b64f50a1ae
Code cleanupp: Use cu_offset and sect_offset compile time type checking. * dwarf2expr.c (add_piece, dwarf_get_base_type, execute_stack_op) (ctx_no_dwarf_call, ctx_no_get_base_type): Use cu_offset and sect_offset. * dwarf2expr.h (cu_offset, sect_offset): New types. (struct dwarf_expr_context_funcs) <dwarf_call> (struct dwarf_expr_context_funcs) <get_base_type>: Use cu_offset and sect_offset. (struct dwarf_expr_context) <len>: Improve the comment. (struct dwarf_expr_piece, ctx_no_dwarf_call, ctx_no_get_base_type): Use cu_offset and sect_offset. * dwarf2loc.c (per_cu_dwarf_call, dwarf_expr_dwarf_call) (dwarf_expr_get_base_type, needs_frame_dwarf_call) (dwarf2_compile_expr_to_ax, disassemble_dwarf_expression): Likewise. * dwarf2loc.h: Include dwarf2expr.h. (dwarf2_fetch_die_location_block, dwarf2_get_die_type): Use cu_offset and sect_offset. * dwarf2read.c (struct dwarf2_per_objfile) <debug_types_type_hash>: Improve the comment. (struct comp_unit_head, struct dwarf2_cu, struct dwarf2_per_cu_data) (struct signatured_type, struct line_header, struct partial_die_info) (struct die_info, find_partial_die, dwarf2_get_ref_die_offset) (lookup_signatured_type_at_offset, dwarf2_find_containing_comp_unit) (get_die_type_at_offset, create_cus_from_index) (create_signatured_type_table_from_index, dw2_get_file_names) (offset_in_cu_p, read_comp_unit_head, error_check_comp_unit_head) (read_and_check_comp_unit_head, read_and_check_type_unit_head) (create_debug_types_hash_table, process_psymtab_comp_unit) (load_partial_comp_unit, create_all_comp_units) (partial_die_parent_scope, partial_die_full_name, skip_one_die) (load_full_comp_unit, dwarf2_physname, read_import_statement) (inherit_abstract_dies, read_func_scope, read_call_site_scope) (dwarf2_add_member_fn, process_enumeration_scope, read_module_type) (read_typedef, die_hash, die_eq, read_full_die, dwarf2_read_abbrevs) (load_partial_dies, read_partial_die, find_partial_die_in_comp_unit) (find_partial_die, read_attribute_value, lookup_die_type) (dump_die_shallow, store_in_ref_table): Use cu_offset and sect_offset. (is_ref_attr): New function comment. (dwarf2_get_ref_die_offset): New function comment, new variable retval. Use cu_offset and sect_offset. (follow_die_offset, follow_die_ref, dwarf2_fetch_die_location_block) (dwarf2_get_die_type, follow_die_sig, lookup_signatured_type_at_offset) (load_full_type_unit, read_signatured_type, per_cu_header_read_in) (dwarf2_find_containing_comp_unit, struct dwarf2_offset_and_type) (offset_and_type_hash, offset_and_type_eq, set_die_type) (get_die_type_at_offset, partial_die_hash, partial_die_eq) (write_one_signatured_type, write_psymtabs_to_index): Use cu_offset and sect_offset.
3939 lines
109 KiB
C
3939 lines
109 KiB
C
/* DWARF 2 location expression support for GDB.
|
||
|
||
Copyright (C) 2003, 2005, 2007-2012 Free Software Foundation, Inc.
|
||
|
||
Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "ui-out.h"
|
||
#include "value.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "inferior.h"
|
||
#include "ax.h"
|
||
#include "ax-gdb.h"
|
||
#include "regcache.h"
|
||
#include "objfiles.h"
|
||
#include "exceptions.h"
|
||
#include "block.h"
|
||
#include "gdbcmd.h"
|
||
|
||
#include "dwarf2.h"
|
||
#include "dwarf2expr.h"
|
||
#include "dwarf2loc.h"
|
||
#include "dwarf2-frame.h"
|
||
|
||
#include "gdb_string.h"
|
||
#include "gdb_assert.h"
|
||
|
||
DEF_VEC_I(int);
|
||
|
||
extern int dwarf2_always_disassemble;
|
||
|
||
static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
|
||
const gdb_byte **start, size_t *length);
|
||
|
||
static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
|
||
|
||
static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
|
||
struct frame_info *frame,
|
||
const gdb_byte *data,
|
||
unsigned short size,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
LONGEST byte_offset);
|
||
|
||
/* A function for dealing with location lists. Given a
|
||
symbol baton (BATON) and a pc value (PC), find the appropriate
|
||
location expression, set *LOCEXPR_LENGTH, and return a pointer
|
||
to the beginning of the expression. Returns NULL on failure.
|
||
|
||
For now, only return the first matching location expression; there
|
||
can be more than one in the list. */
|
||
|
||
const gdb_byte *
|
||
dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
|
||
size_t *locexpr_length, CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR low, high;
|
||
const gdb_byte *loc_ptr, *buf_end;
|
||
int length;
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
|
||
int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
|
||
CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
/* Adjust base_address for relocatable objects. */
|
||
CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
|
||
CORE_ADDR base_address = baton->base_address + base_offset;
|
||
|
||
loc_ptr = baton->data;
|
||
buf_end = baton->data + baton->size;
|
||
|
||
while (1)
|
||
{
|
||
if (buf_end - loc_ptr < 2 * addr_size)
|
||
error (_("dwarf2_find_location_expression: "
|
||
"Corrupted DWARF expression."));
|
||
|
||
if (signed_addr_p)
|
||
low = extract_signed_integer (loc_ptr, addr_size, byte_order);
|
||
else
|
||
low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
|
||
loc_ptr += addr_size;
|
||
|
||
if (signed_addr_p)
|
||
high = extract_signed_integer (loc_ptr, addr_size, byte_order);
|
||
else
|
||
high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
|
||
loc_ptr += addr_size;
|
||
|
||
/* A base-address-selection entry. */
|
||
if ((low & base_mask) == base_mask)
|
||
{
|
||
base_address = high + base_offset;
|
||
continue;
|
||
}
|
||
|
||
/* An end-of-list entry. */
|
||
if (low == 0 && high == 0)
|
||
{
|
||
*locexpr_length = 0;
|
||
return NULL;
|
||
}
|
||
|
||
/* Otherwise, a location expression entry. */
|
||
low += base_address;
|
||
high += base_address;
|
||
|
||
length = extract_unsigned_integer (loc_ptr, 2, byte_order);
|
||
loc_ptr += 2;
|
||
|
||
if (low == high && pc == low)
|
||
{
|
||
/* This is entry PC record present only at entry point
|
||
of a function. Verify it is really the function entry point. */
|
||
|
||
struct block *pc_block = block_for_pc (pc);
|
||
struct symbol *pc_func = NULL;
|
||
|
||
if (pc_block)
|
||
pc_func = block_linkage_function (pc_block);
|
||
|
||
if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
|
||
{
|
||
*locexpr_length = length;
|
||
return loc_ptr;
|
||
}
|
||
}
|
||
|
||
if (pc >= low && pc < high)
|
||
{
|
||
*locexpr_length = length;
|
||
return loc_ptr;
|
||
}
|
||
|
||
loc_ptr += length;
|
||
}
|
||
}
|
||
|
||
/* This is the baton used when performing dwarf2 expression
|
||
evaluation. */
|
||
struct dwarf_expr_baton
|
||
{
|
||
struct frame_info *frame;
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
};
|
||
|
||
/* Helper functions for dwarf2_evaluate_loc_desc. */
|
||
|
||
/* Using the frame specified in BATON, return the value of register
|
||
REGNUM, treated as a pointer. */
|
||
static CORE_ADDR
|
||
dwarf_expr_read_reg (void *baton, int dwarf_regnum)
|
||
{
|
||
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
|
||
struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
|
||
CORE_ADDR result;
|
||
int regnum;
|
||
|
||
regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
|
||
result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
|
||
regnum, debaton->frame);
|
||
return result;
|
||
}
|
||
|
||
/* Read memory at ADDR (length LEN) into BUF. */
|
||
|
||
static void
|
||
dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
|
||
{
|
||
read_memory (addr, buf, len);
|
||
}
|
||
|
||
/* Using the frame specified in BATON, find the location expression
|
||
describing the frame base. Return a pointer to it in START and
|
||
its length in LENGTH. */
|
||
static void
|
||
dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
|
||
{
|
||
/* FIXME: cagney/2003-03-26: This code should be using
|
||
get_frame_base_address(), and then implement a dwarf2 specific
|
||
this_base method. */
|
||
struct symbol *framefunc;
|
||
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
|
||
|
||
/* Use block_linkage_function, which returns a real (not inlined)
|
||
function, instead of get_frame_function, which may return an
|
||
inlined function. */
|
||
framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));
|
||
|
||
/* If we found a frame-relative symbol then it was certainly within
|
||
some function associated with a frame. If we can't find the frame,
|
||
something has gone wrong. */
|
||
gdb_assert (framefunc != NULL);
|
||
|
||
dwarf_expr_frame_base_1 (framefunc,
|
||
get_frame_address_in_block (debaton->frame),
|
||
start, length);
|
||
}
|
||
|
||
static void
|
||
dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
|
||
const gdb_byte **start, size_t *length)
|
||
{
|
||
if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
|
||
*length = 0;
|
||
else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
|
||
{
|
||
struct dwarf2_loclist_baton *symbaton;
|
||
|
||
symbaton = SYMBOL_LOCATION_BATON (framefunc);
|
||
*start = dwarf2_find_location_expression (symbaton, length, pc);
|
||
}
|
||
else
|
||
{
|
||
struct dwarf2_locexpr_baton *symbaton;
|
||
|
||
symbaton = SYMBOL_LOCATION_BATON (framefunc);
|
||
if (symbaton != NULL)
|
||
{
|
||
*length = symbaton->size;
|
||
*start = symbaton->data;
|
||
}
|
||
else
|
||
*length = 0;
|
||
}
|
||
|
||
if (*length == 0)
|
||
error (_("Could not find the frame base for \"%s\"."),
|
||
SYMBOL_NATURAL_NAME (framefunc));
|
||
}
|
||
|
||
/* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
|
||
the frame in BATON. */
|
||
|
||
static CORE_ADDR
|
||
dwarf_expr_frame_cfa (void *baton)
|
||
{
|
||
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
|
||
|
||
return dwarf2_frame_cfa (debaton->frame);
|
||
}
|
||
|
||
/* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
|
||
the frame in BATON. */
|
||
|
||
static CORE_ADDR
|
||
dwarf_expr_frame_pc (void *baton)
|
||
{
|
||
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
|
||
|
||
return get_frame_address_in_block (debaton->frame);
|
||
}
|
||
|
||
/* Using the objfile specified in BATON, find the address for the
|
||
current thread's thread-local storage with offset OFFSET. */
|
||
static CORE_ADDR
|
||
dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
|
||
{
|
||
struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
|
||
|
||
return target_translate_tls_address (objfile, offset);
|
||
}
|
||
|
||
/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
|
||
current CU (as is PER_CU). State of the CTX is not affected by the
|
||
call and return. */
|
||
|
||
static void
|
||
per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
CORE_ADDR (*get_frame_pc) (void *baton),
|
||
void *baton)
|
||
{
|
||
struct dwarf2_locexpr_baton block;
|
||
|
||
block = dwarf2_fetch_die_location_block (die_offset, per_cu,
|
||
get_frame_pc, baton);
|
||
|
||
/* DW_OP_call_ref is currently not supported. */
|
||
gdb_assert (block.per_cu == per_cu);
|
||
|
||
dwarf_expr_eval (ctx, block.data, block.size);
|
||
}
|
||
|
||
/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
|
||
|
||
static void
|
||
dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
|
||
{
|
||
struct dwarf_expr_baton *debaton = ctx->baton;
|
||
|
||
per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
|
||
ctx->funcs->get_frame_pc, ctx->baton);
|
||
}
|
||
|
||
/* Callback function for dwarf2_evaluate_loc_desc. */
|
||
|
||
static struct type *
|
||
dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
|
||
cu_offset die_offset)
|
||
{
|
||
struct dwarf_expr_baton *debaton = ctx->baton;
|
||
|
||
return dwarf2_get_die_type (die_offset, debaton->per_cu);
|
||
}
|
||
|
||
/* See dwarf2loc.h. */
|
||
|
||
int entry_values_debug = 0;
|
||
|
||
/* Helper to set entry_values_debug. */
|
||
|
||
static void
|
||
show_entry_values_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Entry values and tail call frames debugging is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
|
||
CALLER_FRAME (for registers) can be NULL if it is not known. This function
|
||
always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
|
||
|
||
static CORE_ADDR
|
||
call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
|
||
struct call_site *call_site,
|
||
struct frame_info *caller_frame)
|
||
{
|
||
switch (FIELD_LOC_KIND (call_site->target))
|
||
{
|
||
case FIELD_LOC_KIND_DWARF_BLOCK:
|
||
{
|
||
struct dwarf2_locexpr_baton *dwarf_block;
|
||
struct value *val;
|
||
struct type *caller_core_addr_type;
|
||
struct gdbarch *caller_arch;
|
||
|
||
dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
|
||
if (dwarf_block == NULL)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_AT_GNU_call_site_target is not specified "
|
||
"at %s in %s"),
|
||
paddress (call_site_gdbarch, call_site->pc),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
|
||
}
|
||
if (caller_frame == NULL)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_AT_GNU_call_site_target DWARF block resolving "
|
||
"requires known frame which is currently not "
|
||
"available at %s in %s"),
|
||
paddress (call_site_gdbarch, call_site->pc),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
|
||
}
|
||
caller_arch = get_frame_arch (caller_frame);
|
||
caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
|
||
val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
|
||
dwarf_block->data, dwarf_block->size,
|
||
dwarf_block->per_cu);
|
||
/* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
|
||
location. */
|
||
if (VALUE_LVAL (val) == lval_memory)
|
||
return value_address (val);
|
||
else
|
||
return value_as_address (val);
|
||
}
|
||
|
||
case FIELD_LOC_KIND_PHYSNAME:
|
||
{
|
||
const char *physname;
|
||
struct minimal_symbol *msym;
|
||
|
||
physname = FIELD_STATIC_PHYSNAME (call_site->target);
|
||
msym = lookup_minimal_symbol_text (physname, NULL);
|
||
if (msym == NULL)
|
||
{
|
||
msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("Cannot find function \"%s\" for a call site target "
|
||
"at %s in %s"),
|
||
physname, paddress (call_site_gdbarch, call_site->pc),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
|
||
}
|
||
return SYMBOL_VALUE_ADDRESS (msym);
|
||
}
|
||
|
||
case FIELD_LOC_KIND_PHYSADDR:
|
||
return FIELD_STATIC_PHYSADDR (call_site->target);
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
|
||
}
|
||
}
|
||
|
||
/* Convert function entry point exact address ADDR to the function which is
|
||
compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
|
||
NO_ENTRY_VALUE_ERROR otherwise. */
|
||
|
||
static struct symbol *
|
||
func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
struct symbol *sym = find_pc_function (addr);
|
||
struct type *type;
|
||
|
||
if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_TAG_GNU_call_site resolving failed to find function "
|
||
"name for address %s"),
|
||
paddress (gdbarch, addr));
|
||
|
||
type = SYMBOL_TYPE (sym);
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
|
||
|
||
return sym;
|
||
}
|
||
|
||
/* Verify function with entry point exact address ADDR can never call itself
|
||
via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
|
||
can call itself via tail calls.
|
||
|
||
If a funtion can tail call itself its entry value based parameters are
|
||
unreliable. There is no verification whether the value of some/all
|
||
parameters is unchanged through the self tail call, we expect if there is
|
||
a self tail call all the parameters can be modified. */
|
||
|
||
static void
|
||
func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
|
||
{
|
||
struct obstack addr_obstack;
|
||
struct cleanup *old_chain;
|
||
CORE_ADDR addr;
|
||
|
||
/* Track here CORE_ADDRs which were already visited. */
|
||
htab_t addr_hash;
|
||
|
||
/* The verification is completely unordered. Track here function addresses
|
||
which still need to be iterated. */
|
||
VEC (CORE_ADDR) *todo = NULL;
|
||
|
||
obstack_init (&addr_obstack);
|
||
old_chain = make_cleanup_obstack_free (&addr_obstack);
|
||
addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
|
||
&addr_obstack, hashtab_obstack_allocate,
|
||
NULL);
|
||
make_cleanup_htab_delete (addr_hash);
|
||
|
||
make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
|
||
|
||
VEC_safe_push (CORE_ADDR, todo, verify_addr);
|
||
while (!VEC_empty (CORE_ADDR, todo))
|
||
{
|
||
struct symbol *func_sym;
|
||
struct call_site *call_site;
|
||
|
||
addr = VEC_pop (CORE_ADDR, todo);
|
||
|
||
func_sym = func_addr_to_tail_call_list (gdbarch, addr);
|
||
|
||
for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
|
||
call_site; call_site = call_site->tail_call_next)
|
||
{
|
||
CORE_ADDR target_addr;
|
||
void **slot;
|
||
|
||
/* CALLER_FRAME with registers is not available for tail-call jumped
|
||
frames. */
|
||
target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
|
||
|
||
if (target_addr == verify_addr)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
msym = lookup_minimal_symbol_by_pc (verify_addr);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_OP_GNU_entry_value resolving has found "
|
||
"function \"%s\" at %s can call itself via tail "
|
||
"calls"),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
|
||
paddress (gdbarch, verify_addr));
|
||
}
|
||
|
||
slot = htab_find_slot (addr_hash, &target_addr, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
*slot = obstack_copy (&addr_obstack, &target_addr,
|
||
sizeof (target_addr));
|
||
VEC_safe_push (CORE_ADDR, todo, target_addr);
|
||
}
|
||
}
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
|
||
ENTRY_VALUES_DEBUG. */
|
||
|
||
static void
|
||
tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
|
||
{
|
||
CORE_ADDR addr = call_site->pc;
|
||
struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (addr - 1);
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
|
||
}
|
||
|
||
/* vec.h needs single word type name, typedef it. */
|
||
typedef struct call_site *call_sitep;
|
||
|
||
/* Define VEC (call_sitep) functions. */
|
||
DEF_VEC_P (call_sitep);
|
||
|
||
/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
|
||
only top callers and bottom callees which are present in both. GDBARCH is
|
||
used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
|
||
no remaining possibilities to provide unambiguous non-trivial result.
|
||
RESULTP should point to NULL on the first (initialization) call. Caller is
|
||
responsible for xfree of any RESULTP data. */
|
||
|
||
static void
|
||
chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
|
||
VEC (call_sitep) *chain)
|
||
{
|
||
struct call_site_chain *result = *resultp;
|
||
long length = VEC_length (call_sitep, chain);
|
||
int callers, callees, idx;
|
||
|
||
if (result == NULL)
|
||
{
|
||
/* Create the initial chain containing all the passed PCs. */
|
||
|
||
result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
|
||
* (length - 1));
|
||
result->length = length;
|
||
result->callers = result->callees = length;
|
||
memcpy (result->call_site, VEC_address (call_sitep, chain),
|
||
sizeof (*result->call_site) * length);
|
||
*resultp = result;
|
||
|
||
if (entry_values_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
|
||
for (idx = 0; idx < length; idx++)
|
||
tailcall_dump (gdbarch, result->call_site[idx]);
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
if (entry_values_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
|
||
for (idx = 0; idx < length; idx++)
|
||
tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
/* Intersect callers. */
|
||
|
||
callers = min (result->callers, length);
|
||
for (idx = 0; idx < callers; idx++)
|
||
if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
|
||
{
|
||
result->callers = idx;
|
||
break;
|
||
}
|
||
|
||
/* Intersect callees. */
|
||
|
||
callees = min (result->callees, length);
|
||
for (idx = 0; idx < callees; idx++)
|
||
if (result->call_site[result->length - 1 - idx]
|
||
!= VEC_index (call_sitep, chain, length - 1 - idx))
|
||
{
|
||
result->callees = idx;
|
||
break;
|
||
}
|
||
|
||
if (entry_values_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
|
||
for (idx = 0; idx < result->callers; idx++)
|
||
tailcall_dump (gdbarch, result->call_site[idx]);
|
||
fputs_unfiltered (" |", gdb_stdlog);
|
||
for (idx = 0; idx < result->callees; idx++)
|
||
tailcall_dump (gdbarch, result->call_site[result->length
|
||
- result->callees + idx]);
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
if (result->callers == 0 && result->callees == 0)
|
||
{
|
||
/* There are no common callers or callees. It could be also a direct
|
||
call (which has length 0) with ambiguous possibility of an indirect
|
||
call - CALLERS == CALLEES == 0 is valid during the first allocation
|
||
but any subsequence processing of such entry means ambiguity. */
|
||
xfree (result);
|
||
*resultp = NULL;
|
||
return;
|
||
}
|
||
|
||
/* See call_site_find_chain_1 why there is no way to reach the bottom callee
|
||
PC again. In such case there must be two different code paths to reach
|
||
it, therefore some of the former determined intermediate PCs must differ
|
||
and the unambiguous chain gets shortened. */
|
||
gdb_assert (result->callers + result->callees < result->length);
|
||
}
|
||
|
||
/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
|
||
assumed frames between them use GDBARCH. Use depth first search so we can
|
||
keep single CHAIN of call_site's back to CALLER_PC. Function recursion
|
||
would have needless GDB stack overhead. Caller is responsible for xfree of
|
||
the returned result. Any unreliability results in thrown
|
||
NO_ENTRY_VALUE_ERROR. */
|
||
|
||
static struct call_site_chain *
|
||
call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
|
||
CORE_ADDR callee_pc)
|
||
{
|
||
struct func_type *func_specific;
|
||
struct obstack addr_obstack;
|
||
struct cleanup *back_to_retval, *back_to_workdata;
|
||
struct call_site_chain *retval = NULL;
|
||
struct call_site *call_site;
|
||
|
||
/* Mark CALL_SITEs so we do not visit the same ones twice. */
|
||
htab_t addr_hash;
|
||
|
||
/* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
|
||
call_site nor any possible call_site at CALLEE_PC's function is there.
|
||
Any CALL_SITE in CHAIN will be iterated to its siblings - via
|
||
TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
|
||
VEC (call_sitep) *chain = NULL;
|
||
|
||
/* We are not interested in the specific PC inside the callee function. */
|
||
callee_pc = get_pc_function_start (callee_pc);
|
||
if (callee_pc == 0)
|
||
throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
|
||
paddress (gdbarch, callee_pc));
|
||
|
||
back_to_retval = make_cleanup (free_current_contents, &retval);
|
||
|
||
obstack_init (&addr_obstack);
|
||
back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
|
||
addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
|
||
&addr_obstack, hashtab_obstack_allocate,
|
||
NULL);
|
||
make_cleanup_htab_delete (addr_hash);
|
||
|
||
make_cleanup (VEC_cleanup (call_sitep), &chain);
|
||
|
||
/* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
|
||
at the target's function. All the possible tail call sites in the
|
||
target's function will get iterated as already pushed into CHAIN via their
|
||
TAIL_CALL_NEXT. */
|
||
call_site = call_site_for_pc (gdbarch, caller_pc);
|
||
|
||
while (call_site)
|
||
{
|
||
CORE_ADDR target_func_addr;
|
||
struct call_site *target_call_site;
|
||
|
||
/* CALLER_FRAME with registers is not available for tail-call jumped
|
||
frames. */
|
||
target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
|
||
|
||
if (target_func_addr == callee_pc)
|
||
{
|
||
chain_candidate (gdbarch, &retval, chain);
|
||
if (retval == NULL)
|
||
break;
|
||
|
||
/* There is no way to reach CALLEE_PC again as we would prevent
|
||
entering it twice as being already marked in ADDR_HASH. */
|
||
target_call_site = NULL;
|
||
}
|
||
else
|
||
{
|
||
struct symbol *target_func;
|
||
|
||
target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
|
||
target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
|
||
}
|
||
|
||
do
|
||
{
|
||
/* Attempt to visit TARGET_CALL_SITE. */
|
||
|
||
if (target_call_site)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
/* Successfully entered TARGET_CALL_SITE. */
|
||
|
||
*slot = &target_call_site->pc;
|
||
VEC_safe_push (call_sitep, chain, target_call_site);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Backtrack (without revisiting the originating call_site). Try the
|
||
callers's sibling; if there isn't any try the callers's callers's
|
||
sibling etc. */
|
||
|
||
target_call_site = NULL;
|
||
while (!VEC_empty (call_sitep, chain))
|
||
{
|
||
call_site = VEC_pop (call_sitep, chain);
|
||
|
||
gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
|
||
NO_INSERT) != NULL);
|
||
htab_remove_elt (addr_hash, &call_site->pc);
|
||
|
||
target_call_site = call_site->tail_call_next;
|
||
if (target_call_site)
|
||
break;
|
||
}
|
||
}
|
||
while (target_call_site);
|
||
|
||
if (VEC_empty (call_sitep, chain))
|
||
call_site = NULL;
|
||
else
|
||
call_site = VEC_last (call_sitep, chain);
|
||
}
|
||
|
||
if (retval == NULL)
|
||
{
|
||
struct minimal_symbol *msym_caller, *msym_callee;
|
||
|
||
msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
|
||
msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("There are no unambiguously determinable intermediate "
|
||
"callers or callees between caller function \"%s\" at %s "
|
||
"and callee function \"%s\" at %s"),
|
||
(msym_caller == NULL
|
||
? "???" : SYMBOL_PRINT_NAME (msym_caller)),
|
||
paddress (gdbarch, caller_pc),
|
||
(msym_callee == NULL
|
||
? "???" : SYMBOL_PRINT_NAME (msym_callee)),
|
||
paddress (gdbarch, callee_pc));
|
||
}
|
||
|
||
do_cleanups (back_to_workdata);
|
||
discard_cleanups (back_to_retval);
|
||
return retval;
|
||
}
|
||
|
||
/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
|
||
assumed frames between them use GDBARCH. If valid call_site_chain cannot be
|
||
constructed return NULL. Caller is responsible for xfree of the returned
|
||
result. */
|
||
|
||
struct call_site_chain *
|
||
call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
|
||
CORE_ADDR callee_pc)
|
||
{
|
||
volatile struct gdb_exception e;
|
||
struct call_site_chain *retval = NULL;
|
||
|
||
TRY_CATCH (e, RETURN_MASK_ERROR)
|
||
{
|
||
retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
|
||
}
|
||
if (e.reason < 0)
|
||
{
|
||
if (e.error == NO_ENTRY_VALUE_ERROR)
|
||
{
|
||
if (entry_values_debug)
|
||
exception_print (gdb_stdout, e);
|
||
|
||
return NULL;
|
||
}
|
||
else
|
||
throw_exception (e);
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
/* Fetch call_site_parameter from caller matching the parameters. FRAME is for
|
||
callee. See DWARF_REG and FB_OFFSET description at struct
|
||
dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
|
||
|
||
Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
|
||
otherwise. */
|
||
|
||
static struct call_site_parameter *
|
||
dwarf_expr_reg_to_entry_parameter (struct frame_info *frame, int dwarf_reg,
|
||
CORE_ADDR fb_offset,
|
||
struct dwarf2_per_cu_data **per_cu_return)
|
||
{
|
||
CORE_ADDR func_addr = get_frame_func (frame);
|
||
CORE_ADDR caller_pc;
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct frame_info *caller_frame = get_prev_frame (frame);
|
||
struct call_site *call_site;
|
||
int iparams;
|
||
struct value *val;
|
||
struct dwarf2_locexpr_baton *dwarf_block;
|
||
/* Initialize it just to avoid a GCC false warning. */
|
||
struct call_site_parameter *parameter = NULL;
|
||
CORE_ADDR target_addr;
|
||
|
||
if (gdbarch != frame_unwind_arch (frame))
|
||
{
|
||
struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
|
||
struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
|
||
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_OP_GNU_entry_value resolving callee gdbarch %s "
|
||
"(of %s (%s)) does not match caller gdbarch %s"),
|
||
gdbarch_bfd_arch_info (gdbarch)->printable_name,
|
||
paddress (gdbarch, func_addr),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym),
|
||
gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
|
||
}
|
||
|
||
if (caller_frame == NULL)
|
||
{
|
||
struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (func_addr);
|
||
|
||
throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
|
||
"requires caller of %s (%s)"),
|
||
paddress (gdbarch, func_addr),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
}
|
||
caller_pc = get_frame_pc (caller_frame);
|
||
call_site = call_site_for_pc (gdbarch, caller_pc);
|
||
|
||
target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
|
||
if (target_addr != func_addr)
|
||
{
|
||
struct minimal_symbol *target_msym, *func_msym;
|
||
|
||
target_msym = lookup_minimal_symbol_by_pc (target_addr);
|
||
func_msym = lookup_minimal_symbol_by_pc (func_addr);
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DW_OP_GNU_entry_value resolving expects callee %s at %s "
|
||
"but the called frame is for %s at %s"),
|
||
(target_msym == NULL ? "???"
|
||
: SYMBOL_PRINT_NAME (target_msym)),
|
||
paddress (gdbarch, target_addr),
|
||
func_msym == NULL ? "???" : SYMBOL_PRINT_NAME (func_msym),
|
||
paddress (gdbarch, func_addr));
|
||
}
|
||
|
||
/* No entry value based parameters would be reliable if this function can
|
||
call itself via tail calls. */
|
||
func_verify_no_selftailcall (gdbarch, func_addr);
|
||
|
||
for (iparams = 0; iparams < call_site->parameter_count; iparams++)
|
||
{
|
||
parameter = &call_site->parameter[iparams];
|
||
if (parameter->dwarf_reg == -1 && dwarf_reg == -1)
|
||
{
|
||
if (parameter->fb_offset == fb_offset)
|
||
break;
|
||
}
|
||
else if (parameter->dwarf_reg == dwarf_reg)
|
||
break;
|
||
}
|
||
if (iparams == call_site->parameter_count)
|
||
{
|
||
struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (caller_pc);
|
||
|
||
/* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
|
||
determine its value. */
|
||
throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
|
||
"at DW_TAG_GNU_call_site %s at %s"),
|
||
paddress (gdbarch, caller_pc),
|
||
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
|
||
}
|
||
|
||
*per_cu_return = call_site->per_cu;
|
||
return parameter;
|
||
}
|
||
|
||
/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
|
||
the normal DW_AT_GNU_call_site_value block. Otherwise return the
|
||
DW_AT_GNU_call_site_data_value (dereferenced) block.
|
||
|
||
TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
|
||
struct value.
|
||
|
||
Function always returns non-NULL, non-optimized out value. It throws
|
||
NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
|
||
|
||
static struct value *
|
||
dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
|
||
CORE_ADDR deref_size, struct type *type,
|
||
struct frame_info *caller_frame,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
const gdb_byte *data_src;
|
||
gdb_byte *data;
|
||
size_t size;
|
||
|
||
data_src = deref_size == -1 ? parameter->value : parameter->data_value;
|
||
size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
|
||
|
||
/* DEREF_SIZE size is not verified here. */
|
||
if (data_src == NULL)
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("Cannot resolve DW_AT_GNU_call_site_data_value"));
|
||
|
||
/* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
|
||
location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
|
||
DWARF block. */
|
||
data = alloca (size + 1);
|
||
memcpy (data, data_src, size);
|
||
data[size] = DW_OP_stack_value;
|
||
|
||
return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
|
||
}
|
||
|
||
/* Execute call_site_parameter's DWARF block matching DEREF_SIZE for caller of
|
||
the CTX's frame. CTX must be of dwarf_expr_ctx_funcs kind. See DWARF_REG
|
||
and FB_OFFSET description at struct
|
||
dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
|
||
|
||
The CTX caller can be from a different CU - per_cu_dwarf_call implementation
|
||
can be more simple as it does not support cross-CU DWARF executions. */
|
||
|
||
static void
|
||
dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
|
||
int dwarf_reg, CORE_ADDR fb_offset,
|
||
int deref_size)
|
||
{
|
||
struct dwarf_expr_baton *debaton;
|
||
struct frame_info *frame, *caller_frame;
|
||
struct dwarf2_per_cu_data *caller_per_cu;
|
||
struct dwarf_expr_baton baton_local;
|
||
struct dwarf_expr_context saved_ctx;
|
||
struct call_site_parameter *parameter;
|
||
const gdb_byte *data_src;
|
||
size_t size;
|
||
|
||
gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
|
||
debaton = ctx->baton;
|
||
frame = debaton->frame;
|
||
caller_frame = get_prev_frame (frame);
|
||
|
||
parameter = dwarf_expr_reg_to_entry_parameter (frame, dwarf_reg, fb_offset,
|
||
&caller_per_cu);
|
||
data_src = deref_size == -1 ? parameter->value : parameter->data_value;
|
||
size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
|
||
|
||
/* DEREF_SIZE size is not verified here. */
|
||
if (data_src == NULL)
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("Cannot resolve DW_AT_GNU_call_site_data_value"));
|
||
|
||
baton_local.frame = caller_frame;
|
||
baton_local.per_cu = caller_per_cu;
|
||
|
||
saved_ctx.gdbarch = ctx->gdbarch;
|
||
saved_ctx.addr_size = ctx->addr_size;
|
||
saved_ctx.offset = ctx->offset;
|
||
saved_ctx.baton = ctx->baton;
|
||
ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
|
||
ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
|
||
ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
|
||
ctx->baton = &baton_local;
|
||
|
||
dwarf_expr_eval (ctx, data_src, size);
|
||
|
||
ctx->gdbarch = saved_ctx.gdbarch;
|
||
ctx->addr_size = saved_ctx.addr_size;
|
||
ctx->offset = saved_ctx.offset;
|
||
ctx->baton = saved_ctx.baton;
|
||
}
|
||
|
||
/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
|
||
the indirect method on it, that is use its stored target value, the sole
|
||
purpose of entry_data_value_funcs.. */
|
||
|
||
static struct value *
|
||
entry_data_value_coerce_ref (const struct value *value)
|
||
{
|
||
struct type *checked_type = check_typedef (value_type (value));
|
||
struct value *target_val;
|
||
|
||
if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
|
||
return NULL;
|
||
|
||
target_val = value_computed_closure (value);
|
||
value_incref (target_val);
|
||
return target_val;
|
||
}
|
||
|
||
/* Implement copy_closure. */
|
||
|
||
static void *
|
||
entry_data_value_copy_closure (const struct value *v)
|
||
{
|
||
struct value *target_val = value_computed_closure (v);
|
||
|
||
value_incref (target_val);
|
||
return target_val;
|
||
}
|
||
|
||
/* Implement free_closure. */
|
||
|
||
static void
|
||
entry_data_value_free_closure (struct value *v)
|
||
{
|
||
struct value *target_val = value_computed_closure (v);
|
||
|
||
value_free (target_val);
|
||
}
|
||
|
||
/* Vector for methods for an entry value reference where the referenced value
|
||
is stored in the caller. On the first dereference use
|
||
DW_AT_GNU_call_site_data_value in the caller. */
|
||
|
||
static const struct lval_funcs entry_data_value_funcs =
|
||
{
|
||
NULL, /* read */
|
||
NULL, /* write */
|
||
NULL, /* check_validity */
|
||
NULL, /* check_any_valid */
|
||
NULL, /* indirect */
|
||
entry_data_value_coerce_ref,
|
||
NULL, /* check_synthetic_pointer */
|
||
entry_data_value_copy_closure,
|
||
entry_data_value_free_closure
|
||
};
|
||
|
||
/* Read parameter of TYPE at (callee) FRAME's function entry. DWARF_REG and
|
||
FB_OFFSET are used to match DW_AT_location at the caller's
|
||
DW_TAG_GNU_call_site_parameter. See DWARF_REG and FB_OFFSET description at
|
||
struct dwarf_expr_context_funcs->push_dwarf_reg_entry_value.
|
||
|
||
Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
|
||
cannot resolve the parameter for any reason. */
|
||
|
||
static struct value *
|
||
value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
|
||
int dwarf_reg, CORE_ADDR fb_offset)
|
||
{
|
||
struct type *checked_type = check_typedef (type);
|
||
struct type *target_type = TYPE_TARGET_TYPE (checked_type);
|
||
struct frame_info *caller_frame = get_prev_frame (frame);
|
||
struct value *outer_val, *target_val, *val;
|
||
struct call_site_parameter *parameter;
|
||
struct dwarf2_per_cu_data *caller_per_cu;
|
||
CORE_ADDR addr;
|
||
|
||
parameter = dwarf_expr_reg_to_entry_parameter (frame, dwarf_reg, fb_offset,
|
||
&caller_per_cu);
|
||
|
||
outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
|
||
type, caller_frame,
|
||
caller_per_cu);
|
||
|
||
/* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
|
||
used and it is not available do not fall back to OUTER_VAL - dereferencing
|
||
TYPE_CODE_REF with non-entry data value would give current value - not the
|
||
entry value. */
|
||
|
||
if (TYPE_CODE (checked_type) != TYPE_CODE_REF
|
||
|| TYPE_TARGET_TYPE (checked_type) == NULL)
|
||
return outer_val;
|
||
|
||
target_val = dwarf_entry_parameter_to_value (parameter,
|
||
TYPE_LENGTH (target_type),
|
||
target_type, caller_frame,
|
||
caller_per_cu);
|
||
|
||
/* value_as_address dereferences TYPE_CODE_REF. */
|
||
addr = extract_typed_address (value_contents (outer_val), checked_type);
|
||
|
||
/* The target entry value has artificial address of the entry value
|
||
reference. */
|
||
VALUE_LVAL (target_val) = lval_memory;
|
||
set_value_address (target_val, addr);
|
||
|
||
release_value (target_val);
|
||
val = allocate_computed_value (type, &entry_data_value_funcs,
|
||
target_val /* closure */);
|
||
|
||
/* Copy the referencing pointer to the new computed value. */
|
||
memcpy (value_contents_raw (val), value_contents_raw (outer_val),
|
||
TYPE_LENGTH (checked_type));
|
||
set_value_lazy (val, 0);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
|
||
SIZE are DWARF block used to match DW_AT_location at the caller's
|
||
DW_TAG_GNU_call_site_parameter.
|
||
|
||
Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
|
||
cannot resolve the parameter for any reason. */
|
||
|
||
static struct value *
|
||
value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
|
||
const gdb_byte *block, size_t block_len)
|
||
{
|
||
int dwarf_reg;
|
||
CORE_ADDR fb_offset;
|
||
|
||
dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
|
||
if (dwarf_reg != -1)
|
||
return value_of_dwarf_reg_entry (type, frame, dwarf_reg, 0 /* unused */);
|
||
|
||
if (dwarf_block_to_fb_offset (block, block + block_len, &fb_offset))
|
||
return value_of_dwarf_reg_entry (type, frame, -1, fb_offset);
|
||
|
||
/* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
|
||
suppressed during normal operation. The expression can be arbitrary if
|
||
there is no caller-callee entry value binding expected. */
|
||
throw_error (NO_ENTRY_VALUE_ERROR,
|
||
_("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
|
||
"only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
|
||
}
|
||
|
||
struct piece_closure
|
||
{
|
||
/* Reference count. */
|
||
int refc;
|
||
|
||
/* The CU from which this closure's expression came. */
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
/* The number of pieces used to describe this variable. */
|
||
int n_pieces;
|
||
|
||
/* The target address size, used only for DWARF_VALUE_STACK. */
|
||
int addr_size;
|
||
|
||
/* The pieces themselves. */
|
||
struct dwarf_expr_piece *pieces;
|
||
};
|
||
|
||
/* Allocate a closure for a value formed from separately-described
|
||
PIECES. */
|
||
|
||
static struct piece_closure *
|
||
allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
|
||
int n_pieces, struct dwarf_expr_piece *pieces,
|
||
int addr_size)
|
||
{
|
||
struct piece_closure *c = XZALLOC (struct piece_closure);
|
||
int i;
|
||
|
||
c->refc = 1;
|
||
c->per_cu = per_cu;
|
||
c->n_pieces = n_pieces;
|
||
c->addr_size = addr_size;
|
||
c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);
|
||
|
||
memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
|
||
for (i = 0; i < n_pieces; ++i)
|
||
if (c->pieces[i].location == DWARF_VALUE_STACK)
|
||
value_incref (c->pieces[i].v.value);
|
||
|
||
return c;
|
||
}
|
||
|
||
/* The lowest-level function to extract bits from a byte buffer.
|
||
SOURCE is the buffer. It is updated if we read to the end of a
|
||
byte.
|
||
SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
|
||
updated to reflect the number of bits actually read.
|
||
NBITS is the number of bits we want to read. It is updated to
|
||
reflect the number of bits actually read. This function may read
|
||
fewer bits.
|
||
BITS_BIG_ENDIAN is taken directly from gdbarch.
|
||
This function returns the extracted bits. */
|
||
|
||
static unsigned int
|
||
extract_bits_primitive (const gdb_byte **source,
|
||
unsigned int *source_offset_bits,
|
||
int *nbits, int bits_big_endian)
|
||
{
|
||
unsigned int avail, mask, datum;
|
||
|
||
gdb_assert (*source_offset_bits < 8);
|
||
|
||
avail = 8 - *source_offset_bits;
|
||
if (avail > *nbits)
|
||
avail = *nbits;
|
||
|
||
mask = (1 << avail) - 1;
|
||
datum = **source;
|
||
if (bits_big_endian)
|
||
datum >>= 8 - (*source_offset_bits + *nbits);
|
||
else
|
||
datum >>= *source_offset_bits;
|
||
datum &= mask;
|
||
|
||
*nbits -= avail;
|
||
*source_offset_bits += avail;
|
||
if (*source_offset_bits >= 8)
|
||
{
|
||
*source_offset_bits -= 8;
|
||
++*source;
|
||
}
|
||
|
||
return datum;
|
||
}
|
||
|
||
/* Extract some bits from a source buffer and move forward in the
|
||
buffer.
|
||
|
||
SOURCE is the source buffer. It is updated as bytes are read.
|
||
SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
|
||
bits are read.
|
||
NBITS is the number of bits to read.
|
||
BITS_BIG_ENDIAN is taken directly from gdbarch.
|
||
|
||
This function returns the bits that were read. */
|
||
|
||
static unsigned int
|
||
extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
|
||
int nbits, int bits_big_endian)
|
||
{
|
||
unsigned int datum;
|
||
|
||
gdb_assert (nbits > 0 && nbits <= 8);
|
||
|
||
datum = extract_bits_primitive (source, source_offset_bits, &nbits,
|
||
bits_big_endian);
|
||
if (nbits > 0)
|
||
{
|
||
unsigned int more;
|
||
|
||
more = extract_bits_primitive (source, source_offset_bits, &nbits,
|
||
bits_big_endian);
|
||
if (bits_big_endian)
|
||
datum <<= nbits;
|
||
else
|
||
more <<= nbits;
|
||
datum |= more;
|
||
}
|
||
|
||
return datum;
|
||
}
|
||
|
||
/* Write some bits into a buffer and move forward in the buffer.
|
||
|
||
DATUM is the bits to write. The low-order bits of DATUM are used.
|
||
DEST is the destination buffer. It is updated as bytes are
|
||
written.
|
||
DEST_OFFSET_BITS is the bit offset in DEST at which writing is
|
||
done.
|
||
NBITS is the number of valid bits in DATUM.
|
||
BITS_BIG_ENDIAN is taken directly from gdbarch. */
|
||
|
||
static void
|
||
insert_bits (unsigned int datum,
|
||
gdb_byte *dest, unsigned int dest_offset_bits,
|
||
int nbits, int bits_big_endian)
|
||
{
|
||
unsigned int mask;
|
||
|
||
gdb_assert (dest_offset_bits + nbits <= 8);
|
||
|
||
mask = (1 << nbits) - 1;
|
||
if (bits_big_endian)
|
||
{
|
||
datum <<= 8 - (dest_offset_bits + nbits);
|
||
mask <<= 8 - (dest_offset_bits + nbits);
|
||
}
|
||
else
|
||
{
|
||
datum <<= dest_offset_bits;
|
||
mask <<= dest_offset_bits;
|
||
}
|
||
|
||
gdb_assert ((datum & ~mask) == 0);
|
||
|
||
*dest = (*dest & ~mask) | datum;
|
||
}
|
||
|
||
/* Copy bits from a source to a destination.
|
||
|
||
DEST is where the bits should be written.
|
||
DEST_OFFSET_BITS is the bit offset into DEST.
|
||
SOURCE is the source of bits.
|
||
SOURCE_OFFSET_BITS is the bit offset into SOURCE.
|
||
BIT_COUNT is the number of bits to copy.
|
||
BITS_BIG_ENDIAN is taken directly from gdbarch. */
|
||
|
||
static void
|
||
copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
|
||
const gdb_byte *source, unsigned int source_offset_bits,
|
||
unsigned int bit_count,
|
||
int bits_big_endian)
|
||
{
|
||
unsigned int dest_avail;
|
||
int datum;
|
||
|
||
/* Reduce everything to byte-size pieces. */
|
||
dest += dest_offset_bits / 8;
|
||
dest_offset_bits %= 8;
|
||
source += source_offset_bits / 8;
|
||
source_offset_bits %= 8;
|
||
|
||
dest_avail = 8 - dest_offset_bits % 8;
|
||
|
||
/* See if we can fill the first destination byte. */
|
||
if (dest_avail < bit_count)
|
||
{
|
||
datum = extract_bits (&source, &source_offset_bits, dest_avail,
|
||
bits_big_endian);
|
||
insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
|
||
++dest;
|
||
dest_offset_bits = 0;
|
||
bit_count -= dest_avail;
|
||
}
|
||
|
||
/* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
|
||
than 8 bits remaining. */
|
||
gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
|
||
for (; bit_count >= 8; bit_count -= 8)
|
||
{
|
||
datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
|
||
*dest++ = (gdb_byte) datum;
|
||
}
|
||
|
||
/* Finally, we may have a few leftover bits. */
|
||
gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
|
||
if (bit_count > 0)
|
||
{
|
||
datum = extract_bits (&source, &source_offset_bits, bit_count,
|
||
bits_big_endian);
|
||
insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
|
||
}
|
||
}
|
||
|
||
static void
|
||
read_pieced_value (struct value *v)
|
||
{
|
||
int i;
|
||
long offset = 0;
|
||
ULONGEST bits_to_skip;
|
||
gdb_byte *contents;
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (v);
|
||
struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
|
||
size_t type_len;
|
||
size_t buffer_size = 0;
|
||
char *buffer = NULL;
|
||
struct cleanup *cleanup;
|
||
int bits_big_endian
|
||
= gdbarch_bits_big_endian (get_type_arch (value_type (v)));
|
||
|
||
if (value_type (v) != value_enclosing_type (v))
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Should not be able to create a lazy value with "
|
||
"an enclosing type"));
|
||
|
||
cleanup = make_cleanup (free_current_contents, &buffer);
|
||
|
||
contents = value_contents_raw (v);
|
||
bits_to_skip = 8 * value_offset (v);
|
||
if (value_bitsize (v))
|
||
{
|
||
bits_to_skip += value_bitpos (v);
|
||
type_len = value_bitsize (v);
|
||
}
|
||
else
|
||
type_len = 8 * TYPE_LENGTH (value_type (v));
|
||
|
||
for (i = 0; i < c->n_pieces && offset < type_len; i++)
|
||
{
|
||
struct dwarf_expr_piece *p = &c->pieces[i];
|
||
size_t this_size, this_size_bits;
|
||
long dest_offset_bits, source_offset_bits, source_offset;
|
||
const gdb_byte *intermediate_buffer;
|
||
|
||
/* Compute size, source, and destination offsets for copying, in
|
||
bits. */
|
||
this_size_bits = p->size;
|
||
if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
|
||
{
|
||
bits_to_skip -= this_size_bits;
|
||
continue;
|
||
}
|
||
if (this_size_bits > type_len - offset)
|
||
this_size_bits = type_len - offset;
|
||
if (bits_to_skip > 0)
|
||
{
|
||
dest_offset_bits = 0;
|
||
source_offset_bits = bits_to_skip;
|
||
this_size_bits -= bits_to_skip;
|
||
bits_to_skip = 0;
|
||
}
|
||
else
|
||
{
|
||
dest_offset_bits = offset;
|
||
source_offset_bits = 0;
|
||
}
|
||
|
||
this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
|
||
source_offset = source_offset_bits / 8;
|
||
if (buffer_size < this_size)
|
||
{
|
||
buffer_size = this_size;
|
||
buffer = xrealloc (buffer, buffer_size);
|
||
}
|
||
intermediate_buffer = buffer;
|
||
|
||
/* Copy from the source to DEST_BUFFER. */
|
||
switch (p->location)
|
||
{
|
||
case DWARF_VALUE_REGISTER:
|
||
{
|
||
struct gdbarch *arch = get_frame_arch (frame);
|
||
int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
|
||
int reg_offset = source_offset;
|
||
|
||
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
|
||
&& this_size < register_size (arch, gdb_regnum))
|
||
{
|
||
/* Big-endian, and we want less than full size. */
|
||
reg_offset = register_size (arch, gdb_regnum) - this_size;
|
||
/* We want the lower-order THIS_SIZE_BITS of the bytes
|
||
we extract from the register. */
|
||
source_offset_bits += 8 * this_size - this_size_bits;
|
||
}
|
||
|
||
if (gdb_regnum != -1)
|
||
{
|
||
int optim, unavail;
|
||
|
||
if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
|
||
this_size, buffer,
|
||
&optim, &unavail))
|
||
{
|
||
/* Just so garbage doesn't ever shine through. */
|
||
memset (buffer, 0, this_size);
|
||
|
||
if (optim)
|
||
set_value_optimized_out (v, 1);
|
||
if (unavail)
|
||
mark_value_bytes_unavailable (v, offset, this_size);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
error (_("Unable to access DWARF register number %s"),
|
||
paddress (arch, p->v.regno));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_MEMORY:
|
||
read_value_memory (v, offset,
|
||
p->v.mem.in_stack_memory,
|
||
p->v.mem.addr + source_offset,
|
||
buffer, this_size);
|
||
break;
|
||
|
||
case DWARF_VALUE_STACK:
|
||
{
|
||
size_t n = this_size;
|
||
|
||
if (n > c->addr_size - source_offset)
|
||
n = (c->addr_size >= source_offset
|
||
? c->addr_size - source_offset
|
||
: 0);
|
||
if (n == 0)
|
||
{
|
||
/* Nothing. */
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *val_bytes = value_contents_all (p->v.value);
|
||
|
||
intermediate_buffer = val_bytes + source_offset;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_LITERAL:
|
||
{
|
||
size_t n = this_size;
|
||
|
||
if (n > p->v.literal.length - source_offset)
|
||
n = (p->v.literal.length >= source_offset
|
||
? p->v.literal.length - source_offset
|
||
: 0);
|
||
if (n != 0)
|
||
intermediate_buffer = p->v.literal.data + source_offset;
|
||
}
|
||
break;
|
||
|
||
/* These bits show up as zeros -- but do not cause the value
|
||
to be considered optimized-out. */
|
||
case DWARF_VALUE_IMPLICIT_POINTER:
|
||
break;
|
||
|
||
case DWARF_VALUE_OPTIMIZED_OUT:
|
||
set_value_optimized_out (v, 1);
|
||
break;
|
||
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("invalid location type"));
|
||
}
|
||
|
||
if (p->location != DWARF_VALUE_OPTIMIZED_OUT
|
||
&& p->location != DWARF_VALUE_IMPLICIT_POINTER)
|
||
copy_bitwise (contents, dest_offset_bits,
|
||
intermediate_buffer, source_offset_bits % 8,
|
||
this_size_bits, bits_big_endian);
|
||
|
||
offset += this_size_bits;
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
static void
|
||
write_pieced_value (struct value *to, struct value *from)
|
||
{
|
||
int i;
|
||
long offset = 0;
|
||
ULONGEST bits_to_skip;
|
||
const gdb_byte *contents;
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (to);
|
||
struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
|
||
size_t type_len;
|
||
size_t buffer_size = 0;
|
||
char *buffer = NULL;
|
||
struct cleanup *cleanup;
|
||
int bits_big_endian
|
||
= gdbarch_bits_big_endian (get_type_arch (value_type (to)));
|
||
|
||
if (frame == NULL)
|
||
{
|
||
set_value_optimized_out (to, 1);
|
||
return;
|
||
}
|
||
|
||
cleanup = make_cleanup (free_current_contents, &buffer);
|
||
|
||
contents = value_contents (from);
|
||
bits_to_skip = 8 * value_offset (to);
|
||
if (value_bitsize (to))
|
||
{
|
||
bits_to_skip += value_bitpos (to);
|
||
type_len = value_bitsize (to);
|
||
}
|
||
else
|
||
type_len = 8 * TYPE_LENGTH (value_type (to));
|
||
|
||
for (i = 0; i < c->n_pieces && offset < type_len; i++)
|
||
{
|
||
struct dwarf_expr_piece *p = &c->pieces[i];
|
||
size_t this_size_bits, this_size;
|
||
long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
|
||
int need_bitwise;
|
||
const gdb_byte *source_buffer;
|
||
|
||
this_size_bits = p->size;
|
||
if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
|
||
{
|
||
bits_to_skip -= this_size_bits;
|
||
continue;
|
||
}
|
||
if (this_size_bits > type_len - offset)
|
||
this_size_bits = type_len - offset;
|
||
if (bits_to_skip > 0)
|
||
{
|
||
dest_offset_bits = bits_to_skip;
|
||
source_offset_bits = 0;
|
||
this_size_bits -= bits_to_skip;
|
||
bits_to_skip = 0;
|
||
}
|
||
else
|
||
{
|
||
dest_offset_bits = 0;
|
||
source_offset_bits = offset;
|
||
}
|
||
|
||
this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
|
||
source_offset = source_offset_bits / 8;
|
||
dest_offset = dest_offset_bits / 8;
|
||
if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
|
||
{
|
||
source_buffer = contents + source_offset;
|
||
need_bitwise = 0;
|
||
}
|
||
else
|
||
{
|
||
if (buffer_size < this_size)
|
||
{
|
||
buffer_size = this_size;
|
||
buffer = xrealloc (buffer, buffer_size);
|
||
}
|
||
source_buffer = buffer;
|
||
need_bitwise = 1;
|
||
}
|
||
|
||
switch (p->location)
|
||
{
|
||
case DWARF_VALUE_REGISTER:
|
||
{
|
||
struct gdbarch *arch = get_frame_arch (frame);
|
||
int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
|
||
int reg_offset = dest_offset;
|
||
|
||
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
|
||
&& this_size <= register_size (arch, gdb_regnum))
|
||
/* Big-endian, and we want less than full size. */
|
||
reg_offset = register_size (arch, gdb_regnum) - this_size;
|
||
|
||
if (gdb_regnum != -1)
|
||
{
|
||
if (need_bitwise)
|
||
{
|
||
int optim, unavail;
|
||
|
||
if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
|
||
this_size, buffer,
|
||
&optim, &unavail))
|
||
{
|
||
if (optim)
|
||
error (_("Can't do read-modify-write to "
|
||
"update bitfield; containing word has been "
|
||
"optimized out"));
|
||
if (unavail)
|
||
throw_error (NOT_AVAILABLE_ERROR,
|
||
_("Can't do read-modify-write to update "
|
||
"bitfield; containing word "
|
||
"is unavailable"));
|
||
}
|
||
copy_bitwise (buffer, dest_offset_bits,
|
||
contents, source_offset_bits,
|
||
this_size_bits,
|
||
bits_big_endian);
|
||
}
|
||
|
||
put_frame_register_bytes (frame, gdb_regnum, reg_offset,
|
||
this_size, source_buffer);
|
||
}
|
||
else
|
||
{
|
||
error (_("Unable to write to DWARF register number %s"),
|
||
paddress (arch, p->v.regno));
|
||
}
|
||
}
|
||
break;
|
||
case DWARF_VALUE_MEMORY:
|
||
if (need_bitwise)
|
||
{
|
||
/* Only the first and last bytes can possibly have any
|
||
bits reused. */
|
||
read_memory (p->v.mem.addr + dest_offset, buffer, 1);
|
||
read_memory (p->v.mem.addr + dest_offset + this_size - 1,
|
||
buffer + this_size - 1, 1);
|
||
copy_bitwise (buffer, dest_offset_bits,
|
||
contents, source_offset_bits,
|
||
this_size_bits,
|
||
bits_big_endian);
|
||
}
|
||
|
||
write_memory (p->v.mem.addr + dest_offset,
|
||
source_buffer, this_size);
|
||
break;
|
||
default:
|
||
set_value_optimized_out (to, 1);
|
||
break;
|
||
}
|
||
offset += this_size_bits;
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* A helper function that checks bit validity in a pieced value.
|
||
CHECK_FOR indicates the kind of validity checking.
|
||
DWARF_VALUE_MEMORY means to check whether any bit is valid.
|
||
DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
|
||
optimized out.
|
||
DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
|
||
implicit pointer. */
|
||
|
||
static int
|
||
check_pieced_value_bits (const struct value *value, int bit_offset,
|
||
int bit_length,
|
||
enum dwarf_value_location check_for)
|
||
{
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (value);
|
||
int i;
|
||
int validity = (check_for == DWARF_VALUE_MEMORY
|
||
|| check_for == DWARF_VALUE_IMPLICIT_POINTER);
|
||
|
||
bit_offset += 8 * value_offset (value);
|
||
if (value_bitsize (value))
|
||
bit_offset += value_bitpos (value);
|
||
|
||
for (i = 0; i < c->n_pieces && bit_length > 0; i++)
|
||
{
|
||
struct dwarf_expr_piece *p = &c->pieces[i];
|
||
size_t this_size_bits = p->size;
|
||
|
||
if (bit_offset > 0)
|
||
{
|
||
if (bit_offset >= this_size_bits)
|
||
{
|
||
bit_offset -= this_size_bits;
|
||
continue;
|
||
}
|
||
|
||
bit_length -= this_size_bits - bit_offset;
|
||
bit_offset = 0;
|
||
}
|
||
else
|
||
bit_length -= this_size_bits;
|
||
|
||
if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
|
||
{
|
||
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
|
||
return 0;
|
||
}
|
||
else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
|
||
|| p->location == DWARF_VALUE_IMPLICIT_POINTER)
|
||
{
|
||
if (validity)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (!validity)
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return validity;
|
||
}
|
||
|
||
static int
|
||
check_pieced_value_validity (const struct value *value, int bit_offset,
|
||
int bit_length)
|
||
{
|
||
return check_pieced_value_bits (value, bit_offset, bit_length,
|
||
DWARF_VALUE_MEMORY);
|
||
}
|
||
|
||
static int
|
||
check_pieced_value_invalid (const struct value *value)
|
||
{
|
||
return check_pieced_value_bits (value, 0,
|
||
8 * TYPE_LENGTH (value_type (value)),
|
||
DWARF_VALUE_OPTIMIZED_OUT);
|
||
}
|
||
|
||
/* An implementation of an lval_funcs method to see whether a value is
|
||
a synthetic pointer. */
|
||
|
||
static int
|
||
check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
|
||
int bit_length)
|
||
{
|
||
return check_pieced_value_bits (value, bit_offset, bit_length,
|
||
DWARF_VALUE_IMPLICIT_POINTER);
|
||
}
|
||
|
||
/* A wrapper function for get_frame_address_in_block. */
|
||
|
||
static CORE_ADDR
|
||
get_frame_address_in_block_wrapper (void *baton)
|
||
{
|
||
return get_frame_address_in_block (baton);
|
||
}
|
||
|
||
/* An implementation of an lval_funcs method to indirect through a
|
||
pointer. This handles the synthetic pointer case when needed. */
|
||
|
||
static struct value *
|
||
indirect_pieced_value (struct value *value)
|
||
{
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (value);
|
||
struct type *type;
|
||
struct frame_info *frame;
|
||
struct dwarf2_locexpr_baton baton;
|
||
int i, bit_offset, bit_length;
|
||
struct dwarf_expr_piece *piece = NULL;
|
||
LONGEST byte_offset;
|
||
|
||
type = check_typedef (value_type (value));
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR)
|
||
return NULL;
|
||
|
||
bit_length = 8 * TYPE_LENGTH (type);
|
||
bit_offset = 8 * value_offset (value);
|
||
if (value_bitsize (value))
|
||
bit_offset += value_bitpos (value);
|
||
|
||
for (i = 0; i < c->n_pieces && bit_length > 0; i++)
|
||
{
|
||
struct dwarf_expr_piece *p = &c->pieces[i];
|
||
size_t this_size_bits = p->size;
|
||
|
||
if (bit_offset > 0)
|
||
{
|
||
if (bit_offset >= this_size_bits)
|
||
{
|
||
bit_offset -= this_size_bits;
|
||
continue;
|
||
}
|
||
|
||
bit_length -= this_size_bits - bit_offset;
|
||
bit_offset = 0;
|
||
}
|
||
else
|
||
bit_length -= this_size_bits;
|
||
|
||
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
|
||
return NULL;
|
||
|
||
if (bit_length != 0)
|
||
error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
|
||
|
||
piece = p;
|
||
break;
|
||
}
|
||
|
||
frame = get_selected_frame (_("No frame selected."));
|
||
|
||
/* This is an offset requested by GDB, such as value subcripts. */
|
||
byte_offset = value_as_address (value);
|
||
|
||
gdb_assert (piece);
|
||
baton = dwarf2_fetch_die_location_block (piece->v.ptr.die, c->per_cu,
|
||
get_frame_address_in_block_wrapper,
|
||
frame);
|
||
|
||
return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
|
||
baton.data, baton.size, baton.per_cu,
|
||
piece->v.ptr.offset + byte_offset);
|
||
}
|
||
|
||
static void *
|
||
copy_pieced_value_closure (const struct value *v)
|
||
{
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (v);
|
||
|
||
++c->refc;
|
||
return c;
|
||
}
|
||
|
||
static void
|
||
free_pieced_value_closure (struct value *v)
|
||
{
|
||
struct piece_closure *c
|
||
= (struct piece_closure *) value_computed_closure (v);
|
||
|
||
--c->refc;
|
||
if (c->refc == 0)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < c->n_pieces; ++i)
|
||
if (c->pieces[i].location == DWARF_VALUE_STACK)
|
||
value_free (c->pieces[i].v.value);
|
||
|
||
xfree (c->pieces);
|
||
xfree (c);
|
||
}
|
||
}
|
||
|
||
/* Functions for accessing a variable described by DW_OP_piece. */
|
||
static const struct lval_funcs pieced_value_funcs = {
|
||
read_pieced_value,
|
||
write_pieced_value,
|
||
check_pieced_value_validity,
|
||
check_pieced_value_invalid,
|
||
indirect_pieced_value,
|
||
NULL, /* coerce_ref */
|
||
check_pieced_synthetic_pointer,
|
||
copy_pieced_value_closure,
|
||
free_pieced_value_closure
|
||
};
|
||
|
||
/* Helper function which throws an error if a synthetic pointer is
|
||
invalid. */
|
||
|
||
static void
|
||
invalid_synthetic_pointer (void)
|
||
{
|
||
error (_("access outside bounds of object "
|
||
"referenced via synthetic pointer"));
|
||
}
|
||
|
||
/* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
|
||
|
||
static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
|
||
{
|
||
dwarf_expr_read_reg,
|
||
dwarf_expr_read_mem,
|
||
dwarf_expr_frame_base,
|
||
dwarf_expr_frame_cfa,
|
||
dwarf_expr_frame_pc,
|
||
dwarf_expr_tls_address,
|
||
dwarf_expr_dwarf_call,
|
||
dwarf_expr_get_base_type,
|
||
dwarf_expr_push_dwarf_reg_entry_value
|
||
};
|
||
|
||
/* Evaluate a location description, starting at DATA and with length
|
||
SIZE, to find the current location of variable of TYPE in the
|
||
context of FRAME. BYTE_OFFSET is applied after the contents are
|
||
computed. */
|
||
|
||
static struct value *
|
||
dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
|
||
const gdb_byte *data, unsigned short size,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
LONGEST byte_offset)
|
||
{
|
||
struct value *retval;
|
||
struct dwarf_expr_baton baton;
|
||
struct dwarf_expr_context *ctx;
|
||
struct cleanup *old_chain, *value_chain;
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
|
||
volatile struct gdb_exception ex;
|
||
|
||
if (byte_offset < 0)
|
||
invalid_synthetic_pointer ();
|
||
|
||
if (size == 0)
|
||
return allocate_optimized_out_value (type);
|
||
|
||
baton.frame = frame;
|
||
baton.per_cu = per_cu;
|
||
|
||
ctx = new_dwarf_expr_context ();
|
||
old_chain = make_cleanup_free_dwarf_expr_context (ctx);
|
||
value_chain = make_cleanup_value_free_to_mark (value_mark ());
|
||
|
||
ctx->gdbarch = get_objfile_arch (objfile);
|
||
ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
|
||
ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
|
||
ctx->offset = dwarf2_per_cu_text_offset (per_cu);
|
||
ctx->baton = &baton;
|
||
ctx->funcs = &dwarf_expr_ctx_funcs;
|
||
|
||
TRY_CATCH (ex, RETURN_MASK_ERROR)
|
||
{
|
||
dwarf_expr_eval (ctx, data, size);
|
||
}
|
||
if (ex.reason < 0)
|
||
{
|
||
if (ex.error == NOT_AVAILABLE_ERROR)
|
||
{
|
||
do_cleanups (old_chain);
|
||
retval = allocate_value (type);
|
||
mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
|
||
return retval;
|
||
}
|
||
else if (ex.error == NO_ENTRY_VALUE_ERROR)
|
||
{
|
||
if (entry_values_debug)
|
||
exception_print (gdb_stdout, ex);
|
||
do_cleanups (old_chain);
|
||
return allocate_optimized_out_value (type);
|
||
}
|
||
else
|
||
throw_exception (ex);
|
||
}
|
||
|
||
if (ctx->num_pieces > 0)
|
||
{
|
||
struct piece_closure *c;
|
||
struct frame_id frame_id = get_frame_id (frame);
|
||
ULONGEST bit_size = 0;
|
||
int i;
|
||
|
||
for (i = 0; i < ctx->num_pieces; ++i)
|
||
bit_size += ctx->pieces[i].size;
|
||
if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
|
||
invalid_synthetic_pointer ();
|
||
|
||
c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
|
||
ctx->addr_size);
|
||
/* We must clean up the value chain after creating the piece
|
||
closure but before allocating the result. */
|
||
do_cleanups (value_chain);
|
||
retval = allocate_computed_value (type, &pieced_value_funcs, c);
|
||
VALUE_FRAME_ID (retval) = frame_id;
|
||
set_value_offset (retval, byte_offset);
|
||
}
|
||
else
|
||
{
|
||
switch (ctx->location)
|
||
{
|
||
case DWARF_VALUE_REGISTER:
|
||
{
|
||
struct gdbarch *arch = get_frame_arch (frame);
|
||
ULONGEST dwarf_regnum = value_as_long (dwarf_expr_fetch (ctx, 0));
|
||
int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
|
||
|
||
if (byte_offset != 0)
|
||
error (_("cannot use offset on synthetic pointer to register"));
|
||
do_cleanups (value_chain);
|
||
if (gdb_regnum != -1)
|
||
retval = value_from_register (type, gdb_regnum, frame);
|
||
else
|
||
error (_("Unable to access DWARF register number %s"),
|
||
paddress (arch, dwarf_regnum));
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_MEMORY:
|
||
{
|
||
CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
|
||
int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
|
||
|
||
do_cleanups (value_chain);
|
||
retval = allocate_value_lazy (type);
|
||
VALUE_LVAL (retval) = lval_memory;
|
||
if (in_stack_memory)
|
||
set_value_stack (retval, 1);
|
||
set_value_address (retval, address + byte_offset);
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_STACK:
|
||
{
|
||
struct value *value = dwarf_expr_fetch (ctx, 0);
|
||
gdb_byte *contents;
|
||
const gdb_byte *val_bytes;
|
||
size_t n = TYPE_LENGTH (value_type (value));
|
||
|
||
if (byte_offset + TYPE_LENGTH (type) > n)
|
||
invalid_synthetic_pointer ();
|
||
|
||
val_bytes = value_contents_all (value);
|
||
val_bytes += byte_offset;
|
||
n -= byte_offset;
|
||
|
||
/* Preserve VALUE because we are going to free values back
|
||
to the mark, but we still need the value contents
|
||
below. */
|
||
value_incref (value);
|
||
do_cleanups (value_chain);
|
||
make_cleanup_value_free (value);
|
||
|
||
retval = allocate_value (type);
|
||
contents = value_contents_raw (retval);
|
||
if (n > TYPE_LENGTH (type))
|
||
{
|
||
struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
|
||
|
||
if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
|
||
val_bytes += n - TYPE_LENGTH (type);
|
||
n = TYPE_LENGTH (type);
|
||
}
|
||
memcpy (contents, val_bytes, n);
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_LITERAL:
|
||
{
|
||
bfd_byte *contents;
|
||
const bfd_byte *ldata;
|
||
size_t n = ctx->len;
|
||
|
||
if (byte_offset + TYPE_LENGTH (type) > n)
|
||
invalid_synthetic_pointer ();
|
||
|
||
do_cleanups (value_chain);
|
||
retval = allocate_value (type);
|
||
contents = value_contents_raw (retval);
|
||
|
||
ldata = ctx->data + byte_offset;
|
||
n -= byte_offset;
|
||
|
||
if (n > TYPE_LENGTH (type))
|
||
{
|
||
struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
|
||
|
||
if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
|
||
ldata += n - TYPE_LENGTH (type);
|
||
n = TYPE_LENGTH (type);
|
||
}
|
||
memcpy (contents, ldata, n);
|
||
}
|
||
break;
|
||
|
||
case DWARF_VALUE_OPTIMIZED_OUT:
|
||
do_cleanups (value_chain);
|
||
retval = allocate_optimized_out_value (type);
|
||
break;
|
||
|
||
/* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
|
||
operation by execute_stack_op. */
|
||
case DWARF_VALUE_IMPLICIT_POINTER:
|
||
/* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
|
||
it can only be encountered when making a piece. */
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("invalid location type"));
|
||
}
|
||
}
|
||
|
||
set_value_initialized (retval, ctx->initialized);
|
||
|
||
do_cleanups (old_chain);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
|
||
passes 0 as the byte_offset. */
|
||
|
||
struct value *
|
||
dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
|
||
const gdb_byte *data, unsigned short size,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
|
||
}
|
||
|
||
|
||
/* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
|
||
|
||
struct needs_frame_baton
|
||
{
|
||
int needs_frame;
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
};
|
||
|
||
/* Reads from registers do require a frame. */
|
||
static CORE_ADDR
|
||
needs_frame_read_reg (void *baton, int regnum)
|
||
{
|
||
struct needs_frame_baton *nf_baton = baton;
|
||
|
||
nf_baton->needs_frame = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* Reads from memory do not require a frame. */
|
||
static void
|
||
needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
|
||
{
|
||
memset (buf, 0, len);
|
||
}
|
||
|
||
/* Frame-relative accesses do require a frame. */
|
||
static void
|
||
needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
|
||
{
|
||
static gdb_byte lit0 = DW_OP_lit0;
|
||
struct needs_frame_baton *nf_baton = baton;
|
||
|
||
*start = &lit0;
|
||
*length = 1;
|
||
|
||
nf_baton->needs_frame = 1;
|
||
}
|
||
|
||
/* CFA accesses require a frame. */
|
||
|
||
static CORE_ADDR
|
||
needs_frame_frame_cfa (void *baton)
|
||
{
|
||
struct needs_frame_baton *nf_baton = baton;
|
||
|
||
nf_baton->needs_frame = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* Thread-local accesses do require a frame. */
|
||
static CORE_ADDR
|
||
needs_frame_tls_address (void *baton, CORE_ADDR offset)
|
||
{
|
||
struct needs_frame_baton *nf_baton = baton;
|
||
|
||
nf_baton->needs_frame = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
|
||
|
||
static void
|
||
needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
|
||
{
|
||
struct needs_frame_baton *nf_baton = ctx->baton;
|
||
|
||
per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
|
||
ctx->funcs->get_frame_pc, ctx->baton);
|
||
}
|
||
|
||
/* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
|
||
|
||
static void
|
||
needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
|
||
int dwarf_reg, CORE_ADDR fb_offset, int deref_size)
|
||
{
|
||
struct needs_frame_baton *nf_baton = ctx->baton;
|
||
|
||
nf_baton->needs_frame = 1;
|
||
}
|
||
|
||
/* Virtual method table for dwarf2_loc_desc_needs_frame below. */
|
||
|
||
static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
|
||
{
|
||
needs_frame_read_reg,
|
||
needs_frame_read_mem,
|
||
needs_frame_frame_base,
|
||
needs_frame_frame_cfa,
|
||
needs_frame_frame_cfa, /* get_frame_pc */
|
||
needs_frame_tls_address,
|
||
needs_frame_dwarf_call,
|
||
NULL, /* get_base_type */
|
||
needs_dwarf_reg_entry_value
|
||
};
|
||
|
||
/* Return non-zero iff the location expression at DATA (length SIZE)
|
||
requires a frame to evaluate. */
|
||
|
||
static int
|
||
dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct needs_frame_baton baton;
|
||
struct dwarf_expr_context *ctx;
|
||
int in_reg;
|
||
struct cleanup *old_chain;
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
|
||
|
||
baton.needs_frame = 0;
|
||
baton.per_cu = per_cu;
|
||
|
||
ctx = new_dwarf_expr_context ();
|
||
old_chain = make_cleanup_free_dwarf_expr_context (ctx);
|
||
make_cleanup_value_free_to_mark (value_mark ());
|
||
|
||
ctx->gdbarch = get_objfile_arch (objfile);
|
||
ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
|
||
ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
|
||
ctx->offset = dwarf2_per_cu_text_offset (per_cu);
|
||
ctx->baton = &baton;
|
||
ctx->funcs = &needs_frame_ctx_funcs;
|
||
|
||
dwarf_expr_eval (ctx, data, size);
|
||
|
||
in_reg = ctx->location == DWARF_VALUE_REGISTER;
|
||
|
||
if (ctx->num_pieces > 0)
|
||
{
|
||
int i;
|
||
|
||
/* If the location has several pieces, and any of them are in
|
||
registers, then we will need a frame to fetch them from. */
|
||
for (i = 0; i < ctx->num_pieces; i++)
|
||
if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
|
||
in_reg = 1;
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
|
||
return baton.needs_frame || in_reg;
|
||
}
|
||
|
||
/* A helper function that throws an unimplemented error mentioning a
|
||
given DWARF operator. */
|
||
|
||
static void
|
||
unimplemented (unsigned int op)
|
||
{
|
||
const char *name = dwarf_stack_op_name (op);
|
||
|
||
if (name)
|
||
error (_("DWARF operator %s cannot be translated to an agent expression"),
|
||
name);
|
||
else
|
||
error (_("Unknown DWARF operator 0x%02x cannot be translated "
|
||
"to an agent expression"),
|
||
op);
|
||
}
|
||
|
||
/* A helper function to convert a DWARF register to an arch register.
|
||
ARCH is the architecture.
|
||
DWARF_REG is the register.
|
||
This will throw an exception if the DWARF register cannot be
|
||
translated to an architecture register. */
|
||
|
||
static int
|
||
translate_register (struct gdbarch *arch, int dwarf_reg)
|
||
{
|
||
int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
|
||
if (reg == -1)
|
||
error (_("Unable to access DWARF register number %d"), dwarf_reg);
|
||
return reg;
|
||
}
|
||
|
||
/* A helper function that emits an access to memory. ARCH is the
|
||
target architecture. EXPR is the expression which we are building.
|
||
NBITS is the number of bits we want to read. This emits the
|
||
opcodes needed to read the memory and then extract the desired
|
||
bits. */
|
||
|
||
static void
|
||
access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
|
||
{
|
||
ULONGEST nbytes = (nbits + 7) / 8;
|
||
|
||
gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));
|
||
|
||
if (trace_kludge)
|
||
ax_trace_quick (expr, nbytes);
|
||
|
||
if (nbits <= 8)
|
||
ax_simple (expr, aop_ref8);
|
||
else if (nbits <= 16)
|
||
ax_simple (expr, aop_ref16);
|
||
else if (nbits <= 32)
|
||
ax_simple (expr, aop_ref32);
|
||
else
|
||
ax_simple (expr, aop_ref64);
|
||
|
||
/* If we read exactly the number of bytes we wanted, we're done. */
|
||
if (8 * nbytes == nbits)
|
||
return;
|
||
|
||
if (gdbarch_bits_big_endian (arch))
|
||
{
|
||
/* On a bits-big-endian machine, we want the high-order
|
||
NBITS. */
|
||
ax_const_l (expr, 8 * nbytes - nbits);
|
||
ax_simple (expr, aop_rsh_unsigned);
|
||
}
|
||
else
|
||
{
|
||
/* On a bits-little-endian box, we want the low-order NBITS. */
|
||
ax_zero_ext (expr, nbits);
|
||
}
|
||
}
|
||
|
||
/* A helper function to return the frame's PC. */
|
||
|
||
static CORE_ADDR
|
||
get_ax_pc (void *baton)
|
||
{
|
||
struct agent_expr *expr = baton;
|
||
|
||
return expr->scope;
|
||
}
|
||
|
||
/* Compile a DWARF location expression to an agent expression.
|
||
|
||
EXPR is the agent expression we are building.
|
||
LOC is the agent value we modify.
|
||
ARCH is the architecture.
|
||
ADDR_SIZE is the size of addresses, in bytes.
|
||
OP_PTR is the start of the location expression.
|
||
OP_END is one past the last byte of the location expression.
|
||
|
||
This will throw an exception for various kinds of errors -- for
|
||
example, if the expression cannot be compiled, or if the expression
|
||
is invalid. */
|
||
|
||
void
|
||
dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
|
||
struct gdbarch *arch, unsigned int addr_size,
|
||
const gdb_byte *op_ptr, const gdb_byte *op_end,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct cleanup *cleanups;
|
||
int i, *offsets;
|
||
VEC(int) *dw_labels = NULL, *patches = NULL;
|
||
const gdb_byte * const base = op_ptr;
|
||
const gdb_byte *previous_piece = op_ptr;
|
||
enum bfd_endian byte_order = gdbarch_byte_order (arch);
|
||
ULONGEST bits_collected = 0;
|
||
unsigned int addr_size_bits = 8 * addr_size;
|
||
int bits_big_endian = gdbarch_bits_big_endian (arch);
|
||
|
||
offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
|
||
cleanups = make_cleanup (xfree, offsets);
|
||
|
||
for (i = 0; i < op_end - op_ptr; ++i)
|
||
offsets[i] = -1;
|
||
|
||
make_cleanup (VEC_cleanup (int), &dw_labels);
|
||
make_cleanup (VEC_cleanup (int), &patches);
|
||
|
||
/* By default we are making an address. */
|
||
loc->kind = axs_lvalue_memory;
|
||
|
||
while (op_ptr < op_end)
|
||
{
|
||
enum dwarf_location_atom op = *op_ptr;
|
||
ULONGEST uoffset, reg;
|
||
LONGEST offset;
|
||
int i;
|
||
|
||
offsets[op_ptr - base] = expr->len;
|
||
++op_ptr;
|
||
|
||
/* Our basic approach to code generation is to map DWARF
|
||
operations directly to AX operations. However, there are
|
||
some differences.
|
||
|
||
First, DWARF works on address-sized units, but AX always uses
|
||
LONGEST. For most operations we simply ignore this
|
||
difference; instead we generate sign extensions as needed
|
||
before division and comparison operations. It would be nice
|
||
to omit the sign extensions, but there is no way to determine
|
||
the size of the target's LONGEST. (This code uses the size
|
||
of the host LONGEST in some cases -- that is a bug but it is
|
||
difficult to fix.)
|
||
|
||
Second, some DWARF operations cannot be translated to AX.
|
||
For these we simply fail. See
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
|
||
switch (op)
|
||
{
|
||
case DW_OP_lit0:
|
||
case DW_OP_lit1:
|
||
case DW_OP_lit2:
|
||
case DW_OP_lit3:
|
||
case DW_OP_lit4:
|
||
case DW_OP_lit5:
|
||
case DW_OP_lit6:
|
||
case DW_OP_lit7:
|
||
case DW_OP_lit8:
|
||
case DW_OP_lit9:
|
||
case DW_OP_lit10:
|
||
case DW_OP_lit11:
|
||
case DW_OP_lit12:
|
||
case DW_OP_lit13:
|
||
case DW_OP_lit14:
|
||
case DW_OP_lit15:
|
||
case DW_OP_lit16:
|
||
case DW_OP_lit17:
|
||
case DW_OP_lit18:
|
||
case DW_OP_lit19:
|
||
case DW_OP_lit20:
|
||
case DW_OP_lit21:
|
||
case DW_OP_lit22:
|
||
case DW_OP_lit23:
|
||
case DW_OP_lit24:
|
||
case DW_OP_lit25:
|
||
case DW_OP_lit26:
|
||
case DW_OP_lit27:
|
||
case DW_OP_lit28:
|
||
case DW_OP_lit29:
|
||
case DW_OP_lit30:
|
||
case DW_OP_lit31:
|
||
ax_const_l (expr, op - DW_OP_lit0);
|
||
break;
|
||
|
||
case DW_OP_addr:
|
||
uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
|
||
op_ptr += addr_size;
|
||
/* Some versions of GCC emit DW_OP_addr before
|
||
DW_OP_GNU_push_tls_address. In this case the value is an
|
||
index, not an address. We don't support things like
|
||
branching between the address and the TLS op. */
|
||
if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
|
||
uoffset += dwarf2_per_cu_text_offset (per_cu);
|
||
ax_const_l (expr, uoffset);
|
||
break;
|
||
|
||
case DW_OP_const1u:
|
||
ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
|
||
op_ptr += 1;
|
||
break;
|
||
case DW_OP_const1s:
|
||
ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
|
||
op_ptr += 1;
|
||
break;
|
||
case DW_OP_const2u:
|
||
ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
|
||
op_ptr += 2;
|
||
break;
|
||
case DW_OP_const2s:
|
||
ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
|
||
op_ptr += 2;
|
||
break;
|
||
case DW_OP_const4u:
|
||
ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
|
||
op_ptr += 4;
|
||
break;
|
||
case DW_OP_const4s:
|
||
ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
|
||
op_ptr += 4;
|
||
break;
|
||
case DW_OP_const8u:
|
||
ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
|
||
op_ptr += 8;
|
||
break;
|
||
case DW_OP_const8s:
|
||
ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
|
||
op_ptr += 8;
|
||
break;
|
||
case DW_OP_constu:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
|
||
ax_const_l (expr, uoffset);
|
||
break;
|
||
case DW_OP_consts:
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
ax_const_l (expr, offset);
|
||
break;
|
||
|
||
case DW_OP_reg0:
|
||
case DW_OP_reg1:
|
||
case DW_OP_reg2:
|
||
case DW_OP_reg3:
|
||
case DW_OP_reg4:
|
||
case DW_OP_reg5:
|
||
case DW_OP_reg6:
|
||
case DW_OP_reg7:
|
||
case DW_OP_reg8:
|
||
case DW_OP_reg9:
|
||
case DW_OP_reg10:
|
||
case DW_OP_reg11:
|
||
case DW_OP_reg12:
|
||
case DW_OP_reg13:
|
||
case DW_OP_reg14:
|
||
case DW_OP_reg15:
|
||
case DW_OP_reg16:
|
||
case DW_OP_reg17:
|
||
case DW_OP_reg18:
|
||
case DW_OP_reg19:
|
||
case DW_OP_reg20:
|
||
case DW_OP_reg21:
|
||
case DW_OP_reg22:
|
||
case DW_OP_reg23:
|
||
case DW_OP_reg24:
|
||
case DW_OP_reg25:
|
||
case DW_OP_reg26:
|
||
case DW_OP_reg27:
|
||
case DW_OP_reg28:
|
||
case DW_OP_reg29:
|
||
case DW_OP_reg30:
|
||
case DW_OP_reg31:
|
||
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
|
||
loc->u.reg = translate_register (arch, op - DW_OP_reg0);
|
||
loc->kind = axs_lvalue_register;
|
||
break;
|
||
|
||
case DW_OP_regx:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
|
||
loc->u.reg = translate_register (arch, reg);
|
||
loc->kind = axs_lvalue_register;
|
||
break;
|
||
|
||
case DW_OP_implicit_value:
|
||
{
|
||
ULONGEST len;
|
||
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &len);
|
||
if (op_ptr + len > op_end)
|
||
error (_("DW_OP_implicit_value: too few bytes available."));
|
||
if (len > sizeof (ULONGEST))
|
||
error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
|
||
(int) len);
|
||
|
||
ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
|
||
byte_order));
|
||
op_ptr += len;
|
||
dwarf_expr_require_composition (op_ptr, op_end,
|
||
"DW_OP_implicit_value");
|
||
|
||
loc->kind = axs_rvalue;
|
||
}
|
||
break;
|
||
|
||
case DW_OP_stack_value:
|
||
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
|
||
loc->kind = axs_rvalue;
|
||
break;
|
||
|
||
case DW_OP_breg0:
|
||
case DW_OP_breg1:
|
||
case DW_OP_breg2:
|
||
case DW_OP_breg3:
|
||
case DW_OP_breg4:
|
||
case DW_OP_breg5:
|
||
case DW_OP_breg6:
|
||
case DW_OP_breg7:
|
||
case DW_OP_breg8:
|
||
case DW_OP_breg9:
|
||
case DW_OP_breg10:
|
||
case DW_OP_breg11:
|
||
case DW_OP_breg12:
|
||
case DW_OP_breg13:
|
||
case DW_OP_breg14:
|
||
case DW_OP_breg15:
|
||
case DW_OP_breg16:
|
||
case DW_OP_breg17:
|
||
case DW_OP_breg18:
|
||
case DW_OP_breg19:
|
||
case DW_OP_breg20:
|
||
case DW_OP_breg21:
|
||
case DW_OP_breg22:
|
||
case DW_OP_breg23:
|
||
case DW_OP_breg24:
|
||
case DW_OP_breg25:
|
||
case DW_OP_breg26:
|
||
case DW_OP_breg27:
|
||
case DW_OP_breg28:
|
||
case DW_OP_breg29:
|
||
case DW_OP_breg30:
|
||
case DW_OP_breg31:
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
i = translate_register (arch, op - DW_OP_breg0);
|
||
ax_reg (expr, i);
|
||
if (offset != 0)
|
||
{
|
||
ax_const_l (expr, offset);
|
||
ax_simple (expr, aop_add);
|
||
}
|
||
break;
|
||
case DW_OP_bregx:
|
||
{
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
i = translate_register (arch, reg);
|
||
ax_reg (expr, i);
|
||
if (offset != 0)
|
||
{
|
||
ax_const_l (expr, offset);
|
||
ax_simple (expr, aop_add);
|
||
}
|
||
}
|
||
break;
|
||
case DW_OP_fbreg:
|
||
{
|
||
const gdb_byte *datastart;
|
||
size_t datalen;
|
||
unsigned int before_stack_len;
|
||
struct block *b;
|
||
struct symbol *framefunc;
|
||
LONGEST base_offset = 0;
|
||
|
||
b = block_for_pc (expr->scope);
|
||
|
||
if (!b)
|
||
error (_("No block found for address"));
|
||
|
||
framefunc = block_linkage_function (b);
|
||
|
||
if (!framefunc)
|
||
error (_("No function found for block"));
|
||
|
||
dwarf_expr_frame_base_1 (framefunc, expr->scope,
|
||
&datastart, &datalen);
|
||
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
|
||
datastart + datalen, per_cu);
|
||
|
||
if (offset != 0)
|
||
{
|
||
ax_const_l (expr, offset);
|
||
ax_simple (expr, aop_add);
|
||
}
|
||
|
||
loc->kind = axs_lvalue_memory;
|
||
}
|
||
break;
|
||
|
||
case DW_OP_dup:
|
||
ax_simple (expr, aop_dup);
|
||
break;
|
||
|
||
case DW_OP_drop:
|
||
ax_simple (expr, aop_pop);
|
||
break;
|
||
|
||
case DW_OP_pick:
|
||
offset = *op_ptr++;
|
||
ax_pick (expr, offset);
|
||
break;
|
||
|
||
case DW_OP_swap:
|
||
ax_simple (expr, aop_swap);
|
||
break;
|
||
|
||
case DW_OP_over:
|
||
ax_pick (expr, 1);
|
||
break;
|
||
|
||
case DW_OP_rot:
|
||
ax_simple (expr, aop_rot);
|
||
break;
|
||
|
||
case DW_OP_deref:
|
||
case DW_OP_deref_size:
|
||
{
|
||
int size;
|
||
|
||
if (op == DW_OP_deref_size)
|
||
size = *op_ptr++;
|
||
else
|
||
size = addr_size;
|
||
|
||
switch (size)
|
||
{
|
||
case 8:
|
||
ax_simple (expr, aop_ref8);
|
||
break;
|
||
case 16:
|
||
ax_simple (expr, aop_ref16);
|
||
break;
|
||
case 32:
|
||
ax_simple (expr, aop_ref32);
|
||
break;
|
||
case 64:
|
||
ax_simple (expr, aop_ref64);
|
||
break;
|
||
default:
|
||
/* Note that dwarf_stack_op_name will never return
|
||
NULL here. */
|
||
error (_("Unsupported size %d in %s"),
|
||
size, dwarf_stack_op_name (op));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_OP_abs:
|
||
/* Sign extend the operand. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_dup);
|
||
ax_const_l (expr, 0);
|
||
ax_simple (expr, aop_less_signed);
|
||
ax_simple (expr, aop_log_not);
|
||
i = ax_goto (expr, aop_if_goto);
|
||
/* We have to emit 0 - X. */
|
||
ax_const_l (expr, 0);
|
||
ax_simple (expr, aop_swap);
|
||
ax_simple (expr, aop_sub);
|
||
ax_label (expr, i, expr->len);
|
||
break;
|
||
|
||
case DW_OP_neg:
|
||
/* No need to sign extend here. */
|
||
ax_const_l (expr, 0);
|
||
ax_simple (expr, aop_swap);
|
||
ax_simple (expr, aop_sub);
|
||
break;
|
||
|
||
case DW_OP_not:
|
||
/* Sign extend the operand. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_bit_not);
|
||
break;
|
||
|
||
case DW_OP_plus_uconst:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
/* It would be really weird to emit `DW_OP_plus_uconst 0',
|
||
but we micro-optimize anyhow. */
|
||
if (reg != 0)
|
||
{
|
||
ax_const_l (expr, reg);
|
||
ax_simple (expr, aop_add);
|
||
}
|
||
break;
|
||
|
||
case DW_OP_and:
|
||
ax_simple (expr, aop_bit_and);
|
||
break;
|
||
|
||
case DW_OP_div:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_simple (expr, aop_div_signed);
|
||
break;
|
||
|
||
case DW_OP_minus:
|
||
ax_simple (expr, aop_sub);
|
||
break;
|
||
|
||
case DW_OP_mod:
|
||
ax_simple (expr, aop_rem_unsigned);
|
||
break;
|
||
|
||
case DW_OP_mul:
|
||
ax_simple (expr, aop_mul);
|
||
break;
|
||
|
||
case DW_OP_or:
|
||
ax_simple (expr, aop_bit_or);
|
||
break;
|
||
|
||
case DW_OP_plus:
|
||
ax_simple (expr, aop_add);
|
||
break;
|
||
|
||
case DW_OP_shl:
|
||
ax_simple (expr, aop_lsh);
|
||
break;
|
||
|
||
case DW_OP_shr:
|
||
ax_simple (expr, aop_rsh_unsigned);
|
||
break;
|
||
|
||
case DW_OP_shra:
|
||
ax_simple (expr, aop_rsh_signed);
|
||
break;
|
||
|
||
case DW_OP_xor:
|
||
ax_simple (expr, aop_bit_xor);
|
||
break;
|
||
|
||
case DW_OP_le:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
/* Note no swap here: A <= B is !(B < A). */
|
||
ax_simple (expr, aop_less_signed);
|
||
ax_simple (expr, aop_log_not);
|
||
break;
|
||
|
||
case DW_OP_ge:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
/* A >= B is !(A < B). */
|
||
ax_simple (expr, aop_less_signed);
|
||
ax_simple (expr, aop_log_not);
|
||
break;
|
||
|
||
case DW_OP_eq:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
/* No need for a second swap here. */
|
||
ax_simple (expr, aop_equal);
|
||
break;
|
||
|
||
case DW_OP_lt:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_simple (expr, aop_less_signed);
|
||
break;
|
||
|
||
case DW_OP_gt:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
/* Note no swap here: A > B is B < A. */
|
||
ax_simple (expr, aop_less_signed);
|
||
break;
|
||
|
||
case DW_OP_ne:
|
||
/* Sign extend the operands. */
|
||
ax_ext (expr, addr_size_bits);
|
||
ax_simple (expr, aop_swap);
|
||
ax_ext (expr, addr_size_bits);
|
||
/* No need for a swap here. */
|
||
ax_simple (expr, aop_equal);
|
||
ax_simple (expr, aop_log_not);
|
||
break;
|
||
|
||
case DW_OP_call_frame_cfa:
|
||
dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
|
||
loc->kind = axs_lvalue_memory;
|
||
break;
|
||
|
||
case DW_OP_GNU_push_tls_address:
|
||
unimplemented (op);
|
||
break;
|
||
|
||
case DW_OP_skip:
|
||
offset = extract_signed_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
i = ax_goto (expr, aop_goto);
|
||
VEC_safe_push (int, dw_labels, op_ptr + offset - base);
|
||
VEC_safe_push (int, patches, i);
|
||
break;
|
||
|
||
case DW_OP_bra:
|
||
offset = extract_signed_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
/* Zero extend the operand. */
|
||
ax_zero_ext (expr, addr_size_bits);
|
||
i = ax_goto (expr, aop_if_goto);
|
||
VEC_safe_push (int, dw_labels, op_ptr + offset - base);
|
||
VEC_safe_push (int, patches, i);
|
||
break;
|
||
|
||
case DW_OP_nop:
|
||
break;
|
||
|
||
case DW_OP_piece:
|
||
case DW_OP_bit_piece:
|
||
{
|
||
ULONGEST size, offset;
|
||
|
||
if (op_ptr - 1 == previous_piece)
|
||
error (_("Cannot translate empty pieces to agent expressions"));
|
||
previous_piece = op_ptr - 1;
|
||
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &size);
|
||
if (op == DW_OP_piece)
|
||
{
|
||
size *= 8;
|
||
offset = 0;
|
||
}
|
||
else
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &offset);
|
||
|
||
if (bits_collected + size > 8 * sizeof (LONGEST))
|
||
error (_("Expression pieces exceed word size"));
|
||
|
||
/* Access the bits. */
|
||
switch (loc->kind)
|
||
{
|
||
case axs_lvalue_register:
|
||
ax_reg (expr, loc->u.reg);
|
||
break;
|
||
|
||
case axs_lvalue_memory:
|
||
/* Offset the pointer, if needed. */
|
||
if (offset > 8)
|
||
{
|
||
ax_const_l (expr, offset / 8);
|
||
ax_simple (expr, aop_add);
|
||
offset %= 8;
|
||
}
|
||
access_memory (arch, expr, size);
|
||
break;
|
||
}
|
||
|
||
/* For a bits-big-endian target, shift up what we already
|
||
have. For a bits-little-endian target, shift up the
|
||
new data. Note that there is a potential bug here if
|
||
the DWARF expression leaves multiple values on the
|
||
stack. */
|
||
if (bits_collected > 0)
|
||
{
|
||
if (bits_big_endian)
|
||
{
|
||
ax_simple (expr, aop_swap);
|
||
ax_const_l (expr, size);
|
||
ax_simple (expr, aop_lsh);
|
||
/* We don't need a second swap here, because
|
||
aop_bit_or is symmetric. */
|
||
}
|
||
else
|
||
{
|
||
ax_const_l (expr, size);
|
||
ax_simple (expr, aop_lsh);
|
||
}
|
||
ax_simple (expr, aop_bit_or);
|
||
}
|
||
|
||
bits_collected += size;
|
||
loc->kind = axs_rvalue;
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_uninit:
|
||
unimplemented (op);
|
||
|
||
case DW_OP_call2:
|
||
case DW_OP_call4:
|
||
{
|
||
struct dwarf2_locexpr_baton block;
|
||
int size = (op == DW_OP_call2 ? 2 : 4);
|
||
cu_offset offset;
|
||
|
||
uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
|
||
op_ptr += size;
|
||
|
||
offset.cu_off = uoffset;
|
||
block = dwarf2_fetch_die_location_block (offset, per_cu,
|
||
get_ax_pc, expr);
|
||
|
||
/* DW_OP_call_ref is currently not supported. */
|
||
gdb_assert (block.per_cu == per_cu);
|
||
|
||
dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
|
||
block.data, block.data + block.size,
|
||
per_cu);
|
||
}
|
||
break;
|
||
|
||
case DW_OP_call_ref:
|
||
unimplemented (op);
|
||
|
||
default:
|
||
unimplemented (op);
|
||
}
|
||
}
|
||
|
||
/* Patch all the branches we emitted. */
|
||
for (i = 0; i < VEC_length (int, patches); ++i)
|
||
{
|
||
int targ = offsets[VEC_index (int, dw_labels, i)];
|
||
if (targ == -1)
|
||
internal_error (__FILE__, __LINE__, _("invalid label"));
|
||
ax_label (expr, VEC_index (int, patches, i), targ);
|
||
}
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
|
||
/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
|
||
evaluator to calculate the location. */
|
||
static struct value *
|
||
locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
struct value *val;
|
||
|
||
val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
|
||
dlbaton->size, dlbaton->per_cu);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
|
||
entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
|
||
will be thrown. */
|
||
|
||
static struct value *
|
||
locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
|
||
return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
|
||
dlbaton->size);
|
||
}
|
||
|
||
/* Return non-zero iff we need a frame to evaluate SYMBOL. */
|
||
static int
|
||
locexpr_read_needs_frame (struct symbol *symbol)
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
|
||
return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
|
||
dlbaton->per_cu);
|
||
}
|
||
|
||
/* Return true if DATA points to the end of a piece. END is one past
|
||
the last byte in the expression. */
|
||
|
||
static int
|
||
piece_end_p (const gdb_byte *data, const gdb_byte *end)
|
||
{
|
||
return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
|
||
}
|
||
|
||
/* Helper for locexpr_describe_location_piece that finds the name of a
|
||
DWARF register. */
|
||
|
||
static const char *
|
||
locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
|
||
{
|
||
int regnum;
|
||
|
||
regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
|
||
return gdbarch_register_name (gdbarch, regnum);
|
||
}
|
||
|
||
/* Nicely describe a single piece of a location, returning an updated
|
||
position in the bytecode sequence. This function cannot recognize
|
||
all locations; if a location is not recognized, it simply returns
|
||
DATA. */
|
||
|
||
static const gdb_byte *
|
||
locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
|
||
CORE_ADDR addr, struct objfile *objfile,
|
||
const gdb_byte *data, const gdb_byte *end,
|
||
unsigned int addr_size)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
|
||
{
|
||
fprintf_filtered (stream, _("a variable in $%s"),
|
||
locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
|
||
data += 1;
|
||
}
|
||
else if (data[0] == DW_OP_regx)
|
||
{
|
||
ULONGEST reg;
|
||
|
||
data = read_uleb128 (data + 1, end, ®);
|
||
fprintf_filtered (stream, _("a variable in $%s"),
|
||
locexpr_regname (gdbarch, reg));
|
||
}
|
||
else if (data[0] == DW_OP_fbreg)
|
||
{
|
||
struct block *b;
|
||
struct symbol *framefunc;
|
||
int frame_reg = 0;
|
||
LONGEST frame_offset;
|
||
const gdb_byte *base_data, *new_data, *save_data = data;
|
||
size_t base_size;
|
||
LONGEST base_offset = 0;
|
||
|
||
new_data = read_sleb128 (data + 1, end, &frame_offset);
|
||
if (!piece_end_p (new_data, end))
|
||
return data;
|
||
data = new_data;
|
||
|
||
b = block_for_pc (addr);
|
||
|
||
if (!b)
|
||
error (_("No block found for address for symbol \"%s\"."),
|
||
SYMBOL_PRINT_NAME (symbol));
|
||
|
||
framefunc = block_linkage_function (b);
|
||
|
||
if (!framefunc)
|
||
error (_("No function found for block for symbol \"%s\"."),
|
||
SYMBOL_PRINT_NAME (symbol));
|
||
|
||
dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
|
||
|
||
if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
|
||
{
|
||
const gdb_byte *buf_end;
|
||
|
||
frame_reg = base_data[0] - DW_OP_breg0;
|
||
buf_end = read_sleb128 (base_data + 1,
|
||
base_data + base_size, &base_offset);
|
||
if (buf_end != base_data + base_size)
|
||
error (_("Unexpected opcode after "
|
||
"DW_OP_breg%u for symbol \"%s\"."),
|
||
frame_reg, SYMBOL_PRINT_NAME (symbol));
|
||
}
|
||
else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
|
||
{
|
||
/* The frame base is just the register, with no offset. */
|
||
frame_reg = base_data[0] - DW_OP_reg0;
|
||
base_offset = 0;
|
||
}
|
||
else
|
||
{
|
||
/* We don't know what to do with the frame base expression,
|
||
so we can't trace this variable; give up. */
|
||
return save_data;
|
||
}
|
||
|
||
fprintf_filtered (stream,
|
||
_("a variable at frame base reg $%s offset %s+%s"),
|
||
locexpr_regname (gdbarch, frame_reg),
|
||
plongest (base_offset), plongest (frame_offset));
|
||
}
|
||
else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
|
||
&& piece_end_p (data, end))
|
||
{
|
||
LONGEST offset;
|
||
|
||
data = read_sleb128 (data + 1, end, &offset);
|
||
|
||
fprintf_filtered (stream,
|
||
_("a variable at offset %s from base reg $%s"),
|
||
plongest (offset),
|
||
locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
|
||
}
|
||
|
||
/* The location expression for a TLS variable looks like this (on a
|
||
64-bit LE machine):
|
||
|
||
DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
|
||
(DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
|
||
|
||
0x3 is the encoding for DW_OP_addr, which has an operand as long
|
||
as the size of an address on the target machine (here is 8
|
||
bytes). Note that more recent version of GCC emit DW_OP_const4u
|
||
or DW_OP_const8u, depending on address size, rather than
|
||
DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
|
||
The operand represents the offset at which the variable is within
|
||
the thread local storage. */
|
||
|
||
else if (data + 1 + addr_size < end
|
||
&& (data[0] == DW_OP_addr
|
||
|| (addr_size == 4 && data[0] == DW_OP_const4u)
|
||
|| (addr_size == 8 && data[0] == DW_OP_const8u))
|
||
&& data[1 + addr_size] == DW_OP_GNU_push_tls_address
|
||
&& piece_end_p (data + 2 + addr_size, end))
|
||
{
|
||
ULONGEST offset;
|
||
offset = extract_unsigned_integer (data + 1, addr_size,
|
||
gdbarch_byte_order (gdbarch));
|
||
|
||
fprintf_filtered (stream,
|
||
_("a thread-local variable at offset 0x%s "
|
||
"in the thread-local storage for `%s'"),
|
||
phex_nz (offset, addr_size), objfile->name);
|
||
|
||
data += 1 + addr_size + 1;
|
||
}
|
||
else if (data[0] >= DW_OP_lit0
|
||
&& data[0] <= DW_OP_lit31
|
||
&& data + 1 < end
|
||
&& data[1] == DW_OP_stack_value)
|
||
{
|
||
fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
|
||
data += 2;
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
/* Disassemble an expression, stopping at the end of a piece or at the
|
||
end of the expression. Returns a pointer to the next unread byte
|
||
in the input expression. If ALL is nonzero, then this function
|
||
will keep going until it reaches the end of the expression. */
|
||
|
||
static const gdb_byte *
|
||
disassemble_dwarf_expression (struct ui_file *stream,
|
||
struct gdbarch *arch, unsigned int addr_size,
|
||
int offset_size, const gdb_byte *start,
|
||
const gdb_byte *data, const gdb_byte *end,
|
||
int indent, int all,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
while (data < end
|
||
&& (all
|
||
|| (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
|
||
{
|
||
enum dwarf_location_atom op = *data++;
|
||
ULONGEST ul;
|
||
LONGEST l;
|
||
const char *name;
|
||
|
||
name = dwarf_stack_op_name (op);
|
||
|
||
if (!name)
|
||
error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
|
||
op, (long) (data - 1 - start));
|
||
fprintf_filtered (stream, " %*ld: %s", indent + 4,
|
||
(long) (data - 1 - start), name);
|
||
|
||
switch (op)
|
||
{
|
||
case DW_OP_addr:
|
||
ul = extract_unsigned_integer (data, addr_size,
|
||
gdbarch_byte_order (arch));
|
||
data += addr_size;
|
||
fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
|
||
break;
|
||
|
||
case DW_OP_const1u:
|
||
ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
|
||
data += 1;
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
case DW_OP_const1s:
|
||
l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
|
||
data += 1;
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
case DW_OP_const2u:
|
||
ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
|
||
data += 2;
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
case DW_OP_const2s:
|
||
l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
|
||
data += 2;
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
case DW_OP_const4u:
|
||
ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
|
||
data += 4;
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
case DW_OP_const4s:
|
||
l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
|
||
data += 4;
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
case DW_OP_const8u:
|
||
ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
|
||
data += 8;
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
case DW_OP_const8s:
|
||
l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
|
||
data += 8;
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
case DW_OP_constu:
|
||
data = read_uleb128 (data, end, &ul);
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
case DW_OP_consts:
|
||
data = read_sleb128 (data, end, &l);
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
|
||
case DW_OP_reg0:
|
||
case DW_OP_reg1:
|
||
case DW_OP_reg2:
|
||
case DW_OP_reg3:
|
||
case DW_OP_reg4:
|
||
case DW_OP_reg5:
|
||
case DW_OP_reg6:
|
||
case DW_OP_reg7:
|
||
case DW_OP_reg8:
|
||
case DW_OP_reg9:
|
||
case DW_OP_reg10:
|
||
case DW_OP_reg11:
|
||
case DW_OP_reg12:
|
||
case DW_OP_reg13:
|
||
case DW_OP_reg14:
|
||
case DW_OP_reg15:
|
||
case DW_OP_reg16:
|
||
case DW_OP_reg17:
|
||
case DW_OP_reg18:
|
||
case DW_OP_reg19:
|
||
case DW_OP_reg20:
|
||
case DW_OP_reg21:
|
||
case DW_OP_reg22:
|
||
case DW_OP_reg23:
|
||
case DW_OP_reg24:
|
||
case DW_OP_reg25:
|
||
case DW_OP_reg26:
|
||
case DW_OP_reg27:
|
||
case DW_OP_reg28:
|
||
case DW_OP_reg29:
|
||
case DW_OP_reg30:
|
||
case DW_OP_reg31:
|
||
fprintf_filtered (stream, " [$%s]",
|
||
locexpr_regname (arch, op - DW_OP_reg0));
|
||
break;
|
||
|
||
case DW_OP_regx:
|
||
data = read_uleb128 (data, end, &ul);
|
||
fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
|
||
locexpr_regname (arch, (int) ul));
|
||
break;
|
||
|
||
case DW_OP_implicit_value:
|
||
data = read_uleb128 (data, end, &ul);
|
||
data += ul;
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
|
||
case DW_OP_breg0:
|
||
case DW_OP_breg1:
|
||
case DW_OP_breg2:
|
||
case DW_OP_breg3:
|
||
case DW_OP_breg4:
|
||
case DW_OP_breg5:
|
||
case DW_OP_breg6:
|
||
case DW_OP_breg7:
|
||
case DW_OP_breg8:
|
||
case DW_OP_breg9:
|
||
case DW_OP_breg10:
|
||
case DW_OP_breg11:
|
||
case DW_OP_breg12:
|
||
case DW_OP_breg13:
|
||
case DW_OP_breg14:
|
||
case DW_OP_breg15:
|
||
case DW_OP_breg16:
|
||
case DW_OP_breg17:
|
||
case DW_OP_breg18:
|
||
case DW_OP_breg19:
|
||
case DW_OP_breg20:
|
||
case DW_OP_breg21:
|
||
case DW_OP_breg22:
|
||
case DW_OP_breg23:
|
||
case DW_OP_breg24:
|
||
case DW_OP_breg25:
|
||
case DW_OP_breg26:
|
||
case DW_OP_breg27:
|
||
case DW_OP_breg28:
|
||
case DW_OP_breg29:
|
||
case DW_OP_breg30:
|
||
case DW_OP_breg31:
|
||
data = read_sleb128 (data, end, &l);
|
||
fprintf_filtered (stream, " %s [$%s]", plongest (l),
|
||
locexpr_regname (arch, op - DW_OP_breg0));
|
||
break;
|
||
|
||
case DW_OP_bregx:
|
||
data = read_uleb128 (data, end, &ul);
|
||
data = read_sleb128 (data, end, &l);
|
||
fprintf_filtered (stream, " register %s [$%s] offset %s",
|
||
pulongest (ul),
|
||
locexpr_regname (arch, (int) ul),
|
||
plongest (l));
|
||
break;
|
||
|
||
case DW_OP_fbreg:
|
||
data = read_sleb128 (data, end, &l);
|
||
fprintf_filtered (stream, " %s", plongest (l));
|
||
break;
|
||
|
||
case DW_OP_xderef_size:
|
||
case DW_OP_deref_size:
|
||
case DW_OP_pick:
|
||
fprintf_filtered (stream, " %d", *data);
|
||
++data;
|
||
break;
|
||
|
||
case DW_OP_plus_uconst:
|
||
data = read_uleb128 (data, end, &ul);
|
||
fprintf_filtered (stream, " %s", pulongest (ul));
|
||
break;
|
||
|
||
case DW_OP_skip:
|
||
l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
|
||
data += 2;
|
||
fprintf_filtered (stream, " to %ld",
|
||
(long) (data + l - start));
|
||
break;
|
||
|
||
case DW_OP_bra:
|
||
l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
|
||
data += 2;
|
||
fprintf_filtered (stream, " %ld",
|
||
(long) (data + l - start));
|
||
break;
|
||
|
||
case DW_OP_call2:
|
||
ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
|
||
data += 2;
|
||
fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
|
||
break;
|
||
|
||
case DW_OP_call4:
|
||
ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
|
||
data += 4;
|
||
fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
|
||
break;
|
||
|
||
case DW_OP_call_ref:
|
||
ul = extract_unsigned_integer (data, offset_size,
|
||
gdbarch_byte_order (arch));
|
||
data += offset_size;
|
||
fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
|
||
break;
|
||
|
||
case DW_OP_piece:
|
||
data = read_uleb128 (data, end, &ul);
|
||
fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
|
||
break;
|
||
|
||
case DW_OP_bit_piece:
|
||
{
|
||
ULONGEST offset;
|
||
|
||
data = read_uleb128 (data, end, &ul);
|
||
data = read_uleb128 (data, end, &offset);
|
||
fprintf_filtered (stream, " size %s offset %s (bits)",
|
||
pulongest (ul), pulongest (offset));
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_implicit_pointer:
|
||
{
|
||
ul = extract_unsigned_integer (data, offset_size,
|
||
gdbarch_byte_order (arch));
|
||
data += offset_size;
|
||
|
||
data = read_sleb128 (data, end, &l);
|
||
|
||
fprintf_filtered (stream, " DIE %s offset %s",
|
||
phex_nz (ul, offset_size),
|
||
plongest (l));
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_deref_type:
|
||
{
|
||
int addr_size = *data++;
|
||
cu_offset offset;
|
||
struct type *type;
|
||
|
||
data = read_uleb128 (data, end, &ul);
|
||
offset.cu_off = ul;
|
||
type = dwarf2_get_die_type (offset, per_cu);
|
||
fprintf_filtered (stream, "<");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
|
||
addr_size);
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_const_type:
|
||
{
|
||
cu_offset type_die;
|
||
struct type *type;
|
||
|
||
data = read_uleb128 (data, end, &ul);
|
||
type_die.cu_off = ul;
|
||
type = dwarf2_get_die_type (type_die, per_cu);
|
||
fprintf_filtered (stream, "<");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_regval_type:
|
||
{
|
||
ULONGEST reg;
|
||
cu_offset type_die;
|
||
struct type *type;
|
||
|
||
data = read_uleb128 (data, end, ®);
|
||
data = read_uleb128 (data, end, &ul);
|
||
type_die.cu_off = ul;
|
||
|
||
type = dwarf2_get_die_type (type_die, per_cu);
|
||
fprintf_filtered (stream, "<");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, " [0x%s]> [$%s]",
|
||
phex_nz (type_die.cu_off, 0),
|
||
locexpr_regname (arch, reg));
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_convert:
|
||
case DW_OP_GNU_reinterpret:
|
||
{
|
||
cu_offset type_die;
|
||
|
||
data = read_uleb128 (data, end, &ul);
|
||
type_die.cu_off = ul;
|
||
|
||
if (type_die.cu_off == 0)
|
||
fprintf_filtered (stream, "<0>");
|
||
else
|
||
{
|
||
struct type *type;
|
||
|
||
type = dwarf2_get_die_type (type_die, per_cu);
|
||
fprintf_filtered (stream, "<");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_OP_GNU_entry_value:
|
||
data = read_uleb128 (data, end, &ul);
|
||
fputc_filtered ('\n', stream);
|
||
disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
|
||
start, data, data + ul, indent + 2,
|
||
all, per_cu);
|
||
data += ul;
|
||
continue;
|
||
}
|
||
|
||
fprintf_filtered (stream, "\n");
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
/* Describe a single location, which may in turn consist of multiple
|
||
pieces. */
|
||
|
||
static void
|
||
locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
|
||
struct ui_file *stream,
|
||
const gdb_byte *data, int size,
|
||
struct objfile *objfile, unsigned int addr_size,
|
||
int offset_size, struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
const gdb_byte *end = data + size;
|
||
int first_piece = 1, bad = 0;
|
||
|
||
while (data < end)
|
||
{
|
||
const gdb_byte *here = data;
|
||
int disassemble = 1;
|
||
|
||
if (first_piece)
|
||
first_piece = 0;
|
||
else
|
||
fprintf_filtered (stream, _(", and "));
|
||
|
||
if (!dwarf2_always_disassemble)
|
||
{
|
||
data = locexpr_describe_location_piece (symbol, stream,
|
||
addr, objfile,
|
||
data, end, addr_size);
|
||
/* If we printed anything, or if we have an empty piece,
|
||
then don't disassemble. */
|
||
if (data != here
|
||
|| data[0] == DW_OP_piece
|
||
|| data[0] == DW_OP_bit_piece)
|
||
disassemble = 0;
|
||
}
|
||
if (disassemble)
|
||
{
|
||
fprintf_filtered (stream, _("a complex DWARF expression:\n"));
|
||
data = disassemble_dwarf_expression (stream,
|
||
get_objfile_arch (objfile),
|
||
addr_size, offset_size, data,
|
||
data, end, 0,
|
||
dwarf2_always_disassemble,
|
||
per_cu);
|
||
}
|
||
|
||
if (data < end)
|
||
{
|
||
int empty = data == here;
|
||
|
||
if (disassemble)
|
||
fprintf_filtered (stream, " ");
|
||
if (data[0] == DW_OP_piece)
|
||
{
|
||
ULONGEST bytes;
|
||
|
||
data = read_uleb128 (data + 1, end, &bytes);
|
||
|
||
if (empty)
|
||
fprintf_filtered (stream, _("an empty %s-byte piece"),
|
||
pulongest (bytes));
|
||
else
|
||
fprintf_filtered (stream, _(" [%s-byte piece]"),
|
||
pulongest (bytes));
|
||
}
|
||
else if (data[0] == DW_OP_bit_piece)
|
||
{
|
||
ULONGEST bits, offset;
|
||
|
||
data = read_uleb128 (data + 1, end, &bits);
|
||
data = read_uleb128 (data, end, &offset);
|
||
|
||
if (empty)
|
||
fprintf_filtered (stream,
|
||
_("an empty %s-bit piece"),
|
||
pulongest (bits));
|
||
else
|
||
fprintf_filtered (stream,
|
||
_(" [%s-bit piece, offset %s bits]"),
|
||
pulongest (bits), pulongest (offset));
|
||
}
|
||
else
|
||
{
|
||
bad = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (bad || data > end)
|
||
error (_("Corrupted DWARF2 expression for \"%s\"."),
|
||
SYMBOL_PRINT_NAME (symbol));
|
||
}
|
||
|
||
/* Print a natural-language description of SYMBOL to STREAM. This
|
||
version is for a symbol with a single location. */
|
||
|
||
static void
|
||
locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
|
||
struct ui_file *stream)
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
|
||
unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
|
||
int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
|
||
|
||
locexpr_describe_location_1 (symbol, addr, stream,
|
||
dlbaton->data, dlbaton->size,
|
||
objfile, addr_size, offset_size,
|
||
dlbaton->per_cu);
|
||
}
|
||
|
||
/* Describe the location of SYMBOL as an agent value in VALUE, generating
|
||
any necessary bytecode in AX. */
|
||
|
||
static void
|
||
locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, struct axs_value *value)
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
|
||
|
||
if (dlbaton->size == 0)
|
||
value->optimized_out = 1;
|
||
else
|
||
dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
|
||
dlbaton->data, dlbaton->data + dlbaton->size,
|
||
dlbaton->per_cu);
|
||
}
|
||
|
||
/* The set of location functions used with the DWARF-2 expression
|
||
evaluator. */
|
||
const struct symbol_computed_ops dwarf2_locexpr_funcs = {
|
||
locexpr_read_variable,
|
||
locexpr_read_variable_at_entry,
|
||
locexpr_read_needs_frame,
|
||
locexpr_describe_location,
|
||
locexpr_tracepoint_var_ref
|
||
};
|
||
|
||
|
||
/* Wrapper functions for location lists. These generally find
|
||
the appropriate location expression and call something above. */
|
||
|
||
/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
|
||
evaluator to calculate the location. */
|
||
static struct value *
|
||
loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
|
||
{
|
||
struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
struct value *val;
|
||
const gdb_byte *data;
|
||
size_t size;
|
||
CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
|
||
|
||
data = dwarf2_find_location_expression (dlbaton, &size, pc);
|
||
val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
|
||
dlbaton->per_cu);
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
|
||
entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
|
||
will be thrown.
|
||
|
||
Function always returns non-NULL value, it may be marked optimized out if
|
||
inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
|
||
if it cannot resolve the parameter for any reason. */
|
||
|
||
static struct value *
|
||
loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
|
||
{
|
||
struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
const gdb_byte *data;
|
||
size_t size;
|
||
CORE_ADDR pc;
|
||
|
||
if (frame == NULL || !get_frame_func_if_available (frame, &pc))
|
||
return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
|
||
|
||
data = dwarf2_find_location_expression (dlbaton, &size, pc);
|
||
if (data == NULL)
|
||
return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
|
||
|
||
return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
|
||
}
|
||
|
||
/* Return non-zero iff we need a frame to evaluate SYMBOL. */
|
||
static int
|
||
loclist_read_needs_frame (struct symbol *symbol)
|
||
{
|
||
/* If there's a location list, then assume we need to have a frame
|
||
to choose the appropriate location expression. With tracking of
|
||
global variables this is not necessarily true, but such tracking
|
||
is disabled in GCC at the moment until we figure out how to
|
||
represent it. */
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Print a natural-language description of SYMBOL to STREAM. This
|
||
version applies when there is a list of different locations, each
|
||
with a specified address range. */
|
||
|
||
static void
|
||
loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
|
||
struct ui_file *stream)
|
||
{
|
||
struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
CORE_ADDR low, high;
|
||
const gdb_byte *loc_ptr, *buf_end;
|
||
int length, first = 1;
|
||
struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
|
||
int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
|
||
int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
|
||
CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
/* Adjust base_address for relocatable objects. */
|
||
CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
|
||
CORE_ADDR base_address = dlbaton->base_address + base_offset;
|
||
|
||
loc_ptr = dlbaton->data;
|
||
buf_end = dlbaton->data + dlbaton->size;
|
||
|
||
fprintf_filtered (stream, _("multi-location:\n"));
|
||
|
||
/* Iterate through locations until we run out. */
|
||
while (1)
|
||
{
|
||
if (buf_end - loc_ptr < 2 * addr_size)
|
||
error (_("Corrupted DWARF expression for symbol \"%s\"."),
|
||
SYMBOL_PRINT_NAME (symbol));
|
||
|
||
if (signed_addr_p)
|
||
low = extract_signed_integer (loc_ptr, addr_size, byte_order);
|
||
else
|
||
low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
|
||
loc_ptr += addr_size;
|
||
|
||
if (signed_addr_p)
|
||
high = extract_signed_integer (loc_ptr, addr_size, byte_order);
|
||
else
|
||
high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
|
||
loc_ptr += addr_size;
|
||
|
||
/* A base-address-selection entry. */
|
||
if ((low & base_mask) == base_mask)
|
||
{
|
||
base_address = high + base_offset;
|
||
fprintf_filtered (stream, _(" Base address %s"),
|
||
paddress (gdbarch, base_address));
|
||
continue;
|
||
}
|
||
|
||
/* An end-of-list entry. */
|
||
if (low == 0 && high == 0)
|
||
break;
|
||
|
||
/* Otherwise, a location expression entry. */
|
||
low += base_address;
|
||
high += base_address;
|
||
|
||
length = extract_unsigned_integer (loc_ptr, 2, byte_order);
|
||
loc_ptr += 2;
|
||
|
||
/* (It would improve readability to print only the minimum
|
||
necessary digits of the second number of the range.) */
|
||
fprintf_filtered (stream, _(" Range %s-%s: "),
|
||
paddress (gdbarch, low), paddress (gdbarch, high));
|
||
|
||
/* Now describe this particular location. */
|
||
locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
|
||
objfile, addr_size, offset_size,
|
||
dlbaton->per_cu);
|
||
|
||
fprintf_filtered (stream, "\n");
|
||
|
||
loc_ptr += length;
|
||
}
|
||
}
|
||
|
||
/* Describe the location of SYMBOL as an agent value in VALUE, generating
|
||
any necessary bytecode in AX. */
|
||
static void
|
||
loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, struct axs_value *value)
|
||
{
|
||
struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
|
||
const gdb_byte *data;
|
||
size_t size;
|
||
unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
|
||
|
||
data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
|
||
if (size == 0)
|
||
value->optimized_out = 1;
|
||
else
|
||
dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
|
||
dlbaton->per_cu);
|
||
}
|
||
|
||
/* The set of location functions used with the DWARF-2 expression
|
||
evaluator and location lists. */
|
||
const struct symbol_computed_ops dwarf2_loclist_funcs = {
|
||
loclist_read_variable,
|
||
loclist_read_variable_at_entry,
|
||
loclist_read_needs_frame,
|
||
loclist_describe_location,
|
||
loclist_tracepoint_var_ref
|
||
};
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
extern initialize_file_ftype _initialize_dwarf2loc;
|
||
|
||
void
|
||
_initialize_dwarf2loc (void)
|
||
{
|
||
add_setshow_zinteger_cmd ("entry-values", class_maintenance,
|
||
&entry_values_debug,
|
||
_("Set entry values and tail call frames "
|
||
"debugging."),
|
||
_("Show entry values and tail call frames "
|
||
"debugging."),
|
||
_("When non-zero, the process of determining "
|
||
"parameter values from function entry point "
|
||
"and tail call frames will be printed."),
|
||
NULL,
|
||
show_entry_values_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|