dcb74f961a
instead of bfd_get_section_size_before_reloc. (htab_dma_binary(bfd): Likewise. * hw_init.c (update_for_binary_section(bfd): Likewise.
722 lines
20 KiB
C
722 lines
20 KiB
C
/* This file is part of the program psim.
|
|
|
|
Copyright 1994, 1997, 2003, 2004 Andrew Cagney
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
#ifndef _HW_INIT_C_
|
|
#define _HW_INIT_C_
|
|
|
|
#include "device_table.h"
|
|
#include "bfd.h"
|
|
#include "psim.h"
|
|
|
|
|
|
/* DMA a file into memory */
|
|
static int
|
|
dma_file(device *me,
|
|
const char *file_name,
|
|
unsigned_word addr)
|
|
{
|
|
int count;
|
|
int inc;
|
|
FILE *image;
|
|
char buf[1024];
|
|
|
|
/* get it open */
|
|
image = fopen(file_name, "r");
|
|
if (image == NULL)
|
|
return -1;
|
|
|
|
/* read it in slowly */
|
|
count = 0;
|
|
while (1) {
|
|
inc = fread(buf, 1, sizeof(buf), image);
|
|
if (inc <= 0)
|
|
break;
|
|
if (device_dma_write_buffer(device_parent(me),
|
|
buf,
|
|
0 /*address-space*/,
|
|
addr+count,
|
|
inc /*nr-bytes*/,
|
|
1 /*violate ro*/) != inc) {
|
|
fclose(image);
|
|
return -1;
|
|
}
|
|
count += inc;
|
|
}
|
|
|
|
/* close down again */
|
|
fclose(image);
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
/* DEVICE
|
|
|
|
file - load a file into memory
|
|
|
|
DESCRIPTION
|
|
|
|
Loads the entire contents of <file-name> into memory at starting at
|
|
<<real-address>>. Assumes that memory exists for the load.
|
|
|
|
PROPERTIES
|
|
|
|
file-name = <string>
|
|
|
|
Name of the file to be loaded into memory
|
|
|
|
real-address = <integer>
|
|
|
|
Real address at which the file is to be loaded */
|
|
|
|
static void
|
|
hw_file_init_data_callback(device *me)
|
|
{
|
|
int count;
|
|
const char *file_name = device_find_string_property(me, "file-name");
|
|
unsigned_word addr = device_find_integer_property(me, "real-address");
|
|
/* load the file */
|
|
count = dma_file(me, file_name, addr);
|
|
if (count < 0)
|
|
device_error(me, "Problem loading file %s\n", file_name);
|
|
}
|
|
|
|
|
|
static device_callbacks const hw_file_callbacks = {
|
|
{ NULL, hw_file_init_data_callback, },
|
|
{ NULL, }, /* address */
|
|
{ NULL, }, /* IO */
|
|
{ NULL, }, /* DMA */
|
|
{ NULL, }, /* interrupt */
|
|
{ NULL, }, /* unit */
|
|
};
|
|
|
|
|
|
/* DEVICE
|
|
|
|
|
|
data - initialize a memory location with specified data
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
|
The pseudo device <<data>> provides a mechanism specifying the
|
|
initialization of a small section of memory.
|
|
|
|
Normally, the data would be written using a dma operation.
|
|
However, for some addresses this will not result in the desired
|
|
result. For instance, to initialize an address in an eeprom,
|
|
instead of a simple dma of the data, a sequence of writes (and then
|
|
real delays) that program the eeprom would be required.
|
|
|
|
For dma write initialization, the data device will write the
|
|
specified <<data>> to <<real-address>> using a normal dma.
|
|
|
|
For instance write initialization, the specified <<instance>> is
|
|
opened. Then a seek to the <<real-address>> is performed followed
|
|
by a write of the data.
|
|
|
|
|
|
Integer properties are stored using the target's endian mode.
|
|
|
|
|
|
PROPERTIES
|
|
|
|
|
|
data = <any-valid-property> (required)
|
|
|
|
Data to be loaded into memory. The property type determines how it
|
|
is loaded.
|
|
|
|
|
|
real-address = <integer> (required)
|
|
|
|
Start address at which the data is to be stored.
|
|
|
|
|
|
instance = <string> (optional)
|
|
|
|
Instance specification of the device that is to be opened so that
|
|
the specified data can be written to it.
|
|
|
|
|
|
EXAMPLES
|
|
|
|
|
|
The examples below illustrate the two alternative mechanisms that
|
|
can be used to store the value 0x12345678 at address 0xfff00c00,
|
|
which is normally part of the 512k system eeprom.
|
|
|
|
|
|
If the eeprom is being modeled by ram (<<memory>> device) then the
|
|
standard dma initialization can be used. By convention: the data
|
|
devices are uniquely identified by argumenting them with the
|
|
destinations real address; and all data devices are put under the
|
|
node <</openprom/init>>.
|
|
|
|
| /openprom/memory@0xfff00000/reg 0xfff00000 0x80000
|
|
| /openprom/init/data@0x1000/data 0x12345678
|
|
| /openprom/init/data@0x1000/real-address 0x1000
|
|
|
|
|
|
If instead a real eeprom was being used the instance write method
|
|
would instead need to be used (storing just a single byte in an
|
|
eeprom requires a complex sequence of accesses). The
|
|
<<real-address>> is specified as <<0x0c00>> which is the offset
|
|
into the eeprom. For brevity, most of the eeprom properties have
|
|
been omited.
|
|
|
|
| /iobus/eeprom@0xfff00000/reg 0xfff00000 0x80000
|
|
| /openprom/init/data@0xfff00c00/real-address 0x0c00
|
|
| /openprom/init/data@0xfff00c00/data 0x12345667
|
|
| /openprom/init/data@0xfff00c00/instance /iobus/eeprom@0xfff00000/reg
|
|
|
|
|
|
BUGS
|
|
|
|
|
|
At present, only <<integer>> properties can be specified for an
|
|
initial data value.
|
|
|
|
*/
|
|
|
|
|
|
static void
|
|
hw_data_init_data_callback(device *me)
|
|
{
|
|
unsigned_word addr = device_find_integer_property(me, "real-address");
|
|
const device_property *data = device_find_property(me, "data");
|
|
const char *instance_spec = (device_find_property(me, "instance") != NULL
|
|
? device_find_string_property(me, "instance")
|
|
: NULL);
|
|
device_instance *instance = NULL;
|
|
if (data == NULL)
|
|
device_error(me, "missing property <data>\n");
|
|
if (instance_spec != NULL)
|
|
instance = tree_instance(me, instance_spec);
|
|
switch (data->type) {
|
|
case integer_property:
|
|
{
|
|
unsigned_cell buf = device_find_integer_property(me, "data");
|
|
H2T(buf);
|
|
if (instance == NULL) {
|
|
if (device_dma_write_buffer(device_parent(me),
|
|
&buf,
|
|
0 /*address-space*/,
|
|
addr,
|
|
sizeof(buf), /*nr-bytes*/
|
|
1 /*violate ro*/) != sizeof(buf))
|
|
device_error(me, "Problem storing integer 0x%x at 0x%lx\n",
|
|
(unsigned)buf, (unsigned long)addr);
|
|
}
|
|
else {
|
|
if (device_instance_seek(instance, 0, addr) < 0
|
|
|| device_instance_write(instance, &buf, sizeof(buf)) != sizeof(buf))
|
|
device_error(me, "Problem storing integer 0x%x at 0x%lx of instance %s\n",
|
|
(unsigned)buf, (unsigned long)addr, instance_spec);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
device_error(me, "Write of this data is not yet implemented\n");
|
|
break;
|
|
}
|
|
if (instance != NULL)
|
|
device_instance_delete(instance);
|
|
}
|
|
|
|
|
|
static device_callbacks const hw_data_callbacks = {
|
|
{ NULL, hw_data_init_data_callback, },
|
|
{ NULL, }, /* address */
|
|
{ NULL, }, /* IO */
|
|
{ NULL, }, /* DMA */
|
|
{ NULL, }, /* interrupt */
|
|
{ NULL, }, /* unit */
|
|
};
|
|
|
|
|
|
/* DEVICE
|
|
|
|
|
|
load-binary - load binary segments into memory
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
Each loadable segment of the specified binary is loaded into memory
|
|
at its required address. It is assumed that the memory at those
|
|
addresses already exists.
|
|
|
|
This device is normally used to load an executable into memory as
|
|
part of real mode simulation.
|
|
|
|
|
|
PROPERTIES
|
|
|
|
|
|
file-name = <string>
|
|
|
|
Name of the binary to be loaded.
|
|
|
|
|
|
claim = <anything> (optional)
|
|
|
|
If this property is present, the real memory that is to be used by
|
|
the image being loaded will be claimed from the memory node
|
|
(specified by the ihandle <</chosen/memory>>).
|
|
|
|
|
|
BUGS
|
|
|
|
|
|
When loading the binary the bfd virtual-address is used. It should
|
|
be using the bfd load-address.
|
|
|
|
*/
|
|
|
|
/* DEVICE
|
|
|
|
map-binary - map the binary into the users address space
|
|
|
|
DESCRIPTION
|
|
|
|
Similar to load-binary except that memory for each segment is
|
|
created before the corresponding data for the segment is loaded.
|
|
|
|
This device is normally used to load an executable into a user mode
|
|
simulation.
|
|
|
|
PROPERTIES
|
|
|
|
file-name = <string>
|
|
|
|
Name of the binary to be loaded.
|
|
|
|
*/
|
|
|
|
static void
|
|
update_for_binary_section(bfd *abfd,
|
|
asection *the_section,
|
|
PTR obj)
|
|
{
|
|
unsigned_word section_vma;
|
|
unsigned_word section_size;
|
|
access_type access;
|
|
device *me = (device*)obj;
|
|
|
|
/* skip the section if no memory to allocate */
|
|
if (! (bfd_get_section_flags(abfd, the_section) & SEC_ALLOC))
|
|
return;
|
|
|
|
/* check/ignore any sections of size zero */
|
|
section_size = bfd_get_section_size (the_section);
|
|
if (section_size == 0)
|
|
return;
|
|
|
|
/* find where it is to go */
|
|
section_vma = bfd_get_section_vma(abfd, the_section);
|
|
|
|
DTRACE(binary,
|
|
("name=%-7s, vma=0x%.8lx, size=%6ld, flags=%3lx(%s%s%s%s%s )\n",
|
|
bfd_get_section_name(abfd, the_section),
|
|
(long)section_vma,
|
|
(long)section_size,
|
|
(long)bfd_get_section_flags(abfd, the_section),
|
|
bfd_get_section_flags(abfd, the_section) & SEC_LOAD ? " LOAD" : "",
|
|
bfd_get_section_flags(abfd, the_section) & SEC_CODE ? " CODE" : "",
|
|
bfd_get_section_flags(abfd, the_section) & SEC_DATA ? " DATA" : "",
|
|
bfd_get_section_flags(abfd, the_section) & SEC_ALLOC ? " ALLOC" : "",
|
|
bfd_get_section_flags(abfd, the_section) & SEC_READONLY ? " READONLY" : ""
|
|
));
|
|
|
|
/* If there is an .interp section, it means it needs a shared library interpreter. */
|
|
if (strcmp(".interp", bfd_get_section_name(abfd, the_section)) == 0)
|
|
error("Shared libraries are not yet supported.\n");
|
|
|
|
/* determine the devices access */
|
|
access = access_read;
|
|
if (bfd_get_section_flags(abfd, the_section) & SEC_CODE)
|
|
access |= access_exec;
|
|
if (!(bfd_get_section_flags(abfd, the_section) & SEC_READONLY))
|
|
access |= access_write;
|
|
|
|
/* if claim specified, allocate region from the memory device */
|
|
if (device_find_property(me, "claim") != NULL) {
|
|
device_instance *memory = tree_find_ihandle_property(me, "/chosen/memory");
|
|
unsigned_cell mem_in[3];
|
|
unsigned_cell mem_out[1];
|
|
mem_in[0] = 0; /*alignment - top-of-stack*/
|
|
mem_in[1] = section_size;
|
|
mem_in[2] = section_vma;
|
|
if (device_instance_call_method(memory, "claim", 3, mem_in, 1, mem_out) < 0)
|
|
device_error(me, "failed to claim memory for section at 0x%lx (0x%lx",
|
|
section_vma,
|
|
section_size);
|
|
if (mem_out[0] != section_vma)
|
|
device_error(me, "section address not as requested");
|
|
}
|
|
|
|
/* if a map, pass up a request to create the memory in core */
|
|
if (strncmp(device_name(me), "map-binary", strlen("map-binary")) == 0)
|
|
device_attach_address(device_parent(me),
|
|
attach_raw_memory,
|
|
0 /*address space*/,
|
|
section_vma,
|
|
section_size,
|
|
access,
|
|
me);
|
|
|
|
/* if a load dma in the required data */
|
|
if (bfd_get_section_flags(abfd, the_section) & SEC_LOAD) {
|
|
void *section_init = zalloc(section_size);
|
|
if (!bfd_get_section_contents(abfd,
|
|
the_section,
|
|
section_init, 0,
|
|
section_size)) {
|
|
bfd_perror("binary");
|
|
device_error(me, "load of data failed");
|
|
return;
|
|
}
|
|
if (device_dma_write_buffer(device_parent(me),
|
|
section_init,
|
|
0 /*space*/,
|
|
section_vma,
|
|
section_size,
|
|
1 /*violate_read_only*/)
|
|
!= section_size)
|
|
device_error(me, "broken transfer\n");
|
|
zfree(section_init); /* only free if load */
|
|
}
|
|
}
|
|
|
|
static void
|
|
hw_binary_init_data_callback(device *me)
|
|
{
|
|
/* get the file name */
|
|
const char *file_name = device_find_string_property(me, "file-name");
|
|
bfd *image;
|
|
|
|
/* open the file */
|
|
image = bfd_openr(file_name, NULL);
|
|
if (image == NULL) {
|
|
bfd_perror("binary");
|
|
device_error(me, "Failed to open file %s\n", file_name);
|
|
}
|
|
|
|
/* check it is valid */
|
|
if (!bfd_check_format(image, bfd_object)) {
|
|
bfd_close(image);
|
|
device_error(me, "The file %s has an invalid binary format\n", file_name);
|
|
}
|
|
|
|
/* and the data sections */
|
|
bfd_map_over_sections(image,
|
|
update_for_binary_section,
|
|
(PTR)me);
|
|
|
|
bfd_close(image);
|
|
}
|
|
|
|
|
|
static device_callbacks const hw_binary_callbacks = {
|
|
{ NULL, hw_binary_init_data_callback, },
|
|
{ NULL, }, /* address */
|
|
{ NULL, }, /* IO */
|
|
{ NULL, }, /* DMA */
|
|
{ NULL, }, /* interrupt */
|
|
{ NULL, }, /* unit */
|
|
};
|
|
|
|
|
|
/* DEVICE
|
|
|
|
stack - create an initial stack frame in memory
|
|
|
|
DESCRIPTION
|
|
|
|
Creates a stack frame of the specified type in memory.
|
|
|
|
Due to the startup sequence gdb uses when commencing a simulation,
|
|
it is not possible for the data to be placed on the stack to be
|
|
specified as part of the device tree. Instead the arguments to be
|
|
pushed onto the stack are specified using an IOCTL call.
|
|
|
|
The IOCTL takes the additional arguments:
|
|
|
|
| unsigned_word stack_end -- where the stack should come down from
|
|
| char **argv -- ...
|
|
| char **envp -- ...
|
|
|
|
PROPERTIES
|
|
|
|
stack-type = <string>
|
|
|
|
The form of the stack frame that is to be created.
|
|
|
|
*/
|
|
|
|
static int
|
|
sizeof_argument_strings(char **arg)
|
|
{
|
|
int sizeof_strings = 0;
|
|
|
|
/* robust */
|
|
if (arg == NULL)
|
|
return 0;
|
|
|
|
/* add up all the string sizes (padding as we go) */
|
|
for (; *arg != NULL; arg++) {
|
|
int len = strlen(*arg) + 1;
|
|
sizeof_strings += ALIGN_8(len);
|
|
}
|
|
|
|
return sizeof_strings;
|
|
}
|
|
|
|
static int
|
|
number_of_arguments(char **arg)
|
|
{
|
|
int nr;
|
|
if (arg == NULL)
|
|
return 0;
|
|
for (nr = 0; *arg != NULL; arg++, nr++);
|
|
return nr;
|
|
}
|
|
|
|
static int
|
|
sizeof_arguments(char **arg)
|
|
{
|
|
return ALIGN_8((number_of_arguments(arg) + 1) * sizeof(unsigned_word));
|
|
}
|
|
|
|
static void
|
|
write_stack_arguments(device *me,
|
|
char **arg,
|
|
unsigned_word start_block,
|
|
unsigned_word end_block,
|
|
unsigned_word start_arg,
|
|
unsigned_word end_arg)
|
|
{
|
|
DTRACE(stack,
|
|
("write_stack_arguments(device=%s, arg=0x%lx, start_block=0x%lx, end_block=0x%lx, start_arg=0x%lx, end_arg=0x%lx)\n",
|
|
device_name(me), (long)arg, (long)start_block, (long)end_block, (long)start_arg, (long)end_arg));
|
|
if (arg == NULL)
|
|
device_error(me, "Attempt to write a null array onto the stack\n");
|
|
/* only copy in arguments, memory is already zero */
|
|
for (; *arg != NULL; arg++) {
|
|
int len = strlen(*arg)+1;
|
|
unsigned_word target_start_block;
|
|
DTRACE(stack,
|
|
("write_stack_arguments() write %s=%s at %s=0x%lx %s=0x%lx %s=0x%lx\n",
|
|
"**arg", *arg, "start_block", (long)start_block,
|
|
"len", (long)len, "start_arg", (long)start_arg));
|
|
if (psim_write_memory(device_system(me), 0, *arg,
|
|
start_block, len,
|
|
0/*violate_readonly*/) != len)
|
|
device_error(me, "Write of **arg (%s) at 0x%lx of stack failed\n",
|
|
*arg, (unsigned long)start_block);
|
|
target_start_block = H2T_word(start_block);
|
|
if (psim_write_memory(device_system(me), 0, &target_start_block,
|
|
start_arg, sizeof(target_start_block),
|
|
0) != sizeof(target_start_block))
|
|
device_error(me, "Write of *arg onto stack failed\n");
|
|
start_block += ALIGN_8(len);
|
|
start_arg += sizeof(start_block);
|
|
}
|
|
start_arg += sizeof(start_block); /*the null at the end*/
|
|
if (start_block != end_block
|
|
|| ALIGN_8(start_arg) != end_arg)
|
|
device_error(me, "Probable corrpution of stack arguments\n");
|
|
DTRACE(stack, ("write_stack_arguments() = void\n"));
|
|
}
|
|
|
|
static void
|
|
create_ppc_elf_stack_frame(device *me,
|
|
unsigned_word bottom_of_stack,
|
|
char **argv,
|
|
char **envp)
|
|
{
|
|
/* fixme - this is over aligned */
|
|
|
|
/* information block */
|
|
const unsigned sizeof_envp_block = sizeof_argument_strings(envp);
|
|
const unsigned_word start_envp_block = bottom_of_stack - sizeof_envp_block;
|
|
const unsigned sizeof_argv_block = sizeof_argument_strings(argv);
|
|
const unsigned_word start_argv_block = start_envp_block - sizeof_argv_block;
|
|
|
|
/* auxiliary vector - contains only one entry */
|
|
const unsigned sizeof_aux_entry = 2*sizeof(unsigned_word); /* magic */
|
|
const unsigned_word start_aux = start_argv_block - ALIGN_8(sizeof_aux_entry);
|
|
|
|
/* environment points (including null sentinal) */
|
|
const unsigned sizeof_envp = sizeof_arguments(envp);
|
|
const unsigned_word start_envp = start_aux - sizeof_envp;
|
|
|
|
/* argument pointers (including null sentinal) */
|
|
const int argc = number_of_arguments(argv);
|
|
const unsigned sizeof_argv = sizeof_arguments(argv);
|
|
const unsigned_word start_argv = start_envp - sizeof_argv;
|
|
|
|
/* link register save address - alligned to a 16byte boundary */
|
|
const unsigned_word top_of_stack = ((start_argv
|
|
- 2 * sizeof(unsigned_word))
|
|
& ~0xf);
|
|
|
|
/* install arguments on stack */
|
|
write_stack_arguments(me, envp,
|
|
start_envp_block, bottom_of_stack,
|
|
start_envp, start_aux);
|
|
write_stack_arguments(me, argv,
|
|
start_argv_block, start_envp_block,
|
|
start_argv, start_envp);
|
|
|
|
/* set up the registers */
|
|
ASSERT (psim_write_register(device_system(me), -1,
|
|
&top_of_stack, "sp", cooked_transfer) > 0);
|
|
ASSERT (psim_write_register(device_system(me), -1,
|
|
&argc, "r3", cooked_transfer) > 0);
|
|
ASSERT (psim_write_register(device_system(me), -1,
|
|
&start_argv, "r4", cooked_transfer) > 0);
|
|
ASSERT (psim_write_register(device_system(me), -1,
|
|
&start_envp, "r5", cooked_transfer) > 0);
|
|
ASSERT (psim_write_register(device_system(me), -1,
|
|
&start_aux, "r6", cooked_transfer) > 0);
|
|
}
|
|
|
|
static void
|
|
create_ppc_aix_stack_frame(device *me,
|
|
unsigned_word bottom_of_stack,
|
|
char **argv,
|
|
char **envp)
|
|
{
|
|
unsigned_word core_envp;
|
|
unsigned_word core_argv;
|
|
unsigned_word core_argc;
|
|
unsigned_word core_aux;
|
|
unsigned_word top_of_stack;
|
|
|
|
/* cheat - create an elf stack frame */
|
|
create_ppc_elf_stack_frame(me, bottom_of_stack, argv, envp);
|
|
|
|
/* extract argument addresses from registers */
|
|
ASSERT (psim_read_register(device_system(me), 0,
|
|
&top_of_stack, "r1", cooked_transfer) > 0);
|
|
ASSERT (psim_read_register(device_system(me), 0,
|
|
&core_argc, "r3", cooked_transfer) > 0);
|
|
ASSERT (psim_read_register(device_system(me), 0,
|
|
&core_argv, "r4", cooked_transfer) > 0);
|
|
ASSERT (psim_read_register(device_system(me), 0,
|
|
&core_envp, "r5", cooked_transfer) > 0);
|
|
ASSERT (psim_read_register(device_system(me), 0,
|
|
&core_aux, "r6", cooked_transfer) > 0);
|
|
|
|
/* extract arguments from registers */
|
|
device_error(me, "Unfinished procedure create_ppc_aix_stack_frame\n");
|
|
}
|
|
|
|
|
|
static void
|
|
create_ppc_chirp_bootargs(device *me,
|
|
char **argv)
|
|
{
|
|
/* concat the arguments */
|
|
char args[1024];
|
|
char **chp = argv + 1;
|
|
args[0] = '\0';
|
|
while (*chp != NULL) {
|
|
if (strlen(args) > 0)
|
|
strcat(args, " ");
|
|
if (strlen(args) + strlen(*chp) >= sizeof(args))
|
|
device_error(me, "buffer overflow");
|
|
strcat(args, *chp);
|
|
chp++;
|
|
}
|
|
|
|
/* set the arguments property */
|
|
tree_parse(me, "/chosen/bootargs \"%s", args);
|
|
}
|
|
|
|
|
|
static int
|
|
hw_stack_ioctl(device *me,
|
|
cpu *processor,
|
|
unsigned_word cia,
|
|
device_ioctl_request request,
|
|
va_list ap)
|
|
{
|
|
switch (request) {
|
|
case device_ioctl_create_stack:
|
|
{
|
|
unsigned_word stack_pointer = va_arg(ap, unsigned_word);
|
|
char **argv = va_arg(ap, char **);
|
|
char **envp = va_arg(ap, char **);
|
|
const char *stack_type;
|
|
DTRACE(stack,
|
|
("stack_ioctl_callback(me=0x%lx:%s processor=0x%lx cia=0x%lx argv=0x%lx envp=0x%lx)\n",
|
|
(long)me, device_name(me),
|
|
(long)processor,
|
|
(long)cia,
|
|
(long)argv,
|
|
(long)envp));
|
|
stack_type = device_find_string_property(me, "stack-type");
|
|
if (strcmp(stack_type, "ppc-elf") == 0)
|
|
create_ppc_elf_stack_frame(me, stack_pointer, argv, envp);
|
|
else if (strcmp(stack_type, "ppc-xcoff") == 0)
|
|
create_ppc_aix_stack_frame(me, stack_pointer, argv, envp);
|
|
else if (strcmp(stack_type, "chirp") == 0)
|
|
create_ppc_chirp_bootargs(me, argv);
|
|
else if (strcmp(stack_type, "none") != 0)
|
|
device_error(me, "Unknown initial stack frame type %s", stack_type);
|
|
DTRACE(stack,
|
|
("stack_ioctl_callback() = void\n"));
|
|
break;
|
|
}
|
|
default:
|
|
device_error(me, "Unsupported ioctl requested");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static device_callbacks const hw_stack_callbacks = {
|
|
{ NULL, },
|
|
{ NULL, }, /* address */
|
|
{ NULL, }, /* IO */
|
|
{ NULL, }, /* DMA */
|
|
{ NULL, }, /* interrupt */
|
|
{ NULL, }, /* unit */
|
|
NULL, /* instance */
|
|
hw_stack_ioctl,
|
|
};
|
|
|
|
const device_descriptor hw_init_device_descriptor[] = {
|
|
{ "file", NULL, &hw_file_callbacks },
|
|
{ "data", NULL, &hw_data_callbacks },
|
|
{ "load-binary", NULL, &hw_binary_callbacks },
|
|
{ "map-binary", NULL, &hw_binary_callbacks },
|
|
{ "stack", NULL, &hw_stack_callbacks },
|
|
{ NULL },
|
|
};
|
|
|
|
#endif _HW_INIT_C_
|