
else
|
|
index = this->u1_.relobj->symtab_index(lsi);
|
|
}
|
|
else
|
|
{
|
|
Output_section* os = this->u1_.relobj->output_section(lsi);
|
|
gold_assert(os != NULL);
|
|
if (dynamic)
|
|
index = os->dynsym_index();
|
|
else
|
|
index = os->symtab_index();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
gold_assert(index != -1U);
|
|
return index;
|
|
}
|
|
|
|
// For a local section symbol, get the address of the offset ADDEND
|
|
// within the input section.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
|
|
local_section_offset(Addend addend) const
|
|
{
|
|
gold_assert(this->local_sym_index_ != GSYM_CODE
|
|
&& this->local_sym_index_ != SECTION_CODE
|
|
&& this->local_sym_index_ != INVALID_CODE
|
|
&& this->is_section_symbol_);
|
|
const unsigned int lsi = this->local_sym_index_;
|
|
Output_section* os = this->u1_.relobj->output_section(lsi);
|
|
gold_assert(os != NULL);
|
|
Address offset = this->u1_.relobj->get_output_section_offset(lsi);
|
|
if (offset != invalid_address)
|
|
return offset + addend;
|
|
// This is a merge section.
|
|
offset = os->output_address(this->u1_.relobj, lsi, addend);
|
|
gold_assert(offset != invalid_address);
|
|
return offset;
|
|
}
|
|
|
|
// Get the output address of a relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
|
|
{
|
|
Address address = this->address_;
|
|
if (this->shndx_ != INVALID_CODE)
|
|
{
|
|
Output_section* os = this->u2_.relobj->output_section(this->shndx_);
|
|
gold_assert(os != NULL);
|
|
Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
|
|
if (off != invalid_address)
|
|
address += os->address() + off;
|
|
else
|
|
{
|
|
address = os->output_address(this->u2_.relobj, this->shndx_,
|
|
address);
|
|
gold_assert(address != invalid_address);
|
|
}
|
|
}
|
|
else if (this->u2_.od != NULL)
|
|
address += this->u2_.od->address();
|
|
return address;
|
|
}
|
|
|
|
// Write out the offset and info fields of a Rel or Rela relocation
|
|
// entry.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
template<typename Write_rel>
|
|
void
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
|
|
Write_rel* wr) const
|
|
{
|
|
wr->put_r_offset(this->get_address());
|
|
unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
|
|
wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
|
|
}
|
|
|
|
// Write out a Rel relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
|
|
unsigned char* pov) const
|
|
{
|
|
elfcpp::Rel_write<size, big_endian> orel(pov);
|
|
this->write_rel(&orel);
|
|
}
|
|
|
|
// Get the value of the symbol referred to by a Rel relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
typename elfcpp::Elf_types<size>::Elf_Addr
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
|
|
Addend addend) const
|
|
{
|
|
if (this->local_sym_index_ == GSYM_CODE)
|
|
{
|
|
const Sized_symbol<size>* sym;
|
|
sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
|
|
return sym->value() + addend;
|
|
}
|
|
gold_assert(this->local_sym_index_ != SECTION_CODE
|
|
&& this->local_sym_index_ != INVALID_CODE
|
|
&& !this->is_section_symbol_);
|
|
const unsigned int lsi = this->local_sym_index_;
|
|
const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
|
|
return symval->value(this->u1_.relobj, addend);
|
|
}
|
|
|
|
// Reloc comparison. This function sorts the dynamic relocs for the
|
|
// benefit of the dynamic linker. First we sort all relative relocs
|
|
// to the front. Among relative relocs, we sort by output address.
|
|
// Among non-relative relocs, we sort by symbol index, then by output
|
|
// address.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
int
|
|
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
|
|
compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
|
|
const
|
|
{
|
|
if (this->is_relative_)
|
|
{
|
|
if (!r2.is_relative_)
|
|
return -1;
|
|
// Otherwise sort by reloc address below.
|
|
}
|
|
else if (r2.is_relative_)
|
|
return 1;
|
|
else
|
|
{
|
|
unsigned int sym1 = this->get_symbol_index();
|
|
unsigned int sym2 = r2.get_symbol_index();
|
|
if (sym1 < sym2)
|
|
return -1;
|
|
else if (sym1 > sym2)
|
|
return 1;
|
|
// Otherwise sort by reloc address.
|
|
}
|
|
|
|
section_offset_type addr1 = this->get_address();
|
|
section_offset_type addr2 = r2.get_address();
|
|
if (addr1 < addr2)
|
|
return -1;
|
|
else if (addr1 > addr2)
|
|
return 1;
|
|
|
|
// Final tie breaker, in order to generate the same output on any
|
|
// host: reloc type.
|
|
unsigned int type1 = this->type_;
|
|
unsigned int type2 = r2.type_;
|
|
if (type1 < type2)
|
|
return -1;
|
|
else if (type1 > type2)
|
|
return 1;
|
|
|
|
// These relocs appear to be exactly the same.
|
|
return 0;
|
|
}
|
|
|
|
// Write out a Rela relocation.
|
|
|
|
template<bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
|
|
unsigned char* pov) const
|
|
{
|
|
elfcpp::Rela_write<size, big_endian> orel(pov);
|
|
this->rel_.write_rel(&orel);
|
|
Addend addend = this->addend_;
|
|
if (this->rel_.is_relative())
|
|
addend = this->rel_.symbol_value(addend);
|
|
else if (this->rel_.is_local_section_symbol())
|
|
addend = this->rel_.local_section_offset(addend);
|
|
orel.put_r_addend(addend);
|
|
}
|
|
|
|
// Output_data_reloc_base methods.
|
|
|
|
// Adjust the output section.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_data_reloc_base<sh_type, dynamic, size, big_endian>
|
|
::do_adjust_output_section(Output_section* os)
|
|
{
|
|
if (sh_type == elfcpp::SHT_REL)
|
|
os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
|
|
else if (sh_type == elfcpp::SHT_RELA)
|
|
os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
|
|
else
|
|
gold_unreachable();
|
|
if (dynamic)
|
|
os->set_should_link_to_dynsym();
|
|
else
|
|
os->set_should_link_to_symtab();
|
|
}
|
|
|
|
// Write out relocation data.
|
|
|
|
template<int sh_type, bool dynamic, int size, bool big_endian>
|
|
void
|
|
Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
|
|
Output_file* of)
|
|
{
|
|
const off_t off = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
if (this->sort_relocs_)
|
|
{
|
|
gold_assert(dynamic);
|
|
std::sort(this->relocs_.begin(), this->relocs_.end(),
|
|
Sort_relocs_comparison());
|
|
}
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Relocs::const_iterator p = this->relocs_.begin();
|
|
p != this->relocs_.end();
|
|
++p)
|
|
{
|
|
p->write(pov);
|
|
pov += reloc_size;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need the relocation entries.
|
|
this->relocs_.clear();
|
|
}
|
|
|
|
// Class Output_relocatable_relocs.
|
|
|
|
template<int sh_type, int size, bool big_endian>
|
|
void
|
|
Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
|
|
{
|
|
this->set_data_size(this->rr_->output_reloc_count()
|
|
* Reloc_types<sh_type, size, big_endian>::reloc_size);
|
|
}
|
|
|
|
// class Output_data_group.
|
|
|
|
template<int size, bool big_endian>
|
|
Output_data_group<size, big_endian>::Output_data_group(
|
|
Sized_relobj<size, big_endian>* relobj,
|
|
section_size_type entry_count,
|
|
elfcpp::Elf_Word flags,
|
|
std::vector<unsigned int>* input_shndxes)
|
|
: Output_section_data(entry_count * 4, 4, false),
|
|
relobj_(relobj),
|
|
flags_(flags)
|
|
{
|
|
this->input_shndxes_.swap(*input_shndxes);
|
|
}
|
|
|
|
// Write out the section group, which means translating the section
|
|
// indexes to apply to the output file.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_group<size, big_endian>::do_write(Output_file* of)
|
|
{
|
|
const off_t off = this->offset();
|
|
const section_size_type oview_size =
|
|
convert_to_section_size_type(this->data_size());
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
|
|
elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
|
|
++contents;
|
|
|
|
for (std::vector<unsigned int>::const_iterator p =
|
|
this->input_shndxes_.begin();
|
|
p != this->input_shndxes_.end();
|
|
++p, ++contents)
|
|
{
|
|
Output_section* os = this->relobj_->output_section(*p);
|
|
|
|
unsigned int output_shndx;
|
|
if (os != NULL)
|
|
output_shndx = os->out_shndx();
|
|
else
|
|
{
|
|
this->relobj_->error(_("section group retained but "
|
|
"group element discarded"));
|
|
output_shndx = 0;
|
|
}
|
|
|
|
elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
|
|
}
|
|
|
|
size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
|
|
gold_assert(wrote == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need this information.
|
|
this->input_shndxes_.clear();
|
|
}
|
|
|
|
// Output_data_got::Got_entry methods.
|
|
|
|
// Write out the entry.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
|
|
{
|
|
Valtype val = 0;
|
|
|
|
switch (this->local_sym_index_)
|
|
{
|
|
case GSYM_CODE:
|
|
{
|
|
// If the symbol is resolved locally, we need to write out the
|
|
// link-time value, which will be relocated dynamically by a
|
|
// RELATIVE relocation.
|
|
Symbol* gsym = this->u_.gsym;
|
|
Sized_symbol<size>* sgsym;
|
|
// This cast is a bit ugly. We don't want to put a
|
|
// virtual method in Symbol, because we want Symbol to be
|
|
// as small as possible.
|
|
sgsym = static_cast<Sized_symbol<size>*>(gsym);
|
|
val = sgsym->value();
|
|
}
|
|
break;
|
|
|
|
case CONSTANT_CODE:
|
|
val = this->u_.constant;
|
|
break;
|
|
|
|
default:
|
|
{
|
|
const unsigned int lsi = this->local_sym_index_;
|
|
const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
|
|
val = symval->value(this->u_.object, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
elfcpp::Swap<size, big_endian>::writeval(pov, val);
|
|
}
|
|
|
|
// Output_data_got methods.
|
|
|
|
// Add an entry for a global symbol to the GOT. This returns true if
|
|
// this is a new GOT entry, false if the symbol already had a GOT
|
|
// entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_global(
|
|
Symbol* gsym,
|
|
unsigned int got_type)
|
|
{
|
|
if (gsym->has_got_offset(got_type))
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(gsym));
|
|
this->set_got_size();
|
|
gsym->set_got_offset(got_type, this->last_got_offset());
|
|
return true;
|
|
}
|
|
|
|
// Add an entry for a global symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_with_rel(
|
|
Symbol* gsym,
|
|
unsigned int got_type,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_got_offset(got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_type, got_offset);
|
|
rel_dyn->add_global(gsym, r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_with_rela(
|
|
Symbol* gsym,
|
|
unsigned int got_type,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (gsym->has_got_offset(got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_type, got_offset);
|
|
rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add a pair of entries for a global symbol to the GOT, and add
|
|
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
|
|
// If R_TYPE_2 == 0, add the second entry with no relocation.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_pair_with_rel(
|
|
Symbol* gsym,
|
|
unsigned int got_type,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type_1,
|
|
unsigned int r_type_2)
|
|
{
|
|
if (gsym->has_got_offset(got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_type, got_offset);
|
|
rel_dyn->add_global(gsym, r_type_1, this, got_offset);
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
if (r_type_2 != 0)
|
|
{
|
|
got_offset = this->last_got_offset();
|
|
rel_dyn->add_global(gsym, r_type_2, this, got_offset);
|
|
}
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_global_pair_with_rela(
|
|
Symbol* gsym,
|
|
unsigned int got_type,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type_1,
|
|
unsigned int r_type_2)
|
|
{
|
|
if (gsym->has_got_offset(got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
gsym->set_got_offset(got_type, got_offset);
|
|
rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
if (r_type_2 != 0)
|
|
{
|
|
got_offset = this->last_got_offset();
|
|
rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
|
|
}
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
// Add an entry for a local symbol to the GOT. This returns true if
|
|
// this is a new GOT entry, false if the symbol already has a GOT
|
|
// entry.
|
|
|
|
template<int size, bool big_endian>
|
|
bool
|
|
Output_data_got<size, big_endian>::add_local(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int got_type)
|
|
{
|
|
if (object->local_has_got_offset(symndx, got_type))
|
|
return false;
|
|
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
this->set_got_size();
|
|
object->set_local_got_offset(symndx, got_type, this->last_got_offset());
|
|
return true;
|
|
}
|
|
|
|
// Add an entry for a local symbol to the GOT, and add a dynamic
|
|
// relocation of type R_TYPE for the GOT entry.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_with_rel(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int got_type,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_got_offset(symndx, got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_type, got_offset);
|
|
rel_dyn->add_local(object, symndx, r_type, this, got_offset);
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_with_rela(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int got_type,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type)
|
|
{
|
|
if (object->local_has_got_offset(symndx, got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
this->set_got_size();
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_type, got_offset);
|
|
rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
|
|
}
|
|
|
|
// Add a pair of entries for a local symbol to the GOT, and add
|
|
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
|
|
// If R_TYPE_2 == 0, add the second entry with no relocation.
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_pair_with_rel(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int shndx,
|
|
unsigned int got_type,
|
|
Rel_dyn* rel_dyn,
|
|
unsigned int r_type_1,
|
|
unsigned int r_type_2)
|
|
{
|
|
if (object->local_has_got_offset(symndx, got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_type, got_offset);
|
|
Output_section* os = object->output_section(shndx);
|
|
rel_dyn->add_output_section(os, r_type_1, this, got_offset);
|
|
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
if (r_type_2 != 0)
|
|
{
|
|
got_offset = this->last_got_offset();
|
|
rel_dyn->add_output_section(os, r_type_2, this, got_offset);
|
|
}
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::add_local_pair_with_rela(
|
|
Sized_relobj<size, big_endian>* object,
|
|
unsigned int symndx,
|
|
unsigned int shndx,
|
|
unsigned int got_type,
|
|
Rela_dyn* rela_dyn,
|
|
unsigned int r_type_1,
|
|
unsigned int r_type_2)
|
|
{
|
|
if (object->local_has_got_offset(symndx, got_type))
|
|
return;
|
|
|
|
this->entries_.push_back(Got_entry());
|
|
unsigned int got_offset = this->last_got_offset();
|
|
object->set_local_got_offset(symndx, got_type, got_offset);
|
|
Output_section* os = object->output_section(shndx);
|
|
rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
|
|
|
|
this->entries_.push_back(Got_entry(object, symndx));
|
|
if (r_type_2 != 0)
|
|
{
|
|
got_offset = this->last_got_offset();
|
|
rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
|
|
}
|
|
|
|
this->set_got_size();
|
|
}
|
|
|
|
// Write out the GOT.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_got<size, big_endian>::do_write(Output_file* of)
|
|
{
|
|
const int add = size / 8;
|
|
|
|
const off_t off = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(off, oview_size);
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Got_entries::const_iterator p = this->entries_.begin();
|
|
p != this->entries_.end();
|
|
++p)
|
|
{
|
|
p->write(pov);
|
|
pov += add;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(off, oview_size, oview);
|
|
|
|
// We no longer need the GOT entries.
|
|
this->entries_.clear();
|
|
}
|
|
|
|
// Output_data_dynamic::Dynamic_entry methods.
|
|
|
|
// Write out the entry.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_dynamic::Dynamic_entry::write(
|
|
unsigned char* pov,
|
|
const Stringpool* pool) const
|
|
{
|
|
typename elfcpp::Elf_types<size>::Elf_WXword val;
|
|
switch (this->offset_)
|
|
{
|
|
case DYNAMIC_NUMBER:
|
|
val = this->u_.val;
|
|
break;
|
|
|
|
case DYNAMIC_SECTION_SIZE:
|
|
val = this->u_.od->data_size();
|
|
break;
|
|
|
|
case DYNAMIC_SYMBOL:
|
|
{
|
|
const Sized_symbol<size>* s =
|
|
static_cast<const Sized_symbol<size>*>(this->u_.sym);
|
|
val = s->value();
|
|
}
|
|
break;
|
|
|
|
case DYNAMIC_STRING:
|
|
val = pool->get_offset(this->u_.str);
|
|
break;
|
|
|
|
default:
|
|
val = this->u_.od->address() + this->offset_;
|
|
break;
|
|
}
|
|
|
|
elfcpp::Dyn_write<size, big_endian> dw(pov);
|
|
dw.put_d_tag(this->tag_);
|
|
dw.put_d_val(val);
|
|
}
|
|
|
|
// Output_data_dynamic methods.
|
|
|
|
// Adjust the output section to set the entry size.
|
|
|
|
void
|
|
Output_data_dynamic::do_adjust_output_section(Output_section* os)
|
|
{
|
|
if (parameters->target().get_size() == 32)
|
|
os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
|
|
else if (parameters->target().get_size() == 64)
|
|
os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
|
|
else
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Set the final data size.
|
|
|
|
void
|
|
Output_data_dynamic::set_final_data_size()
|
|
{
|
|
// Add the terminating entry if it hasn't been added.
|
|
// Because of relaxation, we can run this multiple times.
|
|
if (this->entries_.empty()
|
|
|| this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
|
|
this->add_constant(elfcpp::DT_NULL, 0);
|
|
|
|
int dyn_size;
|
|
if (parameters->target().get_size() == 32)
|
|
dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
|
|
else if (parameters->target().get_size() == 64)
|
|
dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
|
|
else
|
|
gold_unreachable();
|
|
this->set_data_size(this->entries_.size() * dyn_size);
|
|
}
|
|
|
|
// Write out the dynamic entries.
|
|
|
|
void
|
|
Output_data_dynamic::do_write(Output_file* of)
|
|
{
|
|
switch (parameters->size_and_endianness())
|
|
{
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
case Parameters::TARGET_32_LITTLE:
|
|
this->sized_write<32, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
case Parameters::TARGET_32_BIG:
|
|
this->sized_write<32, true>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
case Parameters::TARGET_64_LITTLE:
|
|
this->sized_write<64, false>(of);
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
case Parameters::TARGET_64_BIG:
|
|
this->sized_write<64, true>(of);
|
|
break;
|
|
#endif
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_data_dynamic::sized_write(Output_file* of)
|
|
{
|
|
const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
|
|
|
|
const off_t offset = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
|
|
|
unsigned char* pov = oview;
|
|
for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
|
|
p != this->entries_.end();
|
|
++p)
|
|
{
|
|
p->write<size, big_endian>(pov, this->pool_);
|
|
pov += dyn_size;
|
|
}
|
|
|
|
gold_assert(pov - oview == oview_size);
|
|
|
|
of->write_output_view(offset, oview_size, oview);
|
|
|
|
// We no longer need the dynamic entries.
|
|
this->entries_.clear();
|
|
}
|
|
|
|
// Class Output_symtab_xindex.
|
|
|
|
void
|
|
Output_symtab_xindex::do_write(Output_file* of)
|
|
{
|
|
const off_t offset = this->offset();
|
|
const off_t oview_size = this->data_size();
|
|
unsigned char* const oview = of->get_output_view(offset, oview_size);
|
|
|
|
memset(oview, 0, oview_size);
|
|
|
|
if (parameters->target().is_big_endian())
|
|
this->endian_do_write<true>(oview);
|
|
else
|
|
this->endian_do_write<false>(oview);
|
|
|
|
of->write_output_view(offset, oview_size, oview);
|
|
|
|
// We no longer need the data.
|
|
this->entries_.clear();
|
|
}
|
|
|
|
template<bool big_endian>
|
|
void
|
|
Output_symtab_xindex::endian_do_write(unsigned char* const oview)
|
|
{
|
|
for (Xindex_entries::const_iterator p = this->entries_.begin();
|
|
p != this->entries_.end();
|
|
++p)
|
|
{
|
|
unsigned int symndx = p->first;
|
|
gold_assert(symndx * 4 < this->data_size());
|
|
elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
|
|
}
|
|
}
|
|
|
|
// Output_section::Input_section methods.
|
|
|
|
// Return the data size. For an input section we store the size here.
|
|
// For an Output_section_data, we have to ask it for the size.
|
|
|
|
off_t
|
|
Output_section::Input_section::data_size() const
|
|
{
|
|
if (this->is_input_section())
|
|
return this->u1_.data_size;
|
|
else
|
|
return this->u2_.posd->data_size();
|
|
}
|
|
|
|
// Set the address and file offset.
|
|
|
|
void
|
|
Output_section::Input_section::set_address_and_file_offset(
|
|
uint64_t address,
|
|
off_t file_offset,
|
|
off_t section_file_offset)
|
|
{
|
|
if (this->is_input_section())
|
|
this->u2_.object->set_section_offset(this->shndx_,
|
|
file_offset - section_file_offset);
|
|
else
|
|
this->u2_.posd->set_address_and_file_offset(address, file_offset);
|
|
}
|
|
|
|
// Reset the address and file offset.
|
|
|
|
void
|
|
Output_section::Input_section::reset_address_and_file_offset()
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->reset_address_and_file_offset();
|
|
}
|
|
|
|
// Finalize the data size.
|
|
|
|
void
|
|
Output_section::Input_section::finalize_data_size()
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->finalize_data_size();
|
|
}
|
|
|
|
// Try to turn an input offset into an output offset. We want to
|
|
// return the output offset relative to the start of this
|
|
// Input_section in the output section.
|
|
|
|
inline bool
|
|
Output_section::Input_section::output_offset(
|
|
const Relobj* object,
|
|
unsigned int shndx,
|
|
section_offset_type offset,
|
|
section_offset_type *poutput) const
|
|
{
|
|
if (!this->is_input_section())
|
|
return this->u2_.posd->output_offset(object, shndx, offset, poutput);
|
|
else
|
|
{
|
|
if (this->shndx_ != shndx || this->u2_.object != object)
|
|
return false;
|
|
*poutput = offset;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Return whether this is the merge section for the input section
|
|
// SHNDX in OBJECT.
|
|
|
|
inline bool
|
|
Output_section::Input_section::is_merge_section_for(const Relobj* object,
|
|
unsigned int shndx) const
|
|
{
|
|
if (this->is_input_section())
|
|
return false;
|
|
return this->u2_.posd->is_merge_section_for(object, shndx);
|
|
}
|
|
|
|
// Write out the data. We don't have to do anything for an input
|
|
// section--they are handled via Object::relocate--but this is where
|
|
// we write out the data for an Output_section_data.
|
|
|
|
void
|
|
Output_section::Input_section::write(Output_file* of)
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->write(of);
|
|
}
|
|
|
|
// Write the data to a buffer. As for write(), we don't have to do
|
|
// anything for an input section.
|
|
|
|
void
|
|
Output_section::Input_section::write_to_buffer(unsigned char* buffer)
|
|
{
|
|
if (!this->is_input_section())
|
|
this->u2_.posd->write_to_buffer(buffer);
|
|
}
|
|
|
|
// Print to a map file.
|
|
|
|
void
|
|
Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
|
|
{
|
|
switch (this->shndx_)
|
|
{
|
|
case OUTPUT_SECTION_CODE:
|
|
case MERGE_DATA_SECTION_CODE:
|
|
case MERGE_STRING_SECTION_CODE:
|
|
this->u2_.posd->print_to_mapfile(mapfile);
|
|
break;
|
|
|
|
case RELAXED_INPUT_SECTION_CODE:
|
|
{
|
|
Output_relaxed_input_section* relaxed_section =
|
|
this->relaxed_input_section();
|
|
mapfile->print_input_section(relaxed_section->relobj(),
|
|
relaxed_section->shndx());
|
|
}
|
|
break;
|
|
default:
|
|
mapfile->print_input_section(this->u2_.object, this->shndx_);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Output_section methods.
|
|
|
|
// Construct an Output_section. NAME will point into a Stringpool.
|
|
|
|
Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
|
|
elfcpp::Elf_Xword flags)
|
|
: name_(name),
|
|
addralign_(0),
|
|
entsize_(0),
|
|
load_address_(0),
|
|
link_section_(NULL),
|
|
link_(0),
|
|
info_section_(NULL),
|
|
info_symndx_(NULL),
|
|
info_(0),
|
|
type_(type),
|
|
flags_(flags),
|
|
out_shndx_(-1U),
|
|
symtab_index_(0),
|
|
dynsym_index_(0),
|
|
input_sections_(),
|
|
first_input_offset_(0),
|
|
fills_(),
|
|
postprocessing_buffer_(NULL),
|
|
needs_symtab_index_(false),
|
|
needs_dynsym_index_(false),
|
|
should_link_to_symtab_(false),
|
|
should_link_to_dynsym_(false),
|
|
after_input_sections_(false),
|
|
requires_postprocessing_(false),
|
|
found_in_sections_clause_(false),
|
|
has_load_address_(false),
|
|
info_uses_section_index_(false),
|
|
may_sort_attached_input_sections_(false),
|
|
must_sort_attached_input_sections_(false),
|
|
attached_input_sections_are_sorted_(false),
|
|
is_relro_(false),
|
|
is_relro_local_(false),
|
|
is_last_relro_(false),
|
|
is_first_non_relro_(false),
|
|
is_small_section_(false),
|
|
is_large_section_(false),
|
|
is_interp_(false),
|
|
is_dynamic_linker_section_(false),
|
|
generate_code_fills_at_write_(false),
|
|
is_entsize_zero_(false),
|
|
tls_offset_(0),
|
|
checkpoint_(NULL),
|
|
merge_section_map_(),
|
|
merge_section_by_properties_map_(),
|
|
relaxed_input_section_map_(),
|
|
is_relaxed_input_section_map_valid_(true)
|
|
{
|
|
// An unallocated section has no address. Forcing this means that
|
|
// we don't need special treatment for symbols defined in debug
|
|
// sections.
|
|
if ((flags & elfcpp::SHF_ALLOC) == 0)
|
|
this->set_address(0);
|
|
}
|
|
|
|
Output_section::~Output_section()
|
|
{
|
|
delete this->checkpoint_;
|
|
}
|
|
|
|
// Set the entry size.
|
|
|
|
void
|
|
Output_section::set_entsize(uint64_t v)
|
|
{
|
|
if (this->is_entsize_zero_)
|
|
;
|
|
else if (this->entsize_ == 0)
|
|
this->entsize_ = v;
|
|
else if (this->entsize_ != v)
|
|
{
|
|
this->entsize_ = 0;
|
|
this->is_entsize_zero_ = 1;
|
|
}
|
|
}
|
|
|
|
// Add the input section SHNDX, with header SHDR, named SECNAME, in
|
|
// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
|
|
// relocation section which applies to this section, or 0 if none, or
|
|
// -1U if more than one. Return the offset of the input section
|
|
// within the output section. Return -1 if the input section will
|
|
// receive special handling. In the normal case we don't always keep
|
|
// track of input sections for an Output_section. Instead, each
|
|
// Object keeps track of the Output_section for each of its input
|
|
// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
|
|
// track of input sections here; this is used when SECTIONS appears in
|
|
// a linker script.
|
|
|
|
template<int size, bool big_endian>
|
|
off_t
|
|
Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<size, big_endian>& shdr,
|
|
unsigned int reloc_shndx,
|
|
bool have_sections_script)
|
|
{
|
|
elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
|
|
if ((addralign & (addralign - 1)) != 0)
|
|
{
|
|
object->error(_("invalid alignment %lu for section \"%s\""),
|
|
static_cast<unsigned long>(addralign), secname);
|
|
addralign = 1;
|
|
}
|
|
|
|
if (addralign > this->addralign_)
|
|
this->addralign_ = addralign;
|
|
|
|
typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
|
|
uint64_t entsize = shdr.get_sh_entsize();
|
|
|
|
// .debug_str is a mergeable string section, but is not always so
|
|
// marked by compilers. Mark manually here so we can optimize.
|
|
if (strcmp(secname, ".debug_str") == 0)
|
|
{
|
|
sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
|
|
entsize = 1;
|
|
}
|
|
|
|
this->update_flags_for_input_section(sh_flags);
|
|
this->set_entsize(entsize);
|
|
|
|
// If this is a SHF_MERGE section, we pass all the input sections to
|
|
// a Output_data_merge. We don't try to handle relocations for such
|
|
// a section. We don't try to handle empty merge sections--they
|
|
// mess up the mappings, and are useless anyhow.
|
|
if ((sh_flags & elfcpp::SHF_MERGE) != 0
|
|
&& reloc_shndx == 0
|
|
&& shdr.get_sh_size() > 0)
|
|
{
|
|
if (this->add_merge_input_section(object, shndx, sh_flags,
|
|
entsize, addralign))
|
|
{
|
|
// Tell the relocation routines that they need to call the
|
|
// output_offset method to determine the final address.
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
off_t offset_in_section = this->current_data_size_for_child();
|
|
off_t aligned_offset_in_section = align_address(offset_in_section,
|
|
addralign);
|
|
|
|
// Determine if we want to delay code-fill generation until the output
|
|
// section is written. When the target is relaxing, we want to delay fill
|
|
// generating to avoid adjusting them during relaxation.
|
|
if (!this->generate_code_fills_at_write_
|
|
&& !have_sections_script
|
|
&& (sh_flags & elfcpp::SHF_EXECINSTR) != 0
|
|
&& parameters->target().has_code_fill()
|
|
&& parameters->target().may_relax())
|
|
{
|
|
gold_assert(this->fills_.empty());
|
|
this->generate_code_fills_at_write_ = true;
|
|
}
|
|
|
|
if (aligned_offset_in_section > offset_in_section
|
|
&& !this->generate_code_fills_at_write_
|
|
&& !have_sections_script
|
|
&& (sh_flags & elfcpp::SHF_EXECINSTR) != 0
|
|
&& parameters->target().has_code_fill())
|
|
{
|
|
// We need to add some fill data. Using fill_list_ when
|
|
// possible is an optimization, since we will often have fill
|
|
// sections without input sections.
|
|
off_t fill_len = aligned_offset_in_section - offset_in_section;
|
|
if (this->input_sections_.empty())
|
|
this->fills_.push_back(Fill(offset_in_section, fill_len));
|
|
else
|
|
{
|
|
std::string fill_data(parameters->target().code_fill(fill_len));
|
|
Output_data_const* odc = new Output_data_const(fill_data, 1);
|
|
this->input_sections_.push_back(Input_section(odc));
|
|
}
|
|
}
|
|
|
|
this->set_current_data_size_for_child(aligned_offset_in_section
|
|
+ shdr.get_sh_size());
|
|
|
|
// We need to keep track of this section if we are already keeping
|
|
// track of sections, or if we are relaxing. Also, if this is a
|
|
// section which requires sorting, or which may require sorting in
|
|
// the future, we keep track of the sections.
|
|
if (have_sections_script
|
|
|| !this->input_sections_.empty()
|
|
|| this->may_sort_attached_input_sections()
|
|
|| this->must_sort_attached_input_sections()
|
|
|| parameters->options().user_set_Map()
|
|
|| parameters->target().may_relax())
|
|
this->input_sections_.push_back(Input_section(object, shndx,
|
|
shdr.get_sh_size(),
|
|
addralign));
|
|
|
|
return aligned_offset_in_section;
|
|
}
|
|
|
|
// Add arbitrary data to an output section.
|
|
|
|
void
|
|
Output_section::add_output_section_data(Output_section_data* posd)
|
|
{
|
|
Input_section inp(posd);
|
|
this->add_output_section_data(&inp);
|
|
|
|
if (posd->is_data_size_valid())
|
|
{
|
|
off_t offset_in_section = this->current_data_size_for_child();
|
|
off_t aligned_offset_in_section = align_address(offset_in_section,
|
|
posd->addralign());
|
|
this->set_current_data_size_for_child(aligned_offset_in_section
|
|
+ posd->data_size());
|
|
}
|
|
}
|
|
|
|
// Add a relaxed input section.
|
|
|
|
void
|
|
Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
|
|
{
|
|
Input_section inp(poris);
|
|
this->add_output_section_data(&inp);
|
|
if (this->is_relaxed_input_section_map_valid_)
|
|
{
|
|
Input_section_specifier iss(poris->relobj(), poris->shndx());
|
|
this->relaxed_input_section_map_[iss] = poris;
|
|
}
|
|
|
|
// For a relaxed section, we use the current data size. Linker scripts
|
|
// get all the input sections, including relaxed one from an output
|
|
// section and add them back to them same output section to compute the
|
|
// output section size. If we do not account for sizes of relaxed input
|
|
// sections, an output section would be incorrectly sized.
|
|
off_t offset_in_section = this->current_data_size_for_child();
|
|
off_t aligned_offset_in_section = align_address(offset_in_section,
|
|
poris->addralign());
|
|
this->set_current_data_size_for_child(aligned_offset_in_section
|
|
+ poris->current_data_size());
|
|
}
|
|
|
|
// Add arbitrary data to an output section by Input_section.
|
|
|
|
void
|
|
Output_section::add_output_section_data(Input_section* inp)
|
|
{
|
|
if (this->input_sections_.empty())
|
|
this->first_input_offset_ = this->current_data_size_for_child();
|
|
|
|
this->input_sections_.push_back(*inp);
|
|
|
|
uint64_t addralign = inp->addralign();
|
|
if (addralign > this->addralign_)
|
|
this->addralign_ = addralign;
|
|
|
|
inp->set_output_section(this);
|
|
}
|
|
|
|
// Add a merge section to an output section.
|
|
|
|
void
|
|
Output_section::add_output_merge_section(Output_section_data* posd,
|
|
bool is_string, uint64_t entsize)
|
|
{
|
|
Input_section inp(posd, is_string, entsize);
|
|
this->add_output_section_data(&inp);
|
|
}
|
|
|
|
// Add an input section to a SHF_MERGE section.
|
|
|
|
bool
|
|
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
|
|
uint64_t flags, uint64_t entsize,
|
|
uint64_t addralign)
|
|
{
|
|
bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
|
|
|
|
// We only merge strings if the alignment is not more than the
|
|
// character size. This could be handled, but it's unusual.
|
|
if (is_string && addralign > entsize)
|
|
return false;
|
|
|
|
// We cannot restore merged input section states.
|
|
gold_assert(this->checkpoint_ == NULL);
|
|
|
|
// Look up merge sections by required properties.
|
|
Merge_section_properties msp(is_string, entsize, addralign);
|
|
Merge_section_by_properties_map::const_iterator p =
|
|
this->merge_section_by_properties_map_.find(msp);
|
|
if (p != this->merge_section_by_properties_map_.end())
|
|
{
|
|
Output_merge_base* merge_section = p->second;
|
|
merge_section->add_input_section(object, shndx);
|
|
gold_assert(merge_section->is_string() == is_string
|
|
&& merge_section->entsize() == entsize
|
|
&& merge_section->addralign() == addralign);
|
|
|
|
// Link input section to found merge section.
|
|
Input_section_specifier iss(object, shndx);
|
|
this->merge_section_map_[iss] = merge_section;
|
|
return true;
|
|
}
|
|
|
|
// We handle the actual constant merging in Output_merge_data or
|
|
// Output_merge_string_data.
|
|
Output_merge_base* pomb;
|
|
if (!is_string)
|
|
pomb = new Output_merge_data(entsize, addralign);
|
|
else
|
|
{
|
|
switch (entsize)
|
|
{
|
|
case 1:
|
|
pomb = new Output_merge_string<char>(addralign);
|
|
break;
|
|
case 2:
|
|
pomb = new Output_merge_string<uint16_t>(addralign);
|
|
break;
|
|
case 4:
|
|
pomb = new Output_merge_string<uint32_t>(addralign);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Add new merge section to this output section and link merge section
|
|
// properties to new merge section in map.
|
|
this->add_output_merge_section(pomb, is_string, entsize);
|
|
this->merge_section_by_properties_map_[msp] = pomb;
|
|
|
|
// Add input section to new merge section and link input section to new
|
|
// merge section in map.
|
|
pomb->add_input_section(object, shndx);
|
|
Input_section_specifier iss(object, shndx);
|
|
this->merge_section_map_[iss] = pomb;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Build a relaxation map to speed up relaxation of existing input sections.
|
|
// Look up to the first LIMIT elements in INPUT_SECTIONS.
|
|
|
|
void
|
|
Output_section::build_relaxation_map(
|
|
const Input_section_list& input_sections,
|
|
size_t limit,
|
|
Relaxation_map* relaxation_map) const
|
|
{
|
|
for (size_t i = 0; i < limit; ++i)
|
|
{
|
|
const Input_section& is(input_sections[i]);
|
|
if (is.is_input_section() || is.is_relaxed_input_section())
|
|
{
|
|
Input_section_specifier iss(is.relobj(), is.shndx());
|
|
(*relaxation_map)[iss] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert regular input sections in INPUT_SECTIONS into relaxed input
|
|
// sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
|
|
// specifier to indices of INPUT_SECTIONS.
|
|
|
|
void
|
|
Output_section::convert_input_sections_in_list_to_relaxed_sections(
|
|
const std::vector<Output_relaxed_input_section*>& relaxed_sections,
|
|
const Relaxation_map& map,
|
|
Input_section_list* input_sections)
|
|
{
|
|
for (size_t i = 0; i < relaxed_sections.size(); ++i)
|
|
{
|
|
Output_relaxed_input_section* poris = relaxed_sections[i];
|
|
Input_section_specifier iss(poris->relobj(), poris->shndx());
|
|
Relaxation_map::const_iterator p = map.find(iss);
|
|
gold_assert(p != map.end());
|
|
gold_assert((*input_sections)[p->second].is_input_section());
|
|
(*input_sections)[p->second] = Input_section(poris);
|
|
}
|
|
}
|
|
|
|
// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
|
|
// is a vector of pointers to Output_relaxed_input_section or its derived
|
|
// classes. The relaxed sections must correspond to existing input sections.
|
|
|
|
void
|
|
Output_section::convert_input_sections_to_relaxed_sections(
|
|
const std::vector<Output_relaxed_input_section*>& relaxed_sections)
|
|
{
|
|
gold_assert(parameters->target().may_relax());
|
|
|
|
// We want to make sure that restore_states does not undo the effect of
|
|
// this. If there is no checkpoint active, just search the current
|
|
// input section list and replace the sections there. If there is
|
|
// a checkpoint, also replace the sections there.
|
|
|
|
// By default, we look at the whole list.
|
|
size_t limit = this->input_sections_.size();
|
|
|
|
if (this->checkpoint_ != NULL)
|
|
{
|
|
// Replace input sections with relaxed input section in the saved
|
|
// copy of the input section list.
|
|
if (this->checkpoint_->input_sections_saved())
|
|
{
|
|
Relaxation_map map;
|
|
this->build_relaxation_map(
|
|
*(this->checkpoint_->input_sections()),
|
|
this->checkpoint_->input_sections()->size(),
|
|
&map);
|
|
this->convert_input_sections_in_list_to_relaxed_sections(
|
|
relaxed_sections,
|
|
map,
|
|
this->checkpoint_->input_sections());
|
|
}
|
|
else
|
|
{
|
|
// We have not copied the input section list yet. Instead, just
|
|
// look at the portion that would be saved.
|
|
limit = this->checkpoint_->input_sections_size();
|
|
}
|
|
}
|
|
|
|
// Convert input sections in input_section_list.
|
|
Relaxation_map map;
|
|
this->build_relaxation_map(this->input_sections_, limit, &map);
|
|
this->convert_input_sections_in_list_to_relaxed_sections(
|
|
relaxed_sections,
|
|
map,
|
|
&this->input_sections_);
|
|
}
|
|
|
|
// Update the output section flags based on input section flags.
|
|
|
|
void
|
|
Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
|
|
{
|
|
// If we created the section with SHF_ALLOC clear, we set the
|
|
// address. If we are now setting the SHF_ALLOC flag, we need to
|
|
// undo that.
|
|
if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
|
|
&& (flags & elfcpp::SHF_ALLOC) != 0)
|
|
this->mark_address_invalid();
|
|
|
|
this->flags_ |= (flags
|
|
& (elfcpp::SHF_WRITE
|
|
| elfcpp::SHF_ALLOC
|
|
| elfcpp::SHF_EXECINSTR));
|
|
|
|
if ((flags & elfcpp::SHF_MERGE) == 0)
|
|
this->flags_ &=~ elfcpp::SHF_MERGE;
|
|
else
|
|
{
|
|
if (this->current_data_size_for_child() == 0)
|
|
this->flags_ |= elfcpp::SHF_MERGE;
|
|
}
|
|
|
|
if ((flags & elfcpp::SHF_STRINGS) == 0)
|
|
this->flags_ &=~ elfcpp::SHF_STRINGS;
|
|
else
|
|
{
|
|
if (this->current_data_size_for_child() == 0)
|
|
this->flags_ |= elfcpp::SHF_STRINGS;
|
|
}
|
|
}
|
|
|
|
// Find the merge section into which an input section with index SHNDX in
|
|
// OBJECT has been added. Return NULL if none found.
|
|
|
|
Output_section_data*
|
|
Output_section::find_merge_section(const Relobj* object,
|
|
unsigned int shndx) const
|
|
{
|
|
Input_section_specifier iss(object, shndx);
|
|
Output_section_data_by_input_section_map::const_iterator p =
|
|
this->merge_section_map_.find(iss);
|
|
if (p != this->merge_section_map_.end())
|
|
{
|
|
Output_section_data* posd = p->second;
|
|
gold_assert(posd->is_merge_section_for(object, shndx));
|
|
return posd;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Find an relaxed input section corresponding to an input section
|
|
// in OBJECT with index SHNDX.
|
|
|
|
const Output_relaxed_input_section*
|
|
Output_section::find_relaxed_input_section(const Relobj* object,
|
|
unsigned int shndx) const
|
|
{
|
|
// Be careful that the map may not be valid due to input section export
|
|
// to scripts or a check-point restore.
|
|
if (!this->is_relaxed_input_section_map_valid_)
|
|
{
|
|
// Rebuild the map as needed.
|
|
this->relaxed_input_section_map_.clear();
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
if (p->is_relaxed_input_section())
|
|
{
|
|
Input_section_specifier iss(p->relobj(), p->shndx());
|
|
this->relaxed_input_section_map_[iss] =
|
|
p->relaxed_input_section();
|
|
}
|
|
this->is_relaxed_input_section_map_valid_ = true;
|
|
}
|
|
|
|
Input_section_specifier iss(object, shndx);
|
|
Output_relaxed_input_section_by_input_section_map::const_iterator p =
|
|
this->relaxed_input_section_map_.find(iss);
|
|
if (p != this->relaxed_input_section_map_.end())
|
|
return p->second;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Given an address OFFSET relative to the start of input section
|
|
// SHNDX in OBJECT, return whether this address is being included in
|
|
// the final link. This should only be called if SHNDX in OBJECT has
|
|
// a special mapping.
|
|
|
|
bool
|
|
Output_section::is_input_address_mapped(const Relobj* object,
|
|
unsigned int shndx,
|
|
off_t offset) const
|
|
{
|
|
// Look at the Output_section_data_maps first.
|
|
const Output_section_data* posd = this->find_merge_section(object, shndx);
|
|
if (posd == NULL)
|
|
posd = this->find_relaxed_input_section(object, shndx);
|
|
|
|
if (posd != NULL)
|
|
{
|
|
section_offset_type output_offset;
|
|
bool found = posd->output_offset(object, shndx, offset, &output_offset);
|
|
gold_assert(found);
|
|
return output_offset != -1;
|
|
}
|
|
|
|
// Fall back to the slow look-up.
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
return output_offset != -1;
|
|
}
|
|
|
|
// By default we assume that the address is mapped. This should
|
|
// only be called after we have passed all sections to Layout. At
|
|
// that point we should know what we are discarding.
|
|
return true;
|
|
}
|
|
|
|
// Given an address OFFSET relative to the start of input section
|
|
// SHNDX in object OBJECT, return the output offset relative to the
|
|
// start of the input section in the output section. This should only
|
|
// be called if SHNDX in OBJECT has a special mapping.
|
|
|
|
section_offset_type
|
|
Output_section::output_offset(const Relobj* object, unsigned int shndx,
|
|
section_offset_type offset) const
|
|
{
|
|
// This can only be called meaningfully when we know the data size
|
|
// of this.
|
|
gold_assert(this->is_data_size_valid());
|
|
|
|
// Look at the Output_section_data_maps first.
|
|
const Output_section_data* posd = this->find_merge_section(object, shndx);
|
|
if (posd == NULL)
|
|
posd = this->find_relaxed_input_section(object, shndx);
|
|
if (posd != NULL)
|
|
{
|
|
section_offset_type output_offset;
|
|
bool found = posd->output_offset(object, shndx, offset, &output_offset);
|
|
gold_assert(found);
|
|
return output_offset;
|
|
}
|
|
|
|
// Fall back to the slow look-up.
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
return output_offset;
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Return the output virtual address of OFFSET relative to the start
|
|
// of input section SHNDX in object OBJECT.
|
|
|
|
uint64_t
|
|
Output_section::output_address(const Relobj* object, unsigned int shndx,
|
|
off_t offset) const
|
|
{
|
|
uint64_t addr = this->address() + this->first_input_offset_;
|
|
|
|
// Look at the Output_section_data_maps first.
|
|
const Output_section_data* posd = this->find_merge_section(object, shndx);
|
|
if (posd == NULL)
|
|
posd = this->find_relaxed_input_section(object, shndx);
|
|
if (posd != NULL && posd->is_address_valid())
|
|
{
|
|
section_offset_type output_offset;
|
|
bool found = posd->output_offset(object, shndx, offset, &output_offset);
|
|
gold_assert(found);
|
|
return posd->address() + output_offset;
|
|
}
|
|
|
|
// Fall back to the slow look-up.
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
addr = align_address(addr, p->addralign());
|
|
section_offset_type output_offset;
|
|
if (p->output_offset(object, shndx, offset, &output_offset))
|
|
{
|
|
if (output_offset == -1)
|
|
return -1ULL;
|
|
return addr + output_offset;
|
|
}
|
|
addr += p->data_size();
|
|
}
|
|
|
|
// If we get here, it means that we don't know the mapping for this
|
|
// input section. This might happen in principle if
|
|
// add_input_section were called before add_output_section_data.
|
|
// But it should never actually happen.
|
|
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Find the output address of the start of the merged section for
|
|
// input section SHNDX in object OBJECT.
|
|
|
|
bool
|
|
Output_section::find_starting_output_address(const Relobj* object,
|
|
unsigned int shndx,
|
|
uint64_t* paddr) const
|
|
{
|
|
// FIXME: This becomes a bottle-neck if we have many relaxed sections.
|
|
// Looking up the merge section map does not always work as we sometimes
|
|
// find a merge section without its address set.
|
|
uint64_t addr = this->address() + this->first_input_offset_;
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
addr = align_address(addr, p->addralign());
|
|
|
|
// It would be nice if we could use the existing output_offset
|
|
// method to get the output offset of input offset 0.
|
|
// Unfortunately we don't know for sure that input offset 0 is
|
|
// mapped at all.
|
|
if (p->is_merge_section_for(object, shndx))
|
|
{
|
|
*paddr = addr;
|
|
return true;
|
|
}
|
|
|
|
addr += p->data_size();
|
|
}
|
|
|
|
// We couldn't find a merge output section for this input section.
|
|
return false;
|
|
}
|
|
|
|
// Set the data size of an Output_section. This is where we handle
|
|
// setting the addresses of any Output_section_data objects.
|
|
|
|
void
|
|
Output_section::set_final_data_size()
|
|
{
|
|
if (this->input_sections_.empty())
|
|
{
|
|
this->set_data_size(this->current_data_size_for_child());
|
|
return;
|
|
}
|
|
|
|
if (this->must_sort_attached_input_sections())
|
|
this->sort_attached_input_sections();
|
|
|
|
uint64_t address = this->address();
|
|
off_t startoff = this->offset();
|
|
off_t off = startoff + this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off = align_address(off, p->addralign());
|
|
p->set_address_and_file_offset(address + (off - startoff), off,
|
|
startoff);
|
|
off += p->data_size();
|
|
}
|
|
|
|
this->set_data_size(off - startoff);
|
|
}
|
|
|
|
// Reset the address and file offset.
|
|
|
|
void
|
|
Output_section::do_reset_address_and_file_offset()
|
|
{
|
|
// An unallocated section has no address. Forcing this means that
|
|
// we don't need special treatment for symbols defined in debug
|
|
// sections. We do the same in the constructor.
|
|
if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
|
|
this->set_address(0);
|
|
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
p->reset_address_and_file_offset();
|
|
}
|
|
|
|
// Return true if address and file offset have the values after reset.
|
|
|
|
bool
|
|
Output_section::do_address_and_file_offset_have_reset_values() const
|
|
{
|
|
if (this->is_offset_valid())
|
|
return false;
|
|
|
|
// An unallocated section has address 0 after its construction or a reset.
|
|
if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
|
|
return this->is_address_valid() && this->address() == 0;
|
|
else
|
|
return !this->is_address_valid();
|
|
}
|
|
|
|
// Set the TLS offset. Called only for SHT_TLS sections.
|
|
|
|
void
|
|
Output_section::do_set_tls_offset(uint64_t tls_base)
|
|
{
|
|
this->tls_offset_ = this->address() - tls_base;
|
|
}
|
|
|
|
// In a few cases we need to sort the input sections attached to an
|
|
// output section. This is used to implement the type of constructor
|
|
// priority ordering implemented by the GNU linker, in which the
|
|
// priority becomes part of the section name and the sections are
|
|
// sorted by name. We only do this for an output section if we see an
|
|
// attached input section matching ".ctor.*", ".dtor.*",
|
|
// ".init_array.*" or ".fini_array.*".
|
|
|
|
class Output_section::Input_section_sort_entry
|
|
{
|
|
public:
|
|
Input_section_sort_entry()
|
|
: input_section_(), index_(-1U), section_has_name_(false),
|
|
section_name_()
|
|
{ }
|
|
|
|
Input_section_sort_entry(const Input_section& input_section,
|
|
unsigned int index)
|
|
: input_section_(input_section), index_(index),
|
|
section_has_name_(input_section.is_input_section()
|
|
|| input_section.is_relaxed_input_section())
|
|
{
|
|
if (this->section_has_name_)
|
|
{
|
|
// This is only called single-threaded from Layout::finalize,
|
|
// so it is OK to lock. Unfortunately we have no way to pass
|
|
// in a Task token.
|
|
const Task* dummy_task = reinterpret_cast<const Task*>(-1);
|
|
Object* obj = (input_section.is_input_section()
|
|
? input_section.relobj()
|
|
: input_section.relaxed_input_section()->relobj());
|
|
Task_lock_obj<Object> tl(dummy_task, obj);
|
|
|
|
// This is a slow operation, which should be cached in
|
|
// Layout::layout if this becomes a speed problem.
|
|
this->section_name_ = obj->section_name(input_section.shndx());
|
|
}
|
|
}
|
|
|
|
// Return the Input_section.
|
|
const Input_section&
|
|
input_section() const
|
|
{
|
|
gold_assert(this->index_ != -1U);
|
|
return this->input_section_;
|
|
}
|
|
|
|
// The index of this entry in the original list. This is used to
|
|
// make the sort stable.
|
|
unsigned int
|
|
index() const
|
|
{
|
|
gold_assert(this->index_ != -1U);
|
|
return this->index_;
|
|
}
|
|
|
|
// Whether there is a section name.
|
|
bool
|
|
section_has_name() const
|
|
{ return this->section_has_name_; }
|
|
|
|
// The section name.
|
|
const std::string&
|
|
section_name() const
|
|
{
|
|
gold_assert(this->section_has_name_);
|
|
return this->section_name_;
|
|
}
|
|
|
|
// Return true if the section name has a priority. This is assumed
|
|
// to be true if it has a dot after the initial dot.
|
|
bool
|
|
has_priority() const
|
|
{
|
|
gold_assert(this->section_has_name_);
|
|
return this->section_name_.find('.', 1);
|
|
}
|
|
|
|
// Return true if this an input file whose base name matches
|
|
// FILE_NAME. The base name must have an extension of ".o", and
|
|
// must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
|
|
// This is to match crtbegin.o as well as crtbeginS.o without
|
|
// getting confused by other possibilities. Overall matching the
|
|
// file name this way is a dreadful hack, but the GNU linker does it
|
|
// in order to better support gcc, and we need to be compatible.
|
|
bool
|
|
match_file_name(const char* match_file_name) const
|
|
{
|
|
const std::string& file_name(this->input_section_.relobj()->name());
|
|
const char* base_name = lbasename(file_name.c_str());
|
|
size_t match_len = strlen(match_file_name);
|
|
if (strncmp(base_name, match_file_name, match_len) != 0)
|
|
return false;
|
|
size_t base_len = strlen(base_name);
|
|
if (base_len != match_len + 2 && base_len != match_len + 3)
|
|
return false;
|
|
return memcmp(base_name + base_len - 2, ".o", 2) == 0;
|
|
}
|
|
|
|
private:
|
|
// The Input_section we are sorting.
|
|
Input_section input_section_;
|
|
// The index of this Input_section in the original list.
|
|
unsigned int index_;
|
|
// Whether this Input_section has a section name--it won't if this
|
|
// is some random Output_section_data.
|
|
bool section_has_name_;
|
|
// The section name if there is one.
|
|
std::string section_name_;
|
|
};
|
|
|
|
// Return true if S1 should come before S2 in the output section.
|
|
|
|
bool
|
|
Output_section::Input_section_sort_compare::operator()(
|
|
const Output_section::Input_section_sort_entry& s1,
|
|
const Output_section::Input_section_sort_entry& s2) const
|
|
{
|
|
// crtbegin.o must come first.
|
|
bool s1_begin = s1.match_file_name("crtbegin");
|
|
bool s2_begin = s2.match_file_name("crtbegin");
|
|
if (s1_begin || s2_begin)
|
|
{
|
|
if (!s1_begin)
|
|
return false;
|
|
if (!s2_begin)
|
|
return true;
|
|
return s1.index() < s2.index();
|
|
}
|
|
|
|
// crtend.o must come last.
|
|
bool s1_end = s1.match_file_name("crtend");
|
|
bool s2_end = s2.match_file_name("crtend");
|
|
if (s1_end || s2_end)
|
|
{
|
|
if (!s1_end)
|
|
return true;
|
|
if (!s2_end)
|
|
return false;
|
|
return s1.index() < s2.index();
|
|
}
|
|
|
|
// We sort all the sections with no names to the end.
|
|
if (!s1.section_has_name() || !s2.section_has_name())
|
|
{
|
|
if (s1.section_has_name())
|
|
return true;
|
|
if (s2.section_has_name())
|
|
return false;
|
|
return s1.index() < s2.index();
|
|
}
|
|
|
|
// A section with a priority follows a section without a priority.
|
|
// The GNU linker does this for all but .init_array sections; until
|
|
// further notice we'll assume that that is an mistake.
|
|
bool s1_has_priority = s1.has_priority();
|
|
bool s2_has_priority = s2.has_priority();
|
|
if (s1_has_priority && !s2_has_priority)
|
|
return false;
|
|
if (!s1_has_priority && s2_has_priority)
|
|
return true;
|
|
|
|
// Otherwise we sort by name.
|
|
int compare = s1.section_name().compare(s2.section_name());
|
|
if (compare != 0)
|
|
return compare < 0;
|
|
|
|
// Otherwise we keep the input order.
|
|
return s1.index() < s2.index();
|
|
}
|
|
|
|
// Sort the input sections attached to an output section.
|
|
|
|
void
|
|
Output_section::sort_attached_input_sections()
|
|
{
|
|
if (this->attached_input_sections_are_sorted_)
|
|
return;
|
|
|
|
if (this->checkpoint_ != NULL
|
|
&& !this->checkpoint_->input_sections_saved())
|
|
this->checkpoint_->save_input_sections();
|
|
|
|
// The only thing we know about an input section is the object and
|
|
// the section index. We need the section name. Recomputing this
|
|
// is slow but this is an unusual case. If this becomes a speed
|
|
// problem we can cache the names as required in Layout::layout.
|
|
|
|
// We start by building a larger vector holding a copy of each
|
|
// Input_section, plus its current index in the list and its name.
|
|
std::vector<Input_section_sort_entry> sort_list;
|
|
|
|
unsigned int i = 0;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p, ++i)
|
|
sort_list.push_back(Input_section_sort_entry(*p, i));
|
|
|
|
// Sort the input sections.
|
|
std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
|
|
|
|
// Copy the sorted input sections back to our list.
|
|
this->input_sections_.clear();
|
|
for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
|
|
p != sort_list.end();
|
|
++p)
|
|
this->input_sections_.push_back(p->input_section());
|
|
|
|
// Remember that we sorted the input sections, since we might get
|
|
// called again.
|
|
this->attached_input_sections_are_sorted_ = true;
|
|
}
|
|
|
|
// Write the section header to *OSHDR.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_section::write_header(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
elfcpp::Shdr_write<size, big_endian>* oshdr) const
|
|
{
|
|
oshdr->put_sh_name(secnamepool->get_offset(this->name_));
|
|
oshdr->put_sh_type(this->type_);
|
|
|
|
elfcpp::Elf_Xword flags = this->flags_;
|
|
if (this->info_section_ != NULL && this->info_uses_section_index_)
|
|
flags |= elfcpp::SHF_INFO_LINK;
|
|
oshdr->put_sh_flags(flags);
|
|
|
|
oshdr->put_sh_addr(this->address());
|
|
oshdr->put_sh_offset(this->offset());
|
|
oshdr->put_sh_size(this->data_size());
|
|
if (this->link_section_ != NULL)
|
|
oshdr->put_sh_link(this->link_section_->out_shndx());
|
|
else if (this->should_link_to_symtab_)
|
|
oshdr->put_sh_link(layout->symtab_section()->out_shndx());
|
|
else if (this->should_link_to_dynsym_)
|
|
oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
|
|
else
|
|
oshdr->put_sh_link(this->link_);
|
|
|
|
elfcpp::Elf_Word info;
|
|
if (this->info_section_ != NULL)
|
|
{
|
|
if (this->info_uses_section_index_)
|
|
info = this->info_section_->out_shndx();
|
|
else
|
|
info = this->info_section_->symtab_index();
|
|
}
|
|
else if (this->info_symndx_ != NULL)
|
|
info = this->info_symndx_->symtab_index();
|
|
else
|
|
info = this->info_;
|
|
oshdr->put_sh_info(info);
|
|
|
|
oshdr->put_sh_addralign(this->addralign_);
|
|
oshdr->put_sh_entsize(this->entsize_);
|
|
}
|
|
|
|
// Write out the data. For input sections the data is written out by
|
|
// Object::relocate, but we have to handle Output_section_data objects
|
|
// here.
|
|
|
|
void
|
|
Output_section::do_write(Output_file* of)
|
|
{
|
|
gold_assert(!this->requires_postprocessing());
|
|
|
|
// If the target performs relaxation, we delay filler generation until now.
|
|
gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
|
|
|
|
off_t output_section_file_offset = this->offset();
|
|
for (Fill_list::iterator p = this->fills_.begin();
|
|
p != this->fills_.end();
|
|
++p)
|
|
{
|
|
std::string fill_data(parameters->target().code_fill(p->length()));
|
|
of->write(output_section_file_offset + p->section_offset(),
|
|
fill_data.data(), fill_data.size());
|
|
}
|
|
|
|
off_t off = this->offset() + this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off_t aligned_off = align_address(off, p->addralign());
|
|
if (this->generate_code_fills_at_write_ && (off != aligned_off))
|
|
{
|
|
size_t fill_len = aligned_off - off;
|
|
std::string fill_data(parameters->target().code_fill(fill_len));
|
|
of->write(off, fill_data.data(), fill_data.size());
|
|
}
|
|
|
|
p->write(of);
|
|
off = aligned_off + p->data_size();
|
|
}
|
|
}
|
|
|
|
// If a section requires postprocessing, create the buffer to use.
|
|
|
|
void
|
|
Output_section::create_postprocessing_buffer()
|
|
{
|
|
gold_assert(this->requires_postprocessing());
|
|
|
|
if (this->postprocessing_buffer_ != NULL)
|
|
return;
|
|
|
|
if (!this->input_sections_.empty())
|
|
{
|
|
off_t off = this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off = align_address(off, p->addralign());
|
|
p->finalize_data_size();
|
|
off += p->data_size();
|
|
}
|
|
this->set_current_data_size_for_child(off);
|
|
}
|
|
|
|
off_t buffer_size = this->current_data_size_for_child();
|
|
this->postprocessing_buffer_ = new unsigned char[buffer_size];
|
|
}
|
|
|
|
// Write all the data of an Output_section into the postprocessing
|
|
// buffer. This is used for sections which require postprocessing,
|
|
// such as compression. Input sections are handled by
|
|
// Object::Relocate.
|
|
|
|
void
|
|
Output_section::write_to_postprocessing_buffer()
|
|
{
|
|
gold_assert(this->requires_postprocessing());
|
|
|
|
// If the target performs relaxation, we delay filler generation until now.
|
|
gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
|
|
|
|
unsigned char* buffer = this->postprocessing_buffer();
|
|
for (Fill_list::iterator p = this->fills_.begin();
|
|
p != this->fills_.end();
|
|
++p)
|
|
{
|
|
std::string fill_data(parameters->target().code_fill(p->length()));
|
|
memcpy(buffer + p->section_offset(), fill_data.data(),
|
|
fill_data.size());
|
|
}
|
|
|
|
off_t off = this->first_input_offset_;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
off_t aligned_off = align_address(off, p->addralign());
|
|
if (this->generate_code_fills_at_write_ && (off != aligned_off))
|
|
{
|
|
size_t fill_len = aligned_off - off;
|
|
std::string fill_data(parameters->target().code_fill(fill_len));
|
|
memcpy(buffer + off, fill_data.data(), fill_data.size());
|
|
}
|
|
|
|
p->write_to_buffer(buffer + aligned_off);
|
|
off = aligned_off + p->data_size();
|
|
}
|
|
}
|
|
|
|
// Get the input sections for linker script processing. We leave
|
|
// behind the Output_section_data entries. Note that this may be
|
|
// slightly incorrect for merge sections. We will leave them behind,
|
|
// but it is possible that the script says that they should follow
|
|
// some other input sections, as in:
|
|
// .rodata { *(.rodata) *(.rodata.cst*) }
|
|
// For that matter, we don't handle this correctly:
|
|
// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
|
|
// With luck this will never matter.
|
|
|
|
uint64_t
|
|
Output_section::get_input_sections(
|
|
uint64_t address,
|
|
const std::string& fill,
|
|
std::list<Simple_input_section>* input_sections)
|
|
{
|
|
if (this->checkpoint_ != NULL
|
|
&& !this->checkpoint_->input_sections_saved())
|
|
this->checkpoint_->save_input_sections();
|
|
|
|
// Invalidate the relaxed input section map.
|
|
this->is_relaxed_input_section_map_valid_ = false;
|
|
|
|
uint64_t orig_address = address;
|
|
|
|
address = align_address(address, this->addralign());
|
|
|
|
Input_section_list remaining;
|
|
for (Input_section_list::iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
{
|
|
if (p->is_input_section())
|
|
input_sections->push_back(Simple_input_section(p->relobj(),
|
|
p->shndx()));
|
|
else if (p->is_relaxed_input_section())
|
|
input_sections->push_back(
|
|
Simple_input_section(p->relaxed_input_section()));
|
|
else
|
|
{
|
|
uint64_t aligned_address = align_address(address, p->addralign());
|
|
if (aligned_address != address && !fill.empty())
|
|
{
|
|
section_size_type length =
|
|
convert_to_section_size_type(aligned_address - address);
|
|
std::string this_fill;
|
|
this_fill.reserve(length);
|
|
while (this_fill.length() + fill.length() <= length)
|
|
this_fill += fill;
|
|
if (this_fill.length() < length)
|
|
this_fill.append(fill, 0, length - this_fill.length());
|
|
|
|
Output_section_data* posd = new Output_data_const(this_fill, 0);
|
|
remaining.push_back(Input_section(posd));
|
|
}
|
|
address = aligned_address;
|
|
|
|
remaining.push_back(*p);
|
|
|
|
p->finalize_data_size();
|
|
address += p->data_size();
|
|
}
|
|
}
|
|
|
|
this->input_sections_.swap(remaining);
|
|
this->first_input_offset_ = 0;
|
|
|
|
uint64_t data_size = address - orig_address;
|
|
this->set_current_data_size_for_child(data_size);
|
|
return data_size;
|
|
}
|
|
|
|
// Add an input section from a script.
|
|
|
|
void
|
|
Output_section::add_input_section_for_script(const Simple_input_section& sis,
|
|
off_t data_size,
|
|
uint64_t addralign)
|
|
{
|
|
if (addralign > this->addralign_)
|
|
this->addralign_ = addralign;
|
|
|
|
off_t offset_in_section = this->current_data_size_for_child();
|
|
off_t aligned_offset_in_section = align_address(offset_in_section,
|
|
addralign);
|
|
|
|
this->set_current_data_size_for_child(aligned_offset_in_section
|
|
+ data_size);
|
|
|
|
Input_section is =
|
|
(sis.is_relaxed_input_section()
|
|
? Input_section(sis.relaxed_input_section())
|
|
: Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
|
|
this->input_sections_.push_back(is);
|
|
}
|
|
|
|
//
|
|
|
|
void
|
|
Output_section::save_states()
|
|
{
|
|
gold_assert(this->checkpoint_ == NULL);
|
|
Checkpoint_output_section* checkpoint =
|
|
new Checkpoint_output_section(this->addralign_, this->flags_,
|
|
this->input_sections_,
|
|
this->first_input_offset_,
|
|
this->attached_input_sections_are_sorted_);
|
|
this->checkpoint_ = checkpoint;
|
|
gold_assert(this->fills_.empty());
|
|
}
|
|
|
|
void
|
|
Output_section::restore_states()
|
|
{
|
|
gold_assert(this->checkpoint_ != NULL);
|
|
Checkpoint_output_section* checkpoint = this->checkpoint_;
|
|
|
|
this->addralign_ = checkpoint->addralign();
|
|
this->flags_ = checkpoint->flags();
|
|
this->first_input_offset_ = checkpoint->first_input_offset();
|
|
|
|
if (!checkpoint->input_sections_saved())
|
|
{
|
|
// If we have not copied the input sections, just resize it.
|
|
size_t old_size = checkpoint->input_sections_size();
|
|
gold_assert(this->input_sections_.size() >= old_size);
|
|
this->input_sections_.resize(old_size);
|
|
}
|
|
else
|
|
{
|
|
// We need to copy the whole list. This is not efficient for
|
|
// extremely large output with hundreads of thousands of input
|
|
// objects. We may need to re-think how we should pass sections
|
|
// to scripts.
|
|
this->input_sections_ = *checkpoint->input_sections();
|
|
}
|
|
|
|
this->attached_input_sections_are_sorted_ =
|
|
checkpoint->attached_input_sections_are_sorted();
|
|
|
|
// Simply invalidate the relaxed input section map since we do not keep
|
|
// track of it.
|
|
this->is_relaxed_input_section_map_valid_ = false;
|
|
}
|
|
|
|
// Print to the map file.
|
|
|
|
void
|
|
Output_section::do_print_to_mapfile(Mapfile* mapfile) const
|
|
{
|
|
mapfile->print_output_section(this);
|
|
|
|
for (Input_section_list::const_iterator p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
p->print_to_mapfile(mapfile);
|
|
}
|
|
|
|
// Print stats for merge sections to stderr.
|
|
|
|
void
|
|
Output_section::print_merge_stats()
|
|
{
|
|
Input_section_list::iterator p;
|
|
for (p = this->input_sections_.begin();
|
|
p != this->input_sections_.end();
|
|
++p)
|
|
p->print_merge_stats(this->name_);
|
|
}
|
|
|
|
// Output segment methods.
|
|
|
|
Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
|
|
: output_data_(),
|
|
output_bss_(),
|
|
vaddr_(0),
|
|
paddr_(0),
|
|
memsz_(0),
|
|
max_align_(0),
|
|
min_p_align_(0),
|
|
offset_(0),
|
|
filesz_(0),
|
|
type_(type),
|
|
flags_(flags),
|
|
is_max_align_known_(false),
|
|
are_addresses_set_(false),
|
|
is_large_data_segment_(false)
|
|
{
|
|
// The ELF ABI specifies that a PT_TLS segment always has PF_R as
|
|
// the flags.
|
|
if (type == elfcpp::PT_TLS)
|
|
this->flags_ = elfcpp::PF_R;
|
|
}
|
|
|
|
// Add an Output_section to an Output_segment.
|
|
|
|
void
|
|
Output_segment::add_output_section(Output_section* os,
|
|
elfcpp::Elf_Word seg_flags,
|
|
bool do_sort)
|
|
{
|
|
gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
|
|
gold_assert(!this->is_max_align_known_);
|
|
gold_assert(os->is_large_data_section() == this->is_large_data_segment());
|
|
gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
|
|
|
|
// Update the segment flags. The ELF ABI specifies that a PT_TLS
|
|
// segment should always have PF_R as the flags, regardless of the
|
|
// associated sections.
|
|
if (this->type() != elfcpp::PT_TLS)
|
|
this->flags_ |= seg_flags;
|
|
|
|
Output_segment::Output_data_list* pdl;
|
|
if (os->type() == elfcpp::SHT_NOBITS)
|
|
pdl = &this->output_bss_;
|
|
else
|
|
pdl = &this->output_data_;
|
|
|
|
// Note that while there may be many input sections in an output
|
|
// section, there are normally only a few output sections in an
|
|
// output segment. The loops below are expected to be fast.
|
|
|
|
// So that PT_NOTE segments will work correctly, we need to ensure
|
|
// that all SHT_NOTE sections are adjacent.
|
|
if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
|
|
{
|
|
Output_segment::Output_data_list::iterator p = pdl->end();
|
|
do
|
|
{
|
|
--p;
|
|
if ((*p)->is_section_type(elfcpp::SHT_NOTE))
|
|
{
|
|
++p;
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
while (p != pdl->begin());
|
|
}
|
|
|
|
// Similarly, so that PT_TLS segments will work, we need to group
|
|
// SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
|
|
// case: we group the SHF_TLS/SHT_NOBITS sections right after the
|
|
// SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
|
|
// correctly. SHF_TLS sections get added to both a PT_LOAD segment
|
|
// and the PT_TLS segment; we do this grouping only for the PT_LOAD
|
|
// segment.
|
|
if (this->type_ != elfcpp::PT_TLS
|
|
&& (os->flags() & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
pdl = &this->output_data_;
|
|
if (!pdl->empty())
|
|
{
|
|
bool nobits = os->type() == elfcpp::SHT_NOBITS;
|
|
bool sawtls = false;
|
|
Output_segment::Output_data_list::iterator p = pdl->end();
|
|
gold_assert(p != pdl->begin());
|
|
do
|
|
{
|
|
--p;
|
|
bool insert;
|
|
if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
|
|
{
|
|
sawtls = true;
|
|
// Put a NOBITS section after the first TLS section.
|
|
// Put a PROGBITS section after the first
|
|
// TLS/PROGBITS section.
|
|
insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
|
|
}
|
|
else
|
|
{
|
|
// If we've gone past the TLS sections, but we've
|
|
// seen a TLS section, then we need to insert this
|
|
// section now.
|
|
insert = sawtls;
|
|
}
|
|
|
|
if (insert)
|
|
{
|
|
++p;
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
while (p != pdl->begin());
|
|
}
|
|
|
|
// There are no TLS sections yet; put this one at the requested
|
|
// location in the section list.
|
|
}
|
|
|
|
if (do_sort)
|
|
{
|
|
// For the PT_GNU_RELRO segment, we need to group relro
|
|
// sections, and we need to put them before any non-relro
|
|
// sections. Any relro local sections go before relro non-local
|
|
// sections. One section may be marked as the last relro
|
|
// section.
|
|
if (os->is_relro())
|
|
{
|
|
gold_assert(pdl == &this->output_data_);
|
|
Output_segment::Output_data_list::iterator p;
|
|
for (p = pdl->begin(); p != pdl->end(); ++p)
|
|
{
|
|
if (!(*p)->is_section())
|
|
break;
|
|
|
|
Output_section* pos = (*p)->output_section();
|
|
if (!pos->is_relro()
|
|
|| (os->is_relro_local() && !pos->is_relro_local())
|
|
|| (!os->is_last_relro() && pos->is_last_relro()))
|
|
break;
|
|
}
|
|
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
|
|
// One section may be marked as the first section which follows
|
|
// the relro sections.
|
|
if (os->is_first_non_relro())
|
|
{
|
|
gold_assert(pdl == &this->output_data_);
|
|
Output_segment::Output_data_list::iterator p;
|
|
for (p = pdl->begin(); p != pdl->end(); ++p)
|
|
{
|
|
if (!(*p)->is_section())
|
|
break;
|
|
|
|
Output_section* pos = (*p)->output_section();
|
|
if (!pos->is_relro())
|
|
break;
|
|
}
|
|
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Small data sections go at the end of the list of data sections.
|
|
// If OS is not small, and there are small sections, we have to
|
|
// insert it before the first small section.
|
|
if (os->type() != elfcpp::SHT_NOBITS
|
|
&& !os->is_small_section()
|
|
&& !pdl->empty()
|
|
&& pdl->back()->is_section()
|
|
&& pdl->back()->output_section()->is_small_section())
|
|
{
|
|
for (Output_segment::Output_data_list::iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section()
|
|
&& (*p)->output_section()->is_small_section())
|
|
{
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// A small BSS section goes at the start of the BSS sections, after
|
|
// other small BSS sections.
|
|
if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
|
|
{
|
|
for (Output_segment::Output_data_list::iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if (!(*p)->is_section()
|
|
|| !(*p)->output_section()->is_small_section())
|
|
{
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// A large BSS section goes at the end of the BSS sections, which
|
|
// means that one that is not large must come before the first large
|
|
// one.
|
|
if (os->type() == elfcpp::SHT_NOBITS
|
|
&& !os->is_large_section()
|
|
&& !pdl->empty()
|
|
&& pdl->back()->is_section()
|
|
&& pdl->back()->output_section()->is_large_section())
|
|
{
|
|
for (Output_segment::Output_data_list::iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section()
|
|
&& (*p)->output_section()->is_large_section())
|
|
{
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// We do some further output section sorting in order to make the
|
|
// generated program run more efficiently. We should only do this
|
|
// when not using a linker script, so it is controled by the DO_SORT
|
|
// parameter.
|
|
if (do_sort)
|
|
{
|
|
// FreeBSD requires the .interp section to be in the first page
|
|
// of the executable. That is a more efficient location anyhow
|
|
// for any OS, since it means that the kernel will have the data
|
|
// handy after it reads the program headers.
|
|
if (os->is_interp() && !pdl->empty())
|
|
{
|
|
pdl->insert(pdl->begin(), os);
|
|
return;
|
|
}
|
|
|
|
// Put loadable non-writable notes immediately after the .interp
|
|
// sections, so that the PT_NOTE segment is on the first page of
|
|
// the executable.
|
|
if (os->type() == elfcpp::SHT_NOTE
|
|
&& (os->flags() & elfcpp::SHF_WRITE) == 0
|
|
&& !pdl->empty())
|
|
{
|
|
Output_segment::Output_data_list::iterator p = pdl->begin();
|
|
if ((*p)->is_section() && (*p)->output_section()->is_interp())
|
|
++p;
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
|
|
// If this section is used by the dynamic linker, and it is not
|
|
// writable, then put it first, after the .interp section and
|
|
// any loadable notes. This makes it more likely that the
|
|
// dynamic linker will have to read less data from the disk.
|
|
if (os->is_dynamic_linker_section()
|
|
&& !pdl->empty()
|
|
&& (os->flags() & elfcpp::SHF_WRITE) == 0)
|
|
{
|
|
bool is_reloc = (os->type() == elfcpp::SHT_REL
|
|
|| os->type() == elfcpp::SHT_RELA);
|
|
Output_segment::Output_data_list::iterator p = pdl->begin();
|
|
while (p != pdl->end()
|
|
&& (*p)->is_section()
|
|
&& ((*p)->output_section()->is_dynamic_linker_section()
|
|
|| (*p)->output_section()->type() == elfcpp::SHT_NOTE))
|
|
{
|
|
// Put reloc sections after the other ones. Putting the
|
|
// dynamic reloc sections first confuses BFD, notably
|
|
// objcopy and strip.
|
|
if (!is_reloc
|
|
&& ((*p)->output_section()->type() == elfcpp::SHT_REL
|
|
|| (*p)->output_section()->type() == elfcpp::SHT_RELA))
|
|
break;
|
|
++p;
|
|
}
|
|
pdl->insert(p, os);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If there were no constraints on the output section, just add it
|
|
// to the end of the list.
|
|
pdl->push_back(os);
|
|
}
|
|
|
|
// Remove an Output_section from this segment. It is an error if it
|
|
// is not present.
|
|
|
|
void
|
|
Output_segment::remove_output_section(Output_section* os)
|
|
{
|
|
// We only need this for SHT_PROGBITS.
|
|
gold_assert(os->type() == elfcpp::SHT_PROGBITS);
|
|
for (Output_data_list::iterator p = this->output_data_.begin();
|
|
p != this->output_data_.end();
|
|
++p)
|
|
{
|
|
if (*p == os)
|
|
{
|
|
this->output_data_.erase(p);
|
|
return;
|
|
}
|
|
}
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Add an Output_data (which is not an Output_section) to the start of
|
|
// a segment.
|
|
|
|
void
|
|
Output_segment::add_initial_output_data(Output_data* od)
|
|
{
|
|
gold_assert(!this->is_max_align_known_);
|
|
this->output_data_.push_front(od);
|
|
}
|
|
|
|
// Return whether the first data section is a relro section.
|
|
|
|
bool
|
|
Output_segment::is_first_section_relro() const
|
|
{
|
|
return (!this->output_data_.empty()
|
|
&& this->output_data_.front()->is_section()
|
|
&& this->output_data_.front()->output_section()->is_relro());
|
|
}
|
|
|
|
// Return the maximum alignment of the Output_data in Output_segment.
|
|
|
|
uint64_t
|
|
Output_segment::maximum_alignment()
|
|
{
|
|
if (!this->is_max_align_known_)
|
|
{
|
|
uint64_t addralign;
|
|
|
|
addralign = Output_segment::maximum_alignment_list(&this->output_data_);
|
|
if (addralign > this->max_align_)
|
|
this->max_align_ = addralign;
|
|
|
|
addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
|
|
if (addralign > this->max_align_)
|
|
this->max_align_ = addralign;
|
|
|
|
this->is_max_align_known_ = true;
|
|
}
|
|
|
|
return this->max_align_;
|
|
}
|
|
|
|
// Return the maximum alignment of a list of Output_data.
|
|
|
|
uint64_t
|
|
Output_segment::maximum_alignment_list(const Output_data_list* pdl)
|
|
{
|
|
uint64_t ret = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
uint64_t addralign = (*p)->addralign();
|
|
if (addralign > ret)
|
|
ret = addralign;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Return the number of dynamic relocs applied to this segment.
|
|
|
|
unsigned int
|
|
Output_segment::dynamic_reloc_count() const
|
|
{
|
|
return (this->dynamic_reloc_count_list(&this->output_data_)
|
|
+ this->dynamic_reloc_count_list(&this->output_bss_));
|
|
}
|
|
|
|
// Return the number of dynamic relocs applied to an Output_data_list.
|
|
|
|
unsigned int
|
|
Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
|
|
{
|
|
unsigned int count = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
count += (*p)->dynamic_reloc_count();
|
|
return count;
|
|
}
|
|
|
|
// Set the section addresses for an Output_segment. If RESET is true,
|
|
// reset the addresses first. ADDR is the address and *POFF is the
|
|
// file offset. Set the section indexes starting with *PSHNDX.
|
|
// Return the address of the immediately following segment. Update
|
|
// *POFF and *PSHNDX.
|
|
|
|
uint64_t
|
|
Output_segment::set_section_addresses(const Layout* layout, bool reset,
|
|
uint64_t addr,
|
|
unsigned int increase_relro,
|
|
off_t* poff,
|
|
unsigned int* pshndx)
|
|
{
|
|
gold_assert(this->type_ == elfcpp::PT_LOAD);
|
|
|
|
off_t orig_off = *poff;
|
|
|
|
// If we have relro sections, we need to pad forward now so that the
|
|
// relro sections plus INCREASE_RELRO end on a common page boundary.
|
|
if (parameters->options().relro()
|
|
&& this->is_first_section_relro()
|
|
&& (!this->are_addresses_set_ || reset))
|
|
{
|
|
uint64_t relro_size = 0;
|
|
off_t off = *poff;
|
|
for (Output_data_list::iterator p = this->output_data_.begin();
|
|
p != this->output_data_.end();
|
|
++p)
|
|
{
|
|
if (!(*p)->is_section())
|
|
break;
|
|
Output_section* pos = (*p)->output_section();
|
|
if (!pos->is_relro())
|
|
break;
|
|
gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
|
|
if ((*p)->is_address_valid())
|
|
relro_size += (*p)->data_size();
|
|
else
|
|
{
|
|
// FIXME: This could be faster.
|
|
(*p)->set_address_and_file_offset(addr + relro_size,
|
|
off + relro_size);
|
|
relro_size += (*p)->data_size();
|
|
(*p)->reset_address_and_file_offset();
|
|
}
|
|
}
|
|
relro_size += increase_relro;
|
|
|
|
uint64_t page_align = parameters->target().common_pagesize();
|
|
|
|
// Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
|
|
uint64_t desired_align = page_align - (relro_size % page_align);
|
|
if (desired_align < *poff % page_align)
|
|
*poff += page_align - *poff % page_align;
|
|
*poff += desired_align - *poff % page_align;
|
|
addr += *poff - orig_off;
|
|
orig_off = *poff;
|
|
}
|
|
|
|
if (!reset && this->are_addresses_set_)
|
|
{
|
|
gold_assert(this->paddr_ == addr);
|
|
addr = this->vaddr_;
|
|
}
|
|
else
|
|
{
|
|
this->vaddr_ = addr;
|
|
this->paddr_ = addr;
|
|
this->are_addresses_set_ = true;
|
|
}
|
|
|
|
bool in_tls = false;
|
|
|
|
this->offset_ = orig_off;
|
|
|
|
addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
|
|
addr, poff, pshndx, &in_tls);
|
|
this->filesz_ = *poff - orig_off;
|
|
|
|
off_t off = *poff;
|
|
|
|
uint64_t ret = this->set_section_list_addresses(layout, reset,
|
|
&this->output_bss_,
|
|
addr, poff, pshndx,
|
|
&in_tls);
|
|
|
|
// If the last section was a TLS section, align upward to the
|
|
// alignment of the TLS segment, so that the overall size of the TLS
|
|
// segment is aligned.
|
|
if (in_tls)
|
|
{
|
|
uint64_t segment_align = layout->tls_segment()->maximum_alignment();
|
|
*poff = align_address(*poff, segment_align);
|
|
}
|
|
|
|
this->memsz_ = *poff - orig_off;
|
|
|
|
// Ignore the file offset adjustments made by the BSS Output_data
|
|
// objects.
|
|
*poff = off;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Set the addresses and file offsets in a list of Output_data
|
|
// structures.
|
|
|
|
uint64_t
|
|
Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
|
|
Output_data_list* pdl,
|
|
uint64_t addr, off_t* poff,
|
|
unsigned int* pshndx,
|
|
bool* in_tls)
|
|
{
|
|
off_t startoff = *poff;
|
|
|
|
off_t off = startoff;
|
|
for (Output_data_list::iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if (reset)
|
|
(*p)->reset_address_and_file_offset();
|
|
|
|
// When using a linker script the section will most likely
|
|
// already have an address.
|
|
if (!(*p)->is_address_valid())
|
|
{
|
|
uint64_t align = (*p)->addralign();
|
|
|
|
if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
|
|
{
|
|
// Give the first TLS section the alignment of the
|
|
// entire TLS segment. Otherwise the TLS segment as a
|
|
// whole may be misaligned.
|
|
if (!*in_tls)
|
|
{
|
|
Output_segment* tls_segment = layout->tls_segment();
|
|
gold_assert(tls_segment != NULL);
|
|
uint64_t segment_align = tls_segment->maximum_alignment();
|
|
gold_assert(segment_align >= align);
|
|
align = segment_align;
|
|
|
|
*in_tls = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If this is the first section after the TLS segment,
|
|
// align it to at least the alignment of the TLS
|
|
// segment, so that the size of the overall TLS segment
|
|
// is aligned.
|
|
if (*in_tls)
|
|
{
|
|
uint64_t segment_align =
|
|
layout->tls_segment()->maximum_alignment();
|
|
if (segment_align > align)
|
|
align = segment_align;
|
|
|
|
*in_tls = false;
|
|
}
|
|
}
|
|
|
|
off = align_address(off, align);
|
|
(*p)->set_address_and_file_offset(addr + (off - startoff), off);
|
|
}
|
|
else
|
|
{
|
|
// The script may have inserted a skip forward, but it
|
|
// better not have moved backward.
|
|
if ((*p)->address() >= addr + (off - startoff))
|
|
off += (*p)->address() - (addr + (off - startoff));
|
|
else
|
|
{
|
|
if (!layout->script_options()->saw_sections_clause())
|
|
gold_unreachable();
|
|
else
|
|
{
|
|
Output_section* os = (*p)->output_section();
|
|
|
|
// Cast to unsigned long long to avoid format warnings.
|
|
unsigned long long previous_dot =
|
|
static_cast<unsigned long long>(addr + (off - startoff));
|
|
unsigned long long dot =
|
|
static_cast<unsigned long long>((*p)->address());
|
|
|
|
if (os == NULL)
|
|
gold_error(_("dot moves backward in linker script "
|
|
"from 0x%llx to 0x%llx"), previous_dot, dot);
|
|
else
|
|
gold_error(_("address of section '%s' moves backward "
|
|
"from 0x%llx to 0x%llx"),
|
|
os->name(), previous_dot, dot);
|
|
}
|
|
}
|
|
(*p)->set_file_offset(off);
|
|
(*p)->finalize_data_size();
|
|
}
|
|
|
|
// We want to ignore the size of a SHF_TLS or SHT_NOBITS
|
|
// section. Such a section does not affect the size of a
|
|
// PT_LOAD segment.
|
|
if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
|
|
|| !(*p)->is_section_type(elfcpp::SHT_NOBITS))
|
|
off += (*p)->data_size();
|
|
|
|
if ((*p)->is_section())
|
|
{
|
|
(*p)->set_out_shndx(*pshndx);
|
|
++*pshndx;
|
|
}
|
|
}
|
|
|
|
*poff = off;
|
|
return addr + (off - startoff);
|
|
}
|
|
|
|
// For a non-PT_LOAD segment, set the offset from the sections, if
|
|
// any. Add INCREASE to the file size and the memory size.
|
|
|
|
void
|
|
Output_segment::set_offset(unsigned int increase)
|
|
{
|
|
gold_assert(this->type_ != elfcpp::PT_LOAD);
|
|
|
|
gold_assert(!this->are_addresses_set_);
|
|
|
|
if (this->output_data_.empty() && this->output_bss_.empty())
|
|
{
|
|
gold_assert(increase == 0);
|
|
this->vaddr_ = 0;
|
|
this->paddr_ = 0;
|
|
this->are_addresses_set_ = true;
|
|
this->memsz_ = 0;
|
|
this->min_p_align_ = 0;
|
|
this->offset_ = 0;
|
|
this->filesz_ = 0;
|
|
return;
|
|
}
|
|
|
|
const Output_data* first;
|
|
if (this->output_data_.empty())
|
|
first = this->output_bss_.front();
|
|
else
|
|
first = this->output_data_.front();
|
|
this->vaddr_ = first->address();
|
|
this->paddr_ = (first->has_load_address()
|
|
? first->load_address()
|
|
: this->vaddr_);
|
|
this->are_addresses_set_ = true;
|
|
this->offset_ = first->offset();
|
|
|
|
if (this->output_data_.empty())
|
|
this->filesz_ = 0;
|
|
else
|
|
{
|
|
const Output_data* last_data = this->output_data_.back();
|
|
this->filesz_ = (last_data->address()
|
|
+ last_data->data_size()
|
|
- this->vaddr_);
|
|
}
|
|
|
|
const Output_data* last;
|
|
if (this->output_bss_.empty())
|
|
last = this->output_data_.back();
|
|
else
|
|
last = this->output_bss_.back();
|
|
this->memsz_ = (last->address()
|
|
+ last->data_size()
|
|
- this->vaddr_);
|
|
|
|
this->filesz_ += increase;
|
|
this->memsz_ += increase;
|
|
|
|
// If this is a TLS segment, align the memory size. The code in
|
|
// set_section_list ensures that the section after the TLS segment
|
|
// is aligned to give us room.
|
|
if (this->type_ == elfcpp::PT_TLS)
|
|
{
|
|
uint64_t segment_align = this->maximum_alignment();
|
|
gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
|
|
this->memsz_ = align_address(this->memsz_, segment_align);
|
|
}
|
|
}
|
|
|
|
// Set the TLS offsets of the sections in the PT_TLS segment.
|
|
|
|
void
|
|
Output_segment::set_tls_offsets()
|
|
{
|
|
gold_assert(this->type_ == elfcpp::PT_TLS);
|
|
|
|
for (Output_data_list::iterator p = this->output_data_.begin();
|
|
p != this->output_data_.end();
|
|
++p)
|
|
(*p)->set_tls_offset(this->vaddr_);
|
|
|
|
for (Output_data_list::iterator p = this->output_bss_.begin();
|
|
p != this->output_bss_.end();
|
|
++p)
|
|
(*p)->set_tls_offset(this->vaddr_);
|
|
}
|
|
|
|
// Return the address of the first section.
|
|
|
|
uint64_t
|
|
Output_segment::first_section_load_address() const
|
|
{
|
|
for (Output_data_list::const_iterator p = this->output_data_.begin();
|
|
p != this->output_data_.end();
|
|
++p)
|
|
if ((*p)->is_section())
|
|
return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
|
|
|
|
for (Output_data_list::const_iterator p = this->output_bss_.begin();
|
|
p != this->output_bss_.end();
|
|
++p)
|
|
if ((*p)->is_section())
|
|
return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
|
|
|
|
gold_unreachable();
|
|
}
|
|
|
|
// Return the number of Output_sections in an Output_segment.
|
|
|
|
unsigned int
|
|
Output_segment::output_section_count() const
|
|
{
|
|
return (this->output_section_count_list(&this->output_data_)
|
|
+ this->output_section_count_list(&this->output_bss_));
|
|
}
|
|
|
|
// Return the number of Output_sections in an Output_data_list.
|
|
|
|
unsigned int
|
|
Output_segment::output_section_count_list(const Output_data_list* pdl) const
|
|
{
|
|
unsigned int count = 0;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section())
|
|
++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Return the section attached to the list segment with the lowest
|
|
// load address. This is used when handling a PHDRS clause in a
|
|
// linker script.
|
|
|
|
Output_section*
|
|
Output_segment::section_with_lowest_load_address() const
|
|
{
|
|
Output_section* found = NULL;
|
|
uint64_t found_lma = 0;
|
|
this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
|
|
|
|
Output_section* found_data = found;
|
|
this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
|
|
if (found != found_data && found_data != NULL)
|
|
{
|
|
gold_error(_("nobits section %s may not precede progbits section %s "
|
|
"in same segment"),
|
|
found->name(), found_data->name());
|
|
return NULL;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
// Look through a list for a section with a lower load address.
|
|
|
|
void
|
|
Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
|
|
Output_section** found,
|
|
uint64_t* found_lma) const
|
|
{
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if (!(*p)->is_section())
|
|
continue;
|
|
Output_section* os = static_cast<Output_section*>(*p);
|
|
uint64_t lma = (os->has_load_address()
|
|
? os->load_address()
|
|
: os->address());
|
|
if (*found == NULL || lma < *found_lma)
|
|
{
|
|
*found = os;
|
|
*found_lma = lma;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write the segment data into *OPHDR.
|
|
|
|
template<int size, bool big_endian>
|
|
void
|
|
Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
|
|
{
|
|
ophdr->put_p_type(this->type_);
|
|
ophdr->put_p_offset(this->offset_);
|
|
ophdr->put_p_vaddr(this->vaddr_);
|
|
ophdr->put_p_paddr(this->paddr_);
|
|
ophdr->put_p_filesz(this->filesz_);
|
|
ophdr->put_p_memsz(this->memsz_);
|
|
ophdr->put_p_flags(this->flags_);
|
|
ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
|
|
}
|
|
|
|
// Write the section headers into V.
|
|
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
Output_segment::write_section_headers(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
unsigned char* v,
|
|
unsigned int *pshndx) const
|
|
{
|
|
// Every section that is attached to a segment must be attached to a
|
|
// PT_LOAD segment, so we only write out section headers for PT_LOAD
|
|
// segments.
|
|
if (this->type_ != elfcpp::PT_LOAD)
|
|
return v;
|
|
|
|
v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
|
|
&this->output_data_,
|
|
v, pshndx);
|
|
v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
|
|
&this->output_bss_,
|
|
v, pshndx);
|
|
return v;
|
|
}
|
|
|
|
template<int size, bool big_endian>
|
|
unsigned char*
|
|
Output_segment::write_section_headers_list(const Layout* layout,
|
|
const Stringpool* secnamepool,
|
|
const Output_data_list* pdl,
|
|
unsigned char* v,
|
|
unsigned int* pshndx) const
|
|
{
|
|
const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
{
|
|
if ((*p)->is_section())
|
|
{
|
|
const Output_section* ps = static_cast<const Output_section*>(*p);
|
|
gold_assert(*pshndx == ps->out_shndx());
|
|
elfcpp::Shdr_write<size, big_endian> oshdr(v);
|
|
ps->write_header(layout, secnamepool, &oshdr);
|
|
v += shdr_size;
|
|
++*pshndx;
|
|
}
|
|
}
|
|
return v;
|
|
}
|
|
|
|
// Print the output sections to the map file.
|
|
|
|
void
|
|
Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
|
|
{
|
|
if (this->type() != elfcpp::PT_LOAD)
|
|
return;
|
|
this->print_section_list_to_mapfile(mapfile, &this->output_data_);
|
|
this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
|
|
}
|
|
|
|
// Print an output section list to the map file.
|
|
|
|
void
|
|
Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
|
|
const Output_data_list* pdl) const
|
|
{
|
|
for (Output_data_list::const_iterator p = pdl->begin();
|
|
p != pdl->end();
|
|
++p)
|
|
(*p)->print_to_mapfile(mapfile);
|
|
}
|
|
|
|
// Output_file methods.
|
|
|
|
Output_file::Output_file(const char* name)
|
|
: name_(name),
|
|
o_(-1),
|
|
file_size_(0),
|
|
base_(NULL),
|
|
map_is_anonymous_(false),
|
|
is_temporary_(false)
|
|
{
|
|
}
|
|
|
|
// Try to open an existing file. Returns false if the file doesn't
|
|
// exist, has a size of 0 or can't be mmapped.
|
|
|
|
bool
|
|
Output_file::open_for_modification()
|
|
{
|
|
// The name "-" means "stdout".
|
|
if (strcmp(this->name_, "-") == 0)
|
|
return false;
|
|
|
|
// Don't bother opening files with a size of zero.
|
|
struct stat s;
|
|
if (::stat(this->name_, &s) != 0 || s.st_size == 0)
|
|
return false;
|
|
|
|
int o = open_descriptor(-1, this->name_, O_RDWR, 0);
|
|
if (o < 0)
|
|
gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
|
|
this->o_ = o;
|
|
this->file_size_ = s.st_size;
|
|
|
|
// If the file can't be mmapped, copying the content to an anonymous
|
|
// map will probably negate the performance benefits of incremental
|
|
// linking. This could be helped by using views and loading only
|
|
// the necessary parts, but this is not supported as of now.
|
|
if (!this->map_no_anonymous())
|
|
{
|
|
release_descriptor(o, true);
|
|
this->o_ = -1;
|
|
this->file_size_ = 0;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Open the output file.
|
|
|
|
void
|
|
Output_file::open(off_t file_size)
|
|
{
|
|
this->file_size_ = file_size;
|
|
|
|
// Unlink the file first; otherwise the open() may fail if the file
|
|
// is busy (e.g. it's an executable that's currently being executed).
|
|
//
|
|
// However, the linker may be part of a system where a zero-length
|
|
// file is created for it to write to, with tight permissions (gcc
|
|
// 2.95 did something like this). Unlinking the file would work
|
|
// around those permission controls, so we only unlink if the file
|
|
// has a non-zero size. We also unlink only regular files to avoid
|
|
// trouble with directories/etc.
|
|
//
|
|
// If we fail, continue; this command is merely a best-effort attempt
|
|
// to improve the odds for open().
|
|
|
|
// We let the name "-" mean "stdout"
|
|
if (!this->is_temporary_)
|
|
{
|
|
if (strcmp(this->name_, "-") == 0)
|
|
this->o_ = STDOUT_FILENO;
|
|
else
|
|
{
|
|
struct stat s;
|
|
if (::stat(this->name_, &s) == 0
|
|
&& (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
|
|
{
|
|
if (s.st_size != 0)
|
|
::unlink(this->name_);
|
|
else if (!parameters->options().relocatable())
|
|
{
|
|
// If we don't unlink the existing file, add execute
|
|
// permission where read permissions already exist
|
|
// and where the umask permits.
|
|
int mask = ::umask(0);
|
|
::umask(mask);
|
|
s.st_mode |= (s.st_mode & 0444) >> 2;
|
|
::chmod(this->name_, s.st_mode & ~mask);
|
|
}
|
|
}
|
|
|
|
int mode = parameters->options().relocatable() ? 0666 : 0777;
|
|
int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
|
|
mode);
|
|
if (o < 0)
|
|
gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
|
|
this->o_ = o;
|
|
}
|
|
}
|
|
|
|
this->map();
|
|
}
|
|
|
|
// Resize the output file.
|
|
|
|
void
|
|
Output_file::resize(off_t file_size)
|
|
{
|
|
// If the mmap is mapping an anonymous memory buffer, this is easy:
|
|
// just mremap to the new size. If it's mapping to a file, we want
|
|
// to unmap to flush to the file, then remap after growing the file.
|
|
if (this->map_is_anonymous_)
|
|
{
|
|
void* base = ::mremap(this->base_, this->file_size_, file_size,
|
|
MREMAP_MAYMOVE);
|
|
if (base == MAP_FAILED)
|
|
gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
|
|
this->base_ = static_cast<unsigned char*>(base);
|
|
this->file_size_ = file_size;
|
|
}
|
|
else
|
|
{
|
|
this->unmap();
|
|
this->file_size_ = file_size;
|
|
if (!this->map_no_anonymous())
|
|
gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
|
|
}
|
|
}
|
|
|
|
// Map an anonymous block of memory which will later be written to the
|
|
// file. Return whether the map succeeded.
|
|
|
|
bool
|
|
Output_file::map_anonymous()
|
|
{
|
|
void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (base != MAP_FAILED)
|
|
{
|
|
this->map_is_anonymous_ = true;
|
|
this->base_ = static_cast<unsigned char*>(base);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Map the file into memory. Return whether the mapping succeeded.
|
|
|
|
bool
|
|
Output_file::map_no_anonymous()
|
|
{
|
|
const int o = this->o_;
|
|
|
|
// If the output file is not a regular file, don't try to mmap it;
|
|
// instead, we'll mmap a block of memory (an anonymous buffer), and
|
|
// then later write the buffer to the file.
|
|
void* base;
|
|
struct stat statbuf;
|
|
if (o == STDOUT_FILENO || o == STDERR_FILENO
|
|
|| ::fstat(o, &statbuf) != 0
|
|
|| !S_ISREG(statbuf.st_mode)
|
|
|| this->is_temporary_)
|
|
return false;
|
|
|
|
// Ensure that we have disk space available for the file. If we
|
|
// don't do this, it is possible that we will call munmap, close,
|
|
// and exit with dirty buffers still in the cache with no assigned
|
|
// disk blocks. If the disk is out of space at that point, the
|
|
// output file will wind up incomplete, but we will have already
|
|
// exited. The alternative to fallocate would be to use fdatasync,
|
|
// but that would be a more significant performance hit.
|
|
if (::posix_fallocate(o, 0, this->file_size_) < 0)
|
|
gold_fatal(_("%s: %s"), this->name_, strerror(errno));
|
|
|
|
// Map the file into memory.
|
|
base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED, o, 0);
|
|
|
|
// The mmap call might fail because of file system issues: the file
|
|
// system might not support mmap at all, or it might not support
|
|
// mmap with PROT_WRITE.
|
|
if (base == MAP_FAILED)
|
|
return false;
|
|
|
|
this->map_is_anonymous_ = false;
|
|
this->base_ = static_cast<unsigned char*>(base);
|
|
return true;
|
|
}
|
|
|
|
// Map the file into memory.
|
|
|
|
void
|
|
Output_file::map()
|
|
{
|
|
if (this->map_no_anonymous())
|
|
return;
|
|
|
|
// The mmap call might fail because of file system issues: the file
|
|
// system might not support mmap at all, or it might not support
|
|
// mmap with PROT_WRITE. I'm not sure which errno values we will
|
|
// see in all cases, so if the mmap fails for any reason and we
|
|
// don't care about file contents, try for an anonymous map.
|
|
if (this->map_anonymous())
|
|
return;
|
|
|
|
gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
|
|
this->name_, static_cast<unsigned long>(this->file_size_),
|
|
strerror(errno));
|
|
}
|
|
|
|
// Unmap the file from memory.
|
|
|
|
void
|
|
Output_file::unmap()
|
|
{
|
|
if (::munmap(this->base_, this->file_size_) < 0)
|
|
gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
|
|
this->base_ = NULL;
|
|
}
|
|
|
|
// Close the output file.
|
|
|
|
void
|
|
Output_file::close()
|
|
{
|
|
// If the map isn't file-backed, we need to write it now.
|
|
if (this->map_is_anonymous_ && !this->is_temporary_)
|
|
{
|
|
size_t bytes_to_write = this->file_size_;
|
|
size_t offset = 0;
|
|
while (bytes_to_write > 0)
|
|
{
|
|
ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
|
|
bytes_to_write);
|
|
if (bytes_written == 0)
|
|
gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
|
|
else if (bytes_written < 0)
|
|
gold_error(_("%s: write: %s"), this->name_, strerror(errno));
|
|
else
|
|
{
|
|
bytes_to_write -= bytes_written;
|
|
offset += bytes_written;
|
|
}
|
|
}
|
|
}
|
|
this->unmap();
|
|
|
|
// We don't close stdout or stderr
|
|
if (this->o_ != STDOUT_FILENO
|
|
&& this->o_ != STDERR_FILENO
|
|
&& !this->is_temporary_)
|
|
if (::close(this->o_) < 0)
|
|
gold_error(_("%s: close: %s"), this->name_, strerror(errno));
|
|
this->o_ = -1;
|
|
}
|
|
|
|
// Instantiate the templates we need. We could use the configure
|
|
// script to restrict this to only the ones for implemented targets.
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<32, false>(
|
|
Sized_relobj<32, false>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<32, false>& shdr,
|
|
unsigned int reloc_shndx,
|
|
bool have_sections_script);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<32, true>(
|
|
Sized_relobj<32, true>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<32, true>& shdr,
|
|
unsigned int reloc_shndx,
|
|
bool have_sections_script);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<64, false>(
|
|
Sized_relobj<64, false>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<64, false>& shdr,
|
|
unsigned int reloc_shndx,
|
|
bool have_sections_script);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
off_t
|
|
Output_section::add_input_section<64, true>(
|
|
Sized_relobj<64, true>* object,
|
|
unsigned int shndx,
|
|
const char* secname,
|
|
const elfcpp::Shdr<64, true>& shdr,
|
|
unsigned int reloc_shndx,
|
|
bool have_sections_script);
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_group<32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_group<32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_group<64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_group<64, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_LITTLE
|
|
template
|
|
class Output_data_got<32, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_32_BIG
|
|
template
|
|
class Output_data_got<32, true>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_LITTLE
|
|
template
|
|
class Output_data_got<64, false>;
|
|
#endif
|
|
|
|
#ifdef HAVE_TARGET_64_BIG
|
|
template
|
|
class Output_data_got<64, true>;
|
|
#endif
|
|
|
|
} // End namespace gold.
|