binutils-gdb/gdb/mips-tdep.c
Peter Schauer 09af586854 * alpha-tdep.c, mips-tdep.c (init_extra_frame_info):
Do not set saved registers from heuristics for a sigtramp frame.

	* dwarfread.c (enum_type):  Determine signedness of enum type
	from enumerators.

	* mips-tdep.c:  Include gdb_string.h, gcc -Wall lint.

	* rs6000-nat.c (xcoff_relocate_core):  Fix typo.

	* valops.c (value_repeat):  Fix length of memory transfer to
	match recent allocate_repeat_value change.
1995-10-21 13:14:53 +00:00

1524 lines
46 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
Free Software Foundation, Inc.
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "opcode/mips.h"
#define VM_MIN_ADDRESS (unsigned)0x400000
/* FIXME: Put this declaration in frame.h. */
extern struct obstack frame_cache_obstack;
#if 0
static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
#endif
static void mips_set_fpu_command PARAMS ((char *, int,
struct cmd_list_element *));
static void mips_show_fpu_command PARAMS ((char *, int,
struct cmd_list_element *));
void mips_set_processor_type_command PARAMS ((char *, int));
int mips_set_processor_type PARAMS ((char *));
static void mips_show_processor_type_command PARAMS ((char *, int));
static void reinit_frame_cache_sfunc PARAMS ((char *, int,
struct cmd_list_element *));
/* This value is the model of MIPS in use. It is derived from the value
of the PrID register. */
char *mips_processor_type;
char *tmp_mips_processor_type;
/* Some MIPS boards don't support floating point, so we permit the
user to turn it off. */
enum mips_fpu_type mips_fpu;
static char *mips_fpu_string;
/* A set of original names, to be used when restoring back to generic
registers from a specific set. */
char *mips_generic_reg_names[] = REGISTER_NAMES;
/* Names of IDT R3041 registers. */
char *mips_r3041_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "fp", "",
"", "", "bus", "ccfg", "", "", "", "",
"", "", "port", "cmp", "", "", "epc", "prid",
};
/* Names of IDT R3051 registers. */
char *mips_r3051_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "fp", "",
"inx", "rand", "elo", "", "ctxt", "", "", "",
"", "", "ehi", "", "", "", "epc", "prid",
};
/* Names of IDT R3081 registers. */
char *mips_r3081_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"sr", "lo", "hi", "bad", "cause","pc",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
"fsr", "fir", "fp", "",
"inx", "rand", "elo", "cfg", "ctxt", "", "", "",
"", "", "ehi", "", "", "", "epc", "prid",
};
/* Names of LSI 33k registers. */
char *mips_lsi33k_reg_names[] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
"epc", "hi", "lo", "sr", "cause","badvaddr",
"dcic", "bpc", "bda", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "",
"", "", "", "", "", "", "", "",
"", "", "", "", "", "", "", "",
};
struct {
char *name;
char **regnames;
} mips_processor_type_table[] = {
{ "generic", mips_generic_reg_names },
{ "r3041", mips_r3041_reg_names },
{ "r3051", mips_r3051_reg_names },
{ "r3071", mips_r3081_reg_names },
{ "r3081", mips_r3081_reg_names },
{ "lsi33k", mips_lsi33k_reg_names },
{ NULL, NULL }
};
/* Heuristic_proc_start may hunt through the text section for a long
time across a 2400 baud serial line. Allows the user to limit this
search. */
static unsigned int heuristic_fence_post = 0;
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
#define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
#define _PROC_MAGIC_ 0x0F0F0F0F
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
struct linked_proc_info
{
struct mips_extra_func_info info;
struct linked_proc_info *next;
} *linked_proc_desc_table = NULL;
/* Guaranteed to set fci->saved_regs to some values (it never leaves it
NULL). */
void
mips_find_saved_regs (fci)
struct frame_info *fci;
{
int ireg;
CORE_ADDR reg_position;
/* r0 bit means kernel trap */
int kernel_trap;
/* What registers have been saved? Bitmasks. */
unsigned long gen_mask, float_mask;
mips_extra_func_info_t proc_desc;
fci->saved_regs = (struct frame_saved_regs *)
obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
/* If it is the frame for sigtramp, the saved registers are located
in a sigcontext structure somewhere on the stack.
If the stack layout for sigtramp changes we might have to change these
constants and the companion fixup_sigtramp in mdebugread.c */
#ifndef SIGFRAME_BASE
/* To satisfy alignment restrictions, sigcontext is located 4 bytes
above the sigtramp frame. */
#define SIGFRAME_BASE 4
#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * 4)
#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * 4)
#define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 4 + 3 * 4)
#endif
#ifndef SIGFRAME_REG_SIZE
#define SIGFRAME_REG_SIZE 4
#endif
if (fci->signal_handler_caller)
{
for (ireg = 0; ireg < 32; ireg++)
{
reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
+ ireg * SIGFRAME_REG_SIZE;
fci->saved_regs->regs[ireg] = reg_position;
}
for (ireg = 0; ireg < 32; ireg++)
{
reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
+ ireg * SIGFRAME_REG_SIZE;
fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
}
fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
return;
}
proc_desc = fci->proc_desc;
if (proc_desc == NULL)
/* I'm not sure how/whether this can happen. Normally when we can't
find a proc_desc, we "synthesize" one using heuristic_proc_desc
and set the saved_regs right away. */
return;
kernel_trap = PROC_REG_MASK(proc_desc) & 1;
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
if (/* In any frame other than the innermost, we assume that all
registers have been saved. This assumes that all register
saves in a function happen before the first function
call. */
fci->next == NULL
/* In a dummy frame we know exactly where things are saved. */
&& !PROC_DESC_IS_DUMMY (proc_desc)
/* Not sure exactly what kernel_trap means, but if it means
the kernel saves the registers without a prologue doing it,
we better not examine the prologue to see whether registers
have been saved yet. */
&& !kernel_trap)
{
/* We need to figure out whether the registers that the proc_desc
claims are saved have been saved yet. */
CORE_ADDR addr;
int status;
char buf[4];
unsigned long inst;
/* Bitmasks; set if we have found a save for the register. */
unsigned long gen_save_found = 0;
unsigned long float_save_found = 0;
for (addr = PROC_LOW_ADDR (proc_desc);
addr < fci->pc /*&& (gen_mask != gen_save_found
|| float_mask != float_save_found)*/;
addr += 4)
{
status = read_memory_nobpt (addr, buf, 4);
if (status)
memory_error (status, addr);
inst = extract_unsigned_integer (buf, 4);
if (/* sw reg,n($sp) */
(inst & 0xffe00000) == 0xafa00000
/* sw reg,n($r30) */
|| (inst & 0xffe00000) == 0xafc00000
/* sd reg,n($sp) */
|| (inst & 0xffe00000) == 0xffa00000)
{
/* It might be possible to use the instruction to
find the offset, rather than the code below which
is based on things being in a certain order in the
frame, but figuring out what the instruction's offset
is relative to might be a little tricky. */
int reg = (inst & 0x001f0000) >> 16;
gen_save_found |= (1 << reg);
}
else if (/* swc1 freg,n($sp) */
(inst & 0xffe00000) == 0xe7a00000
/* swc1 freg,n($r30) */
|| (inst & 0xffe00000) == 0xe7c00000
/* sdc1 freg,n($sp) */
|| (inst & 0xffe00000) == 0xf7a00000)
{
int reg = ((inst & 0x001f0000) >> 16);
float_save_found |= (1 << reg);
}
}
gen_mask = gen_save_found;
float_mask = float_save_found;
}
/* Fill in the offsets for the registers which gen_mask says
were saved. */
reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
for (ireg= 31; gen_mask; --ireg, gen_mask <<= 1)
if (gen_mask & 0x80000000)
{
fci->saved_regs->regs[ireg] = reg_position;
reg_position -= MIPS_REGSIZE;
}
/* Fill in the offsets for the registers which float_mask says
were saved. */
reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
/* The freg_offset points to where the first *double* register
is saved. So skip to the high-order word. */
reg_position += 4;
for (ireg = 31; float_mask; --ireg, float_mask <<= 1)
if (float_mask & 0x80000000)
{
fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
reg_position -= MIPS_REGSIZE;
}
fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
}
static int
read_next_frame_reg(fi, regno)
struct frame_info *fi;
int regno;
{
for (; fi; fi = fi->next)
{
/* We have to get the saved sp from the sigcontext
if it is a signal handler frame. */
if (regno == SP_REGNUM && !fi->signal_handler_caller)
return fi->frame;
else
{
if (fi->saved_regs == NULL)
mips_find_saved_regs (fi);
if (fi->saved_regs->regs[regno])
return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE);
}
}
return read_register (regno);
}
int
mips_frame_saved_pc(frame)
struct frame_info *frame;
{
mips_extra_func_info_t proc_desc = frame->proc_desc;
/* We have to get the saved pc from the sigcontext
if it is a signal handler frame. */
int pcreg = frame->signal_handler_caller ? PC_REGNUM
: (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
return read_memory_integer(frame->frame - 4, 4);
return read_next_frame_reg(frame, pcreg);
}
static struct mips_extra_func_info temp_proc_desc;
static struct frame_saved_regs temp_saved_regs;
/* This fencepost looks highly suspicious to me. Removing it also
seems suspicious as it could affect remote debugging across serial
lines. */
static CORE_ADDR
heuristic_proc_start(pc)
CORE_ADDR pc;
{
CORE_ADDR start_pc = pc;
CORE_ADDR fence = start_pc - heuristic_fence_post;
if (start_pc == 0) return 0;
if (heuristic_fence_post == UINT_MAX
|| fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
/* search back for previous return */
for (start_pc -= 4; ; start_pc -= 4)
if (start_pc < fence)
{
/* It's not clear to me why we reach this point when
stop_soon_quietly, but with this test, at least we
don't print out warnings for every child forked (eg, on
decstation). 22apr93 rich@cygnus.com. */
if (!stop_soon_quietly)
{
static int blurb_printed = 0;
if (fence == VM_MIN_ADDRESS)
warning("Hit beginning of text section without finding");
else
warning("Hit heuristic-fence-post without finding");
warning("enclosing function for address 0x%x", pc);
if (!blurb_printed)
{
printf_filtered ("\
This warning occurs if you are debugging a function without any symbols\n\
(for example, in a stripped executable). In that case, you may wish to\n\
increase the size of the search with the `set heuristic-fence-post' command.\n\
\n\
Otherwise, you told GDB there was a function where there isn't one, or\n\
(more likely) you have encountered a bug in GDB.\n");
blurb_printed = 1;
}
}
return 0;
}
else if (ABOUT_TO_RETURN(start_pc))
break;
start_pc += 8; /* skip return, and its delay slot */
#if 0
/* skip nops (usually 1) 0 - is this */
while (start_pc < pc && read_memory_integer (start_pc, 4) == 0)
start_pc += 4;
#endif
return start_pc;
}
static mips_extra_func_info_t
heuristic_proc_desc(start_pc, limit_pc, next_frame)
CORE_ADDR start_pc, limit_pc;
struct frame_info *next_frame;
{
CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
CORE_ADDR cur_pc;
int frame_size;
int has_frame_reg = 0;
int reg30 = 0; /* Value of $r30. Used by gcc for frame-pointer */
unsigned long reg_mask = 0;
if (start_pc == 0) return NULL;
memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
if (start_pc + 200 < limit_pc)
limit_pc = start_pc + 200;
restart:
frame_size = 0;
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4) {
char buf[4];
unsigned long word;
int status;
status = read_memory_nobpt (cur_pc, buf, 4);
if (status) memory_error (status, cur_pc);
word = extract_unsigned_integer (buf, 4);
if ((word & 0xFFFF0000) == 0x27bd0000) /* addiu $sp,$sp,-i */
frame_size += (-word) & 0xFFFF;
else if ((word & 0xFFFF0000) == 0x23bd0000) /* addu $sp,$sp,-i */
frame_size += (-word) & 0xFFFF;
else if ((word & 0xFFE00000) == 0xafa00000) { /* sw reg,offset($sp) */
int reg = (word & 0x001F0000) >> 16;
reg_mask |= 1 << reg;
temp_saved_regs.regs[reg] = sp + (word & 0xffff);
}
else if ((word & 0xFFFF0000) == 0x27be0000) { /* addiu $30,$sp,size */
if ((word & 0xffff) != frame_size)
reg30 = sp + (word & 0xffff);
else if (!has_frame_reg) {
int alloca_adjust;
has_frame_reg = 1;
reg30 = read_next_frame_reg(next_frame, 30);
alloca_adjust = reg30 - (sp + (word & 0xffff));
if (alloca_adjust > 0) {
/* FP > SP + frame_size. This may be because
* of an alloca or somethings similar.
* Fix sp to "pre-alloca" value, and try again.
*/
sp += alloca_adjust;
goto restart;
}
}
}
else if ((word & 0xFFE00000) == 0xafc00000) { /* sw reg,offset($30) */
int reg = (word & 0x001F0000) >> 16;
reg_mask |= 1 << reg;
temp_saved_regs.regs[reg] = reg30 + (word & 0xffff);
}
}
if (has_frame_reg) {
PROC_FRAME_REG(&temp_proc_desc) = 30;
PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
}
else {
PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
}
PROC_REG_MASK(&temp_proc_desc) = reg_mask;
PROC_PC_REG(&temp_proc_desc) = RA_REGNUM;
return &temp_proc_desc;
}
static mips_extra_func_info_t
find_proc_desc (pc, next_frame)
CORE_ADDR pc;
struct frame_info *next_frame;
{
mips_extra_func_info_t proc_desc;
struct block *b = block_for_pc(pc);
struct symbol *sym;
CORE_ADDR startaddr;
find_pc_partial_function (pc, NULL, &startaddr, NULL);
if (b == NULL)
sym = NULL;
else
{
if (startaddr > BLOCK_START (b))
/* This is the "pathological" case referred to in a comment in
print_frame_info. It might be better to move this check into
symbol reading. */
sym = NULL;
else
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
0, NULL);
}
/* If we never found a PDR for this function in symbol reading, then
examine prologues to find the information. */
if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
sym = NULL;
if (sym)
{
/* IF this is the topmost frame AND
* (this proc does not have debugging information OR
* the PC is in the procedure prologue)
* THEN create a "heuristic" proc_desc (by analyzing
* the actual code) to replace the "official" proc_desc.
*/
proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
if (next_frame == NULL) {
struct symtab_and_line val;
struct symbol *proc_symbol =
PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
if (proc_symbol) {
val = find_pc_line (BLOCK_START
(SYMBOL_BLOCK_VALUE(proc_symbol)),
0);
val.pc = val.end ? val.end : pc;
}
if (!proc_symbol || pc < val.pc) {
mips_extra_func_info_t found_heuristic =
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
pc, next_frame);
if (found_heuristic)
proc_desc = found_heuristic;
}
}
}
else
{
/* Is linked_proc_desc_table really necessary? It only seems to be used
by procedure call dummys. However, the procedures being called ought
to have their own proc_descs, and even if they don't,
heuristic_proc_desc knows how to create them! */
register struct linked_proc_info *link;
for (link = linked_proc_desc_table; link; link = link->next)
if (PROC_LOW_ADDR(&link->info) <= pc
&& PROC_HIGH_ADDR(&link->info) > pc)
return &link->info;
if (startaddr == 0)
startaddr = heuristic_proc_start (pc);
proc_desc =
heuristic_proc_desc (startaddr, pc, next_frame);
}
return proc_desc;
}
mips_extra_func_info_t cached_proc_desc;
CORE_ADDR
mips_frame_chain(frame)
struct frame_info *frame;
{
mips_extra_func_info_t proc_desc;
CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
if (saved_pc == 0 || inside_entry_file (saved_pc))
return 0;
proc_desc = find_proc_desc(saved_pc, frame);
if (!proc_desc)
return 0;
cached_proc_desc = proc_desc;
/* If no frame pointer and frame size is zero, we must be at end
of stack (or otherwise hosed). If we don't check frame size,
we loop forever if we see a zero size frame. */
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
&& PROC_FRAME_OFFSET (proc_desc) == 0
/* The previous frame from a sigtramp frame might be frameless
and have frame size zero. */
&& !frame->signal_handler_caller)
return 0;
else
return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
+ PROC_FRAME_OFFSET(proc_desc);
}
void
init_extra_frame_info(fci)
struct frame_info *fci;
{
/* Use proc_desc calculated in frame_chain */
mips_extra_func_info_t proc_desc =
fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
fci->saved_regs = NULL;
fci->proc_desc =
proc_desc == &temp_proc_desc ? 0 : proc_desc;
if (proc_desc)
{
/* Fixup frame-pointer - only needed for top frame */
/* This may not be quite right, if proc has a real frame register.
Get the value of the frame relative sp, procedure might have been
interrupted by a signal at it's very start. */
if (fci->pc == PROC_LOW_ADDR (proc_desc)
&& !PROC_DESC_IS_DUMMY (proc_desc))
fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
else
fci->frame =
read_next_frame_reg (fci->next, PROC_FRAME_REG (proc_desc))
+ PROC_FRAME_OFFSET (proc_desc);
if (proc_desc == &temp_proc_desc)
{
char *name;
/* Do not set the saved registers for a sigtramp frame,
mips_find_saved_registers will do that for us.
We can't use fci->signal_handler_caller, it is not yet set. */
find_pc_partial_function (fci->pc, &name,
(CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
if (!IN_SIGTRAMP (fci->pc, name))
{
fci->saved_regs = (struct frame_saved_regs*)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
*fci->saved_regs = temp_saved_regs;
fci->saved_regs->regs[PC_REGNUM]
= fci->saved_regs->regs[RA_REGNUM];
}
}
/* hack: if argument regs are saved, guess these contain args */
if ((PROC_REG_MASK(proc_desc) & 0xF0) == 0) fci->num_args = -1;
else if ((PROC_REG_MASK(proc_desc) & 0x80) == 0) fci->num_args = 4;
else if ((PROC_REG_MASK(proc_desc) & 0x40) == 0) fci->num_args = 3;
else if ((PROC_REG_MASK(proc_desc) & 0x20) == 0) fci->num_args = 2;
else if ((PROC_REG_MASK(proc_desc) & 0x10) == 0) fci->num_args = 1;
}
}
/* MIPS stack frames are almost impenetrable. When execution stops,
we basically have to look at symbol information for the function
that we stopped in, which tells us *which* register (if any) is
the base of the frame pointer, and what offset from that register
the frame itself is at.
This presents a problem when trying to examine a stack in memory
(that isn't executing at the moment), using the "frame" command. We
don't have a PC, nor do we have any registers except SP.
This routine takes two arguments, SP and PC, and tries to make the
cached frames look as if these two arguments defined a frame on the
cache. This allows the rest of info frame to extract the important
arguments without difficulty. */
struct frame_info *
setup_arbitrary_frame (argc, argv)
int argc;
CORE_ADDR *argv;
{
if (argc != 2)
error ("MIPS frame specifications require two arguments: sp and pc");
return create_new_frame (argv[0], argv[1]);
}
CORE_ADDR
mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
int struct_return;
CORE_ADDR struct_addr;
{
register i;
int accumulate_size = struct_return ? MIPS_REGSIZE : 0;
struct mips_arg { char *contents; int len; int offset; };
struct mips_arg *mips_args =
(struct mips_arg*)alloca((nargs + 4) * sizeof(struct mips_arg));
register struct mips_arg *m_arg;
int fake_args = 0;
for (i = 0, m_arg = mips_args; i < nargs; i++, m_arg++) {
value_ptr arg = args[i];
m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg));
/* This entire mips-specific routine is because doubles must be aligned
* on 8-byte boundaries. It still isn't quite right, because MIPS decided
* to align 'struct {int a, b}' on 4-byte boundaries (even though this
* breaks their varargs implementation...). A correct solution
* requires an simulation of gcc's 'alignof' (and use of 'alignof'
* in stdarg.h/varargs.h).
* On the 64 bit r4000 we always pass the first four arguments
* using eight bytes each, so that we can load them up correctly
* in CALL_DUMMY.
*/
if (m_arg->len > 4)
accumulate_size = (accumulate_size + 7) & -8;
m_arg->offset = accumulate_size;
m_arg->contents = VALUE_CONTENTS(arg);
if (! GDB_TARGET_IS_MIPS64)
accumulate_size = (accumulate_size + m_arg->len + 3) & -4;
else
{
if (accumulate_size >= 4 * MIPS_REGSIZE)
accumulate_size = (accumulate_size + m_arg->len + 3) &~ 4;
else
{
static char zeroes[8] = { 0 };
int len = m_arg->len;
if (len < 8)
{
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
m_arg->offset += 8 - len;
++m_arg;
m_arg->len = 8 - len;
m_arg->contents = zeroes;
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
m_arg->offset = accumulate_size;
else
m_arg->offset = accumulate_size + len;
++fake_args;
}
accumulate_size = (accumulate_size + len + 7) & ~8;
}
}
}
accumulate_size = (accumulate_size + 7) & (-8);
if (accumulate_size < 4 * MIPS_REGSIZE)
accumulate_size = 4 * MIPS_REGSIZE;
sp -= accumulate_size;
for (i = nargs + fake_args; m_arg--, --i >= 0; )
write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
if (struct_return)
{
char buf[TARGET_PTR_BIT / HOST_CHAR_BIT];
store_address (buf, sizeof buf, struct_addr);
write_memory (sp, buf, sizeof buf);
}
return sp;
}
/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
void
mips_push_dummy_frame()
{
char buffer[MAX_REGISTER_RAW_SIZE];
int ireg;
struct linked_proc_info *link = (struct linked_proc_info*)
xmalloc(sizeof(struct linked_proc_info));
mips_extra_func_info_t proc_desc = &link->info;
CORE_ADDR sp = read_register (SP_REGNUM);
CORE_ADDR save_address;
link->next = linked_proc_desc_table;
linked_proc_desc_table = link;
#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<31)
#define GEN_REG_SAVE_COUNT 22
#define FLOAT_REG_SAVE_MASK MASK(0,19)
#define FLOAT_REG_SAVE_COUNT 20
#define FLOAT_SINGLE_REG_SAVE_MASK \
((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
#define FLOAT_SINGLE_REG_SAVE_COUNT 10
#define SPECIAL_REG_SAVE_COUNT 4
/*
* The registers we must save are all those not preserved across
* procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
* In addition, we must save the PC, and PUSH_FP_REGNUM.
* (Ideally, we should also save MDLO/-HI and FP Control/Status reg.)
*
* Dummy frame layout:
* (high memory)
* Saved PC
* Saved MMHI, MMLO, FPC_CSR
* Saved R31
* Saved R28
* ...
* Saved R1
* Saved D18 (i.e. F19, F18)
* ...
* Saved D0 (i.e. F1, F0)
* CALL_DUMMY (subroutine stub; see tm-mips.h)
* Parameter build area (not yet implemented)
* (low memory)
*/
PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
switch (mips_fpu)
{
case MIPS_FPU_DOUBLE:
PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
break;
case MIPS_FPU_SINGLE:
PROC_FREG_MASK(proc_desc) = FLOAT_SINGLE_REG_SAVE_MASK;
break;
case MIPS_FPU_NONE:
PROC_FREG_MASK(proc_desc) = 0;
break;
}
PROC_REG_OFFSET(proc_desc) = /* offset of (Saved R31) from FP */
-sizeof(long) - 4 * SPECIAL_REG_SAVE_COUNT;
PROC_FREG_OFFSET(proc_desc) = /* offset of (Saved D18) from FP */
-sizeof(double) - 4 * (SPECIAL_REG_SAVE_COUNT + GEN_REG_SAVE_COUNT);
/* save general registers */
save_address = sp + PROC_REG_OFFSET(proc_desc);
for (ireg = 32; --ireg >= 0; )
if (PROC_REG_MASK(proc_desc) & (1 << ireg))
{
read_register_gen (ireg, buffer);
/* Need to fix the save_address decrement below, and also make sure
that we don't run into problems with the size of the dummy frame
or any of the offsets within it. */
if (REGISTER_RAW_SIZE (ireg) > 4)
error ("Cannot call functions on mips64");
write_memory (save_address, buffer, REGISTER_RAW_SIZE (ireg));
save_address -= 4;
}
/* save floating-points registers starting with high order word */
save_address = sp + PROC_FREG_OFFSET(proc_desc) + 4;
for (ireg = 32; --ireg >= 0; )
if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
{
read_register_gen (ireg + FP0_REGNUM, buffer);
if (REGISTER_RAW_SIZE (ireg + FP0_REGNUM) > 4)
error ("Cannot call functions on mips64");
write_memory (save_address, buffer,
REGISTER_RAW_SIZE (ireg + FP0_REGNUM));
save_address -= 4;
}
write_register (PUSH_FP_REGNUM, sp);
PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
PROC_FRAME_OFFSET(proc_desc) = 0;
read_register_gen (PC_REGNUM, buffer);
write_memory (sp - 4, buffer, REGISTER_RAW_SIZE (PC_REGNUM));
read_register_gen (HI_REGNUM, buffer);
write_memory (sp - 8, buffer, REGISTER_RAW_SIZE (HI_REGNUM));
read_register_gen (LO_REGNUM, buffer);
write_memory (sp - 12, buffer, REGISTER_RAW_SIZE (LO_REGNUM));
if (mips_fpu != MIPS_FPU_NONE)
read_register_gen (FCRCS_REGNUM, buffer);
else
memset (buffer, 0, REGISTER_RAW_SIZE (FCRCS_REGNUM));
write_memory (sp - 16, buffer, REGISTER_RAW_SIZE (FCRCS_REGNUM));
sp -= 4 * (GEN_REG_SAVE_COUNT + SPECIAL_REG_SAVE_COUNT);
if (mips_fpu == MIPS_FPU_DOUBLE)
sp -= 4 * FLOAT_REG_SAVE_COUNT;
else if (mips_fpu == MIPS_FPU_SINGLE)
sp -= 4 * FLOAT_SINGLE_REG_SAVE_COUNT;
write_register (SP_REGNUM, sp);
PROC_LOW_ADDR(proc_desc) = sp - CALL_DUMMY_SIZE + CALL_DUMMY_START_OFFSET;
PROC_HIGH_ADDR(proc_desc) = sp;
SET_PROC_DESC_IS_DUMMY(proc_desc);
PROC_PC_REG(proc_desc) = RA_REGNUM;
}
void
mips_pop_frame()
{
register int regnum;
struct frame_info *frame = get_current_frame ();
CORE_ADDR new_sp = FRAME_FP (frame);
mips_extra_func_info_t proc_desc = frame->proc_desc;
write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
if (frame->saved_regs == NULL)
mips_find_saved_regs (frame);
if (proc_desc)
{
for (regnum = 32; --regnum >= 0; )
if (PROC_REG_MASK(proc_desc) & (1 << regnum))
write_register (regnum,
read_memory_integer (frame->saved_regs->regs[regnum],
4));
for (regnum = 32; --regnum >= 0; )
if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
write_register (regnum + FP0_REGNUM,
read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 4));
}
write_register (SP_REGNUM, new_sp);
flush_cached_frames ();
if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
{
struct linked_proc_info *pi_ptr, *prev_ptr;
for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
pi_ptr != NULL;
prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
{
if (&pi_ptr->info == proc_desc)
break;
}
if (pi_ptr == NULL)
error ("Can't locate dummy extra frame info\n");
if (prev_ptr != NULL)
prev_ptr->next = pi_ptr->next;
else
linked_proc_desc_table = pi_ptr->next;
free (pi_ptr);
write_register (HI_REGNUM, read_memory_integer(new_sp - 8, 4));
write_register (LO_REGNUM, read_memory_integer(new_sp - 12, 4));
if (mips_fpu != MIPS_FPU_NONE)
write_register (FCRCS_REGNUM, read_memory_integer(new_sp - 16, 4));
}
}
static void
mips_print_register (regnum, all)
int regnum, all;
{
char raw_buffer[MAX_REGISTER_RAW_SIZE];
/* Get the data in raw format. */
if (read_relative_register_raw_bytes (regnum, raw_buffer))
{
printf_filtered ("%s: [Invalid]", reg_names[regnum]);
return;
}
/* If an even floating pointer register, also print as double. */
if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+32
&& !((regnum-FP0_REGNUM) & 1))
{
char dbuffer[MAX_REGISTER_RAW_SIZE];
read_relative_register_raw_bytes (regnum, dbuffer);
read_relative_register_raw_bytes (regnum+1, dbuffer+4);
#ifdef REGISTER_CONVERT_TO_TYPE
REGISTER_CONVERT_TO_TYPE(regnum, builtin_type_double, dbuffer);
#endif
printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
val_print (builtin_type_double, dbuffer, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
printf_filtered ("); ");
}
fputs_filtered (reg_names[regnum], gdb_stdout);
/* The problem with printing numeric register names (r26, etc.) is that
the user can't use them on input. Probably the best solution is to
fix it so that either the numeric or the funky (a2, etc.) names
are accepted on input. */
if (regnum < 32)
printf_filtered ("(r%d): ", regnum);
else
printf_filtered (": ");
/* If virtual format is floating, print it that way. */
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
gdb_stdout, 0, 1, 0, Val_pretty_default);
/* Else print as integer in hex. */
else
print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
'x', 0, gdb_stdout);
}
/* Replacement for generic do_registers_info. */
void
mips_do_registers_info (regnum, fpregs)
int regnum;
int fpregs;
{
if (regnum != -1)
{
if (*(reg_names[regnum]) == '\0')
error ("Not a valid register for the current processor type");
mips_print_register (regnum, 0);
printf_filtered ("\n");
}
else
{
int did_newline = 0;
for (regnum = 0; regnum < NUM_REGS; )
{
if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM)
|| *(reg_names[regnum]) == '\0')
{
regnum++;
continue;
}
mips_print_register (regnum, 1);
regnum++;
printf_filtered ("; ");
did_newline = 0;
if ((regnum & 3) == 0)
{
printf_filtered ("\n");
did_newline = 1;
}
}
if (!did_newline)
printf_filtered ("\n");
}
}
/* Return number of args passed to a frame. described by FIP.
Can return -1, meaning no way to tell. */
int
mips_frame_num_args (frame)
struct frame_info *frame;
{
#if 0 /* FIXME Use or lose this! */
struct chain_info_t *p;
p = mips_find_cached_frame (FRAME_FP (frame));
if (p->valid)
return p->the_info.numargs;
#endif
return -1;
}
/* Is this a branch with a delay slot? */
static int is_delayed PARAMS ((unsigned long));
static int
is_delayed (insn)
unsigned long insn;
{
int i;
for (i = 0; i < NUMOPCODES; ++i)
if (mips_opcodes[i].pinfo != INSN_MACRO
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
break;
return (i < NUMOPCODES
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
| INSN_COND_BRANCH_DELAY
| INSN_COND_BRANCH_LIKELY)));
}
int
mips_step_skips_delay (pc)
CORE_ADDR pc;
{
char buf[4];
if (target_read_memory (pc, buf, 4) != 0)
/* If error reading memory, guess that it is not a delayed branch. */
return 0;
return is_delayed (extract_unsigned_integer (buf, 4));
}
/* To skip prologues, I use this predicate. Returns either PC itself
if the code at PC does not look like a function prologue; otherwise
returns an address that (if we're lucky) follows the prologue. If
LENIENT, then we must skip everything which is involved in setting
up the frame (it's OK to skip more, just so long as we don't skip
anything which might clobber the registers which are being saved.
We must skip more in the case where part of the prologue is in the
delay slot of a non-prologue instruction). */
CORE_ADDR
mips_skip_prologue (pc, lenient)
CORE_ADDR pc;
int lenient;
{
unsigned long inst;
int offset;
int seen_sp_adjust = 0;
int load_immediate_bytes = 0;
/* Skip the typical prologue instructions. These are the stack adjustment
instruction and the instructions that save registers on the stack
or in the gcc frame. */
for (offset = 0; offset < 100; offset += 4)
{
char buf[4];
int status;
status = read_memory_nobpt (pc + offset, buf, 4);
if (status)
memory_error (status, pc + offset);
inst = extract_unsigned_integer (buf, 4);
#if 0
if (lenient && is_delayed (inst))
continue;
#endif
if ((inst & 0xffff0000) == 0x27bd0000) /* addiu $sp,$sp,offset */
seen_sp_adjust = 1;
else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
seen_sp_adjust = 1;
else if ((inst & 0xFFE00000) == 0xAFA00000 && (inst & 0x001F0000))
continue; /* sw reg,n($sp) */
/* reg != $zero */
else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
continue;
else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
/* sx reg,n($s8) */
continue; /* reg != $zero */
/* move $s8,$sp. With different versions of gas this will be either
`addu $s8,$sp,$zero' or `or $s8,$sp,$zero'. Accept either. */
else if (inst == 0x03A0F021 || inst == 0x03a0f025)
continue;
else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
continue;
else if ((inst & 0xffff0000) == 0x3c1c0000) /* lui $gp,n */
continue;
else if ((inst & 0xffff0000) == 0x279c0000) /* addiu $gp,$gp,n */
continue;
else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|| inst == 0x033ce021) /* addu $gp,$t9,$gp */
continue;
/* The following instructions load $at or $t0 with an immediate
value in preparation for a stack adjustment via
subu $sp,$sp,[$at,$t0]. These instructions could also initialize
a local variable, so we accept them only before a stack adjustment
instruction was seen. */
else if (!seen_sp_adjust)
{
if ((inst & 0xffff0000) == 0x3c010000 || /* lui $at,n */
(inst & 0xffff0000) == 0x3c080000) /* lui $t0,n */
{
load_immediate_bytes += 4;
continue;
}
else if ((inst & 0xffff0000) == 0x34210000 || /* ori $at,$at,n */
(inst & 0xffff0000) == 0x35080000 || /* ori $t0,$t0,n */
(inst & 0xffff0000) == 0x34010000 || /* ori $at,$zero,n */
(inst & 0xffff0000) == 0x34080000) /* ori $t0,$zero,n */
{
load_immediate_bytes += 4;
continue;
}
else
break;
}
else
break;
}
/* In a frameless function, we might have incorrectly
skipped some load immediate instructions. Undo the skipping
if the load immediate was not followed by a stack adjustment. */
if (load_immediate_bytes && !seen_sp_adjust)
offset -= load_immediate_bytes;
return pc + offset;
}
#if 0
/* The lenient prologue stuff should be superceded by the code in
init_extra_frame_info which looks to see whether the stores mentioned
in the proc_desc have actually taken place. */
/* Is address PC in the prologue (loosely defined) for function at
STARTADDR? */
static int
mips_in_lenient_prologue (startaddr, pc)
CORE_ADDR startaddr;
CORE_ADDR pc;
{
CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
return pc >= startaddr && pc < end_prologue;
}
#endif
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
void
mips_extract_return_value (valtype, regbuf, valbuf)
struct type *valtype;
char regbuf[REGISTER_BYTES];
char *valbuf;
{
int regnum;
int offset = 0;
regnum = 2;
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
&& (mips_fpu == MIPS_FPU_DOUBLE
|| (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4)))
regnum = FP0_REGNUM;
if (TARGET_BYTE_ORDER == BIG_ENDIAN
&& TYPE_CODE (valtype) != TYPE_CODE_FLT
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (regnum))
offset = REGISTER_RAW_SIZE (regnum) - TYPE_LENGTH (valtype);
memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset,
TYPE_LENGTH (valtype));
#ifdef REGISTER_CONVERT_TO_TYPE
REGISTER_CONVERT_TO_TYPE(regnum, valtype, valbuf);
#endif
}
/* Given a return value in `regbuf' with a type `valtype',
write it's value into the appropriate register. */
void
mips_store_return_value (valtype, valbuf)
struct type *valtype;
char *valbuf;
{
int regnum;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
regnum = 2;
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
&& (mips_fpu == MIPS_FPU_DOUBLE
|| (mips_fpu == MIPS_FPU_SINGLE && TYPE_LENGTH (valtype) <= 4)))
regnum = FP0_REGNUM;
memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype));
#ifdef REGISTER_CONVERT_FROM_TYPE
REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
#endif
write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype));
}
/* These exist in mdebugread.c. */
extern CORE_ADDR sigtramp_address, sigtramp_end;
extern void fixup_sigtramp PARAMS ((void));
/* Exported procedure: Is PC in the signal trampoline code */
int
in_sigtramp (pc, ignore)
CORE_ADDR pc;
char *ignore; /* function name */
{
if (sigtramp_address == 0)
fixup_sigtramp ();
return (pc >= sigtramp_address && pc < sigtramp_end);
}
/* Command to set FPU type. mips_fpu_string will have been set to the
user's argument. Set mips_fpu based on mips_fpu_string, and then
canonicalize mips_fpu_string. */
/*ARGSUSED*/
static void
mips_set_fpu_command (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
char *err = NULL;
if (mips_fpu_string == NULL || *mips_fpu_string == '\0')
mips_fpu = MIPS_FPU_DOUBLE;
else if (strcasecmp (mips_fpu_string, "double") == 0
|| strcasecmp (mips_fpu_string, "on") == 0
|| strcasecmp (mips_fpu_string, "1") == 0
|| strcasecmp (mips_fpu_string, "yes") == 0)
mips_fpu = MIPS_FPU_DOUBLE;
else if (strcasecmp (mips_fpu_string, "none") == 0
|| strcasecmp (mips_fpu_string, "off") == 0
|| strcasecmp (mips_fpu_string, "0") == 0
|| strcasecmp (mips_fpu_string, "no") == 0)
mips_fpu = MIPS_FPU_NONE;
else if (strcasecmp (mips_fpu_string, "single") == 0)
mips_fpu = MIPS_FPU_SINGLE;
else
err = strsave (mips_fpu_string);
if (mips_fpu_string != NULL)
free (mips_fpu_string);
switch (mips_fpu)
{
case MIPS_FPU_DOUBLE:
mips_fpu_string = strsave ("double");
break;
case MIPS_FPU_SINGLE:
mips_fpu_string = strsave ("single");
break;
case MIPS_FPU_NONE:
mips_fpu_string = strsave ("none");
break;
}
if (err != NULL)
{
struct cleanup *cleanups = make_cleanup (free, err);
error ("Unknown FPU type `%s'. Use `double', `none', or `single'.",
err);
do_cleanups (cleanups);
}
}
static void
mips_show_fpu_command (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
}
/* Command to set the processor type. */
void
mips_set_processor_type_command (args, from_tty)
char *args;
int from_tty;
{
int i;
if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
{
printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
/* Restore the value. */
tmp_mips_processor_type = strsave (mips_processor_type);
return;
}
if (!mips_set_processor_type (tmp_mips_processor_type))
{
error ("Unknown processor type `%s'.", tmp_mips_processor_type);
/* Restore its value. */
tmp_mips_processor_type = strsave (mips_processor_type);
}
}
static void
mips_show_processor_type_command (args, from_tty)
char *args;
int from_tty;
{
}
/* Modify the actual processor type. */
int
mips_set_processor_type (str)
char *str;
{
int i, j;
if (str == NULL)
return 0;
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
{
if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
{
mips_processor_type = str;
for (j = 0; j < NUM_REGS; ++j)
reg_names[j] = mips_processor_type_table[i].regnames[j];
return 1;
/* FIXME tweak fpu flag too */
}
}
return 0;
}
/* Attempt to identify the particular processor model by reading the
processor id. */
char *
mips_read_processor_type ()
{
int prid;
prid = read_register (PRID_REGNUM);
if (prid & ~0xf == 0x700)
return savestring ("r3041", strlen("r3041"));
return NULL;
}
/* Just like reinit_frame_cache, but with the right arguments to be
callable as an sfunc. */
static void
reinit_frame_cache_sfunc (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
reinit_frame_cache ();
}
int
gdb_print_insn_mips (memaddr, info)
bfd_vma memaddr;
disassemble_info *info;
{
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
return print_insn_big_mips (memaddr, info);
else
return print_insn_little_mips (memaddr, info);
}
void
_initialize_mips_tdep ()
{
struct cmd_list_element *c;
tm_print_insn = gdb_print_insn_mips;
/* Let the user turn off floating point and set the fence post for
heuristic_proc_start. */
c = add_set_cmd ("mipsfpu", class_support, var_string_noescape,
(char *) &mips_fpu_string,
"Set use of floating point coprocessor.\n\
Set to `none' to avoid using floating point instructions when calling\n\
functions or dealing with return values. Set to `single' to use only\n\
single precision floating point as on the R4650. Set to `double' for\n\
normal floating point support.",
&setlist);
c->function.sfunc = mips_set_fpu_command;
c = add_show_from_set (c, &showlist);
c->function.sfunc = mips_show_fpu_command;
mips_fpu = MIPS_FPU_DOUBLE;
mips_fpu_string = strsave ("double");
c = add_set_cmd ("processor", class_support, var_string_noescape,
(char *) &tmp_mips_processor_type,
"Set the type of MIPS processor in use.\n\
Set this to be able to access processor-type-specific registers.\n\
",
&setlist);
c->function.cfunc = mips_set_processor_type_command;
c = add_show_from_set (c, &showlist);
c->function.cfunc = mips_show_processor_type_command;
tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
/* We really would like to have both "0" and "unlimited" work, but
command.c doesn't deal with that. So make it a var_zinteger
because the user can always use "999999" or some such for unlimited. */
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
(char *) &heuristic_fence_post,
"\
Set the distance searched for the start of a function.\n\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function. This command sets the distance of the\n\
search. The only need to set it is when debugging a stripped executable.",
&setlist);
/* We need to throw away the frame cache when we set this, since it
might change our ability to get backtraces. */
c->function.sfunc = reinit_frame_cache_sfunc;
add_show_from_set (c, &showlist);
}