b66f5587de
Remove regcache_cooked_write, update callers to use regcache::cooked_write. gdb/ChangeLog: * regcache.h (regcache_cooked_write): Remove, update callers to use regcache::cooked_write. * regcache.c (regcache_cooked_write): Remove.
1295 lines
39 KiB
C
1295 lines
39 KiB
C
/* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
|
||
Copyright (C) 2008-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "value.h"
|
||
#include "gdbcmd.h"
|
||
#include "language.h"
|
||
#include "gdbcore.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbtypes.h"
|
||
#include "target.h"
|
||
#include "regcache.h"
|
||
#include "safe-ctype.h"
|
||
#include "block.h"
|
||
#include "reggroups.h"
|
||
#include "arch-utils.h"
|
||
#include "frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "frame-base.h"
|
||
#include "dwarf2-frame.h"
|
||
#include "trad-frame.h"
|
||
#include "regset.h"
|
||
#include "remote.h"
|
||
#include "target-descriptions.h"
|
||
#include <inttypes.h>
|
||
#include "dis-asm.h"
|
||
|
||
/* OpenRISC specific includes. */
|
||
#include "or1k-tdep.h"
|
||
#include "features/or1k.c"
|
||
|
||
|
||
/* Global debug flag. */
|
||
|
||
static int or1k_debug = 0;
|
||
|
||
static void
|
||
show_or1k_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("OpenRISC debugging is %s.\n"), value);
|
||
}
|
||
|
||
|
||
/* The target-dependent structure for gdbarch. */
|
||
|
||
struct gdbarch_tdep
|
||
{
|
||
int bytes_per_word;
|
||
int bytes_per_address;
|
||
CGEN_CPU_DESC gdb_cgen_cpu_desc;
|
||
};
|
||
|
||
/* Support functions for the architecture definition. */
|
||
|
||
/* Get an instruction from memory. */
|
||
|
||
static ULONGEST
|
||
or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[OR1K_INSTLEN];
|
||
|
||
if (target_read_code (addr, buf, OR1K_INSTLEN)) {
|
||
memory_error (TARGET_XFER_E_IO, addr);
|
||
}
|
||
|
||
return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
|
||
}
|
||
|
||
/* Generic function to read bits from an instruction. */
|
||
|
||
static bool
|
||
or1k_analyse_inst (uint32_t inst, const char *format, ...)
|
||
{
|
||
/* Break out each field in turn, validating as we go. */
|
||
va_list ap;
|
||
int i;
|
||
int iptr = 0; /* Instruction pointer */
|
||
|
||
va_start (ap, format);
|
||
|
||
for (i = 0; 0 != format[i];)
|
||
{
|
||
const char *start_ptr;
|
||
char *end_ptr;
|
||
|
||
uint32_t bits; /* Bit substring of interest */
|
||
uint32_t width; /* Substring width */
|
||
uint32_t *arg_ptr;
|
||
|
||
switch (format[i])
|
||
{
|
||
case ' ':
|
||
i++;
|
||
break; /* Formatting: ignored */
|
||
|
||
case '0':
|
||
case '1': /* Constant bit field */
|
||
bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;
|
||
|
||
if ((format[i] - '0') != bits)
|
||
return false;
|
||
|
||
iptr++;
|
||
i++;
|
||
break;
|
||
|
||
case '%': /* Bit field */
|
||
i++;
|
||
start_ptr = &(format[i]);
|
||
width = strtoul (start_ptr, &end_ptr, 10);
|
||
|
||
/* Check we got something, and if so skip on. */
|
||
if (start_ptr == end_ptr)
|
||
error (_("bitstring \"%s\" at offset %d has no length field."),
|
||
format, i);
|
||
|
||
i += end_ptr - start_ptr;
|
||
|
||
/* Look for and skip the terminating 'b'. If it's not there, we
|
||
still give a fatal error, because these are fixed strings that
|
||
just should not be wrong. */
|
||
if ('b' != format[i++])
|
||
error (_("bitstring \"%s\" at offset %d has no terminating 'b'."),
|
||
format, i);
|
||
|
||
/* Break out the field. There is a special case with a bit width
|
||
of 32. */
|
||
if (32 == width)
|
||
bits = inst;
|
||
else
|
||
bits =
|
||
(inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
|
||
|
||
arg_ptr = va_arg (ap, uint32_t *);
|
||
*arg_ptr = bits;
|
||
iptr += width;
|
||
break;
|
||
|
||
default:
|
||
error (_("invalid character in bitstring \"%s\" at offset %d."),
|
||
format, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Is the length OK? */
|
||
gdb_assert (OR1K_INSTBITLEN == iptr);
|
||
|
||
return true; /* Success */
|
||
}
|
||
|
||
/* This is used to parse l.addi instructions during various prologue
|
||
analysis routines. The l.addi instruction has semantics:
|
||
|
||
assembly: l.addi rD,rA,I
|
||
implementation: rD = rA + sign_extend(Immediate)
|
||
|
||
The rd_ptr, ra_ptr and simm_ptr must be non NULL pointers and are used
|
||
to store the parse results. Upon successful parsing true is returned,
|
||
false on failure. */
|
||
|
||
static bool
|
||
or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
|
||
unsigned int *ra_ptr, int *simm_ptr)
|
||
{
|
||
/* Instruction fields */
|
||
uint32_t rd, ra, i;
|
||
|
||
if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
|
||
{
|
||
/* Found it. Construct the result fields. */
|
||
*rd_ptr = (unsigned int) rd;
|
||
*ra_ptr = (unsigned int) ra;
|
||
*simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
|
||
|
||
return true; /* Success */
|
||
}
|
||
else
|
||
return false; /* Failure */
|
||
}
|
||
|
||
/* This is used to to parse store instructions during various prologue
|
||
analysis routines. The l.sw instruction has semantics:
|
||
|
||
assembly: l.sw I(rA),rB
|
||
implementation: store rB contents to memory at effective address of
|
||
rA + sign_extend(Immediate)
|
||
|
||
The simm_ptr, ra_ptr and rb_ptr must be non NULL pointers and are used
|
||
to store the parse results. Upon successful parsing true is returned,
|
||
false on failure. */
|
||
|
||
static bool
|
||
or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
|
||
unsigned int *rb_ptr)
|
||
{
|
||
/* Instruction fields */
|
||
uint32_t ihi, ilo, ra, rb;
|
||
|
||
if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
|
||
&ilo))
|
||
|
||
{
|
||
/* Found it. Construct the result fields. */
|
||
*simm_ptr = (int) ((ihi << 11) | ilo);
|
||
*simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
|
||
|
||
*ra_ptr = (unsigned int) ra;
|
||
*rb_ptr = (unsigned int) rb;
|
||
|
||
return true; /* Success */
|
||
}
|
||
else
|
||
return false; /* Failure */
|
||
}
|
||
|
||
|
||
/* Functions defining the architecture. */
|
||
|
||
/* Implement the return_value gdbarch method. */
|
||
|
||
static enum return_value_convention
|
||
or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
|
||
struct type *valtype, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
enum type_code rv_type = TYPE_CODE (valtype);
|
||
unsigned int rv_size = TYPE_LENGTH (valtype);
|
||
int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
|
||
|
||
/* Deal with struct/union as addresses. If an array won't fit in a
|
||
single register it is returned as address. Anything larger than 2
|
||
registers needs to also be passed as address (matches gcc
|
||
default_return_in_memory). */
|
||
if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
|
||
|| ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
|
||
|| (rv_size > 2 * bpw))
|
||
{
|
||
if (readbuf != NULL)
|
||
{
|
||
ULONGEST tmp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
|
||
read_memory (tmp, readbuf, rv_size);
|
||
}
|
||
if (writebuf != NULL)
|
||
{
|
||
ULONGEST tmp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
|
||
write_memory (tmp, writebuf, rv_size);
|
||
}
|
||
|
||
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
||
}
|
||
|
||
if (rv_size <= bpw)
|
||
{
|
||
/* Up to one word scalars are returned in R11. */
|
||
if (readbuf != NULL)
|
||
{
|
||
ULONGEST tmp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
|
||
store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
|
||
|
||
}
|
||
if (writebuf != NULL)
|
||
{
|
||
gdb_byte *buf = XCNEWVEC(gdb_byte, bpw);
|
||
|
||
if (BFD_ENDIAN_BIG == byte_order)
|
||
memcpy (buf + (sizeof (gdb_byte) * bpw) - rv_size, writebuf,
|
||
rv_size);
|
||
else
|
||
memcpy (buf, writebuf, rv_size);
|
||
|
||
regcache->cooked_write (OR1K_RV_REGNUM, buf);
|
||
|
||
free (buf);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* 2 word scalars are returned in r11/r12 (with the MS word in r11). */
|
||
if (readbuf != NULL)
|
||
{
|
||
ULONGEST tmp_lo;
|
||
ULONGEST tmp_hi;
|
||
ULONGEST tmp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM,
|
||
&tmp_hi);
|
||
regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
|
||
&tmp_lo);
|
||
tmp = (tmp_hi << (bpw * 8)) | tmp_lo;
|
||
|
||
store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
|
||
}
|
||
if (writebuf != NULL)
|
||
{
|
||
gdb_byte *buf_lo = XCNEWVEC(gdb_byte, bpw);
|
||
gdb_byte *buf_hi = XCNEWVEC(gdb_byte, bpw);
|
||
|
||
/* This is cheating. We assume that we fit in 2 words exactly,
|
||
which wouldn't work if we had (say) a 6-byte scalar type on a
|
||
big endian architecture (with the OpenRISC 1000 usually is). */
|
||
memcpy (buf_hi, writebuf, rv_size - bpw);
|
||
memcpy (buf_lo, writebuf + bpw, bpw);
|
||
|
||
regcache->cooked_write (OR1K_RV_REGNUM, buf_hi);
|
||
regcache->cooked_write (OR1K_RV_REGNUM + 1, buf_lo);
|
||
|
||
free (buf_lo);
|
||
free (buf_hi);
|
||
}
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
/* OR1K always uses a l.trap instruction for breakpoints. */
|
||
|
||
constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
|
||
|
||
typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
|
||
|
||
/* Implement the single_step_through_delay gdbarch method. */
|
||
|
||
static int
|
||
or1k_single_step_through_delay (struct gdbarch *gdbarch,
|
||
struct frame_info *this_frame)
|
||
{
|
||
ULONGEST val;
|
||
CORE_ADDR ppc;
|
||
CORE_ADDR npc;
|
||
CGEN_FIELDS tmp_fields;
|
||
const CGEN_INSN *insn;
|
||
struct regcache *regcache = get_current_regcache ();
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* Get the previous and current instruction addresses. If they are not
|
||
adjacent, we cannot be in a delay slot. */
|
||
regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
|
||
ppc = (CORE_ADDR) val;
|
||
regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
|
||
npc = (CORE_ADDR) val;
|
||
|
||
if (0x4 != (npc - ppc))
|
||
return 0;
|
||
|
||
insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
|
||
NULL,
|
||
or1k_fetch_instruction (gdbarch, ppc),
|
||
NULL, 32, &tmp_fields, 0);
|
||
|
||
/* NULL here would mean the last instruction was not understood by cgen.
|
||
This should not usually happen, but if does its not a delay slot. */
|
||
if (insn == NULL)
|
||
return 0;
|
||
|
||
/* TODO: we should add a delay slot flag to the CGEN_INSN and remove
|
||
this hard coded test. */
|
||
return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
|
||
|| (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
|
||
|| (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
|
||
|| (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
|
||
|| (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
|
||
|| (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
|
||
}
|
||
|
||
/* Name for or1k general registers. */
|
||
|
||
static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
|
||
/* general purpose registers */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
||
|
||
/* previous program counter, next program counter and status register */
|
||
"ppc", "npc", "sr"
|
||
};
|
||
|
||
static int
|
||
or1k_is_arg_reg (unsigned int regnum)
|
||
{
|
||
return (OR1K_FIRST_ARG_REGNUM <= regnum)
|
||
&& (regnum <= OR1K_LAST_ARG_REGNUM);
|
||
}
|
||
|
||
static int
|
||
or1k_is_callee_saved_reg (unsigned int regnum)
|
||
{
|
||
return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
|
||
}
|
||
|
||
/* Implement the skip_prologue gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR start_pc;
|
||
CORE_ADDR addr;
|
||
uint32_t inst;
|
||
|
||
unsigned int ra, rb, rd; /* for instruction analysis */
|
||
int simm;
|
||
|
||
int frame_size = 0;
|
||
|
||
/* Try using SAL first if we have symbolic information available. This
|
||
only works for DWARF 2, not STABS. */
|
||
|
||
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
|
||
{
|
||
CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
|
||
|
||
if (0 != prologue_end)
|
||
{
|
||
struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
|
||
struct compunit_symtab *compunit
|
||
= SYMTAB_COMPUNIT (prologue_sal.symtab);
|
||
const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
|
||
|
||
if ((NULL != debug_format)
|
||
&& (strlen ("dwarf") <= strlen (debug_format))
|
||
&& (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
|
||
return (prologue_end > pc) ? prologue_end : pc;
|
||
}
|
||
}
|
||
|
||
/* Look to see if we can find any of the standard prologue sequence. All
|
||
quite difficult, since any or all of it may be missing. So this is
|
||
just a best guess! */
|
||
|
||
addr = pc; /* Where we have got to */
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* Look for the new stack pointer being set up. */
|
||
if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
|
||
&& (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
|
||
&& (simm < 0) && (0 == (simm % 4)))
|
||
{
|
||
frame_size = -simm;
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
}
|
||
|
||
/* Look for the frame pointer being manipulated. */
|
||
if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
|
||
&& (simm >= 0) && (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
|
||
&& (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
|
||
&& (simm == frame_size));
|
||
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
}
|
||
|
||
/* Look for the link register being saved. */
|
||
if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
|
||
&& (simm >= 0) && (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
}
|
||
|
||
/* Look for arguments or callee-saved register being saved. The register
|
||
must be one of the arguments (r3-r8) or the 10 callee saved registers
|
||
(r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
|
||
register must be the FP (for the args) or the SP (for the callee_saved
|
||
registers). */
|
||
while (1)
|
||
{
|
||
if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
|
||
|| ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
|
||
&& (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
}
|
||
else
|
||
{
|
||
/* Nothing else to look for. We have found the end of the
|
||
prologue. */
|
||
break;
|
||
}
|
||
}
|
||
return addr;
|
||
}
|
||
|
||
/* Implement the frame_align gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return align_down (sp, OR1K_STACK_ALIGN);
|
||
}
|
||
|
||
/* Implement the unwind_pc gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
|
||
frame_relative_level (next_frame));
|
||
|
||
pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);
|
||
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=%s\n",
|
||
paddress (gdbarch, pc));
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Implement the unwind_sp gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
|
||
frame_relative_level (next_frame));
|
||
|
||
sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);
|
||
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=%s\n",
|
||
paddress (gdbarch, sp));
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Implement the push_dummy_code gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
||
CORE_ADDR function, struct value **args, int nargs,
|
||
struct type *value_type, CORE_ADDR * real_pc,
|
||
CORE_ADDR * bp_addr, struct regcache *regcache)
|
||
{
|
||
CORE_ADDR bp_slot;
|
||
|
||
/* Reserve enough room on the stack for our breakpoint instruction. */
|
||
bp_slot = sp - 4;
|
||
/* Store the address of that breakpoint. */
|
||
*bp_addr = bp_slot;
|
||
/* keeping the stack aligned. */
|
||
sp = or1k_frame_align (gdbarch, bp_slot);
|
||
/* The call starts at the callee's entry point. */
|
||
*real_pc = function;
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Implement the push_dummy_call gdbarch method. */
|
||
|
||
static CORE_ADDR
|
||
or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
|
||
int argreg;
|
||
int argnum;
|
||
int first_stack_arg;
|
||
int stack_offset = 0;
|
||
int heap_offset = 0;
|
||
CORE_ADDR heap_sp = sp - 128;
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
|
||
int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
|
||
struct type *func_type = value_type (function);
|
||
|
||
/* Return address */
|
||
regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
|
||
|
||
/* Register for the next argument. */
|
||
argreg = OR1K_FIRST_ARG_REGNUM;
|
||
|
||
/* Location for a returned structure. This is passed as a silent first
|
||
argument. */
|
||
if (struct_return)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
|
||
struct_addr);
|
||
argreg++;
|
||
}
|
||
|
||
/* Put as many args as possible in registers. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
const gdb_byte *val;
|
||
gdb_byte valbuf[sizeof (ULONGEST)];
|
||
|
||
struct value *arg = args[argnum];
|
||
struct type *arg_type = check_typedef (value_type (arg));
|
||
int len = TYPE_LENGTH (arg_type);
|
||
enum type_code typecode = TYPE_CODE (arg_type);
|
||
|
||
if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
|
||
break; /* end or regular args, varargs go to stack. */
|
||
|
||
/* Extract the value, either a reference or the data. */
|
||
if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
|
||
|| (len > bpw * 2))
|
||
{
|
||
CORE_ADDR valaddr = value_address (arg);
|
||
|
||
/* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
|
||
undefined. */
|
||
if (valaddr == 0)
|
||
{
|
||
/* The argument needs to be copied into the target space.
|
||
Since the bottom of the stack is reserved for function
|
||
arguments we store this at the these at the top growing
|
||
down. */
|
||
heap_offset += align_up (len, bpw);
|
||
valaddr = heap_sp + heap_offset;
|
||
|
||
write_memory (valaddr, value_contents (arg), len);
|
||
}
|
||
|
||
/* The ABI passes all structures by reference, so get its
|
||
address. */
|
||
store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
|
||
len = bpa;
|
||
val = valbuf;
|
||
}
|
||
else
|
||
{
|
||
/* Everything else, we just get the value. */
|
||
val = value_contents (arg);
|
||
}
|
||
|
||
/* Stick the value in a register. */
|
||
if (len > bpw)
|
||
{
|
||
/* Big scalars use two registers, but need NOT be pair aligned. */
|
||
|
||
if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
|
||
{
|
||
ULONGEST regval = extract_unsigned_integer (val, len,
|
||
byte_order);
|
||
|
||
unsigned int bits_per_word = bpw * 8;
|
||
ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
|
||
ULONGEST lo = regval & mask;
|
||
ULONGEST hi = regval >> bits_per_word;
|
||
|
||
regcache_cooked_write_unsigned (regcache, argreg, hi);
|
||
regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
|
||
argreg += 2;
|
||
}
|
||
else
|
||
{
|
||
/* Run out of regs */
|
||
break;
|
||
}
|
||
}
|
||
else if (argreg <= OR1K_LAST_ARG_REGNUM)
|
||
{
|
||
/* Smaller scalars fit in a single register. */
|
||
regcache_cooked_write_unsigned
|
||
(regcache, argreg, extract_unsigned_integer (val, len,
|
||
byte_order));
|
||
argreg++;
|
||
}
|
||
else
|
||
{
|
||
/* Ran out of regs. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
first_stack_arg = argnum;
|
||
|
||
/* If we get here with argnum < nargs, then arguments remain to be
|
||
placed on the stack. This is tricky, since they must be pushed in
|
||
reverse order and the stack in the end must be aligned. The only
|
||
solution is to do it in two stages, the first to compute the stack
|
||
size, the second to save the args. */
|
||
|
||
for (argnum = first_stack_arg; argnum < nargs; argnum++)
|
||
{
|
||
struct value *arg = args[argnum];
|
||
struct type *arg_type = check_typedef (value_type (arg));
|
||
int len = TYPE_LENGTH (arg_type);
|
||
enum type_code typecode = TYPE_CODE (arg_type);
|
||
|
||
if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
|
||
|| (len > bpw * 2))
|
||
{
|
||
/* Structures are passed as addresses. */
|
||
sp -= bpa;
|
||
}
|
||
else
|
||
{
|
||
/* Big scalars use more than one word. Code here allows for
|
||
future quad-word entities (e.g. long double.) */
|
||
sp -= align_up (len, bpw);
|
||
}
|
||
|
||
/* Ensure our dummy heap doesn't touch the stack, this could only
|
||
happen if we have many arguments including fabricated arguments. */
|
||
gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
|
||
}
|
||
|
||
sp = gdbarch_frame_align (gdbarch, sp);
|
||
stack_offset = 0;
|
||
|
||
/* Push the remaining args on the stack. */
|
||
for (argnum = first_stack_arg; argnum < nargs; argnum++)
|
||
{
|
||
const gdb_byte *val;
|
||
gdb_byte valbuf[sizeof (ULONGEST)];
|
||
|
||
struct value *arg = args[argnum];
|
||
struct type *arg_type = check_typedef (value_type (arg));
|
||
int len = TYPE_LENGTH (arg_type);
|
||
enum type_code typecode = TYPE_CODE (arg_type);
|
||
/* The EABI passes structures that do not fit in a register by
|
||
reference. In all other cases, pass the structure by value. */
|
||
if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
|
||
|| (len > bpw * 2))
|
||
{
|
||
store_unsigned_integer (valbuf, bpa, byte_order,
|
||
value_address (arg));
|
||
len = bpa;
|
||
val = valbuf;
|
||
}
|
||
else
|
||
val = value_contents (arg);
|
||
|
||
while (len > 0)
|
||
{
|
||
int partial_len = (len < bpw ? len : bpw);
|
||
|
||
write_memory (sp + stack_offset, val, partial_len);
|
||
stack_offset += align_up (partial_len, bpw);
|
||
len -= partial_len;
|
||
val += partial_len;
|
||
}
|
||
}
|
||
|
||
/* Save the updated stack pointer. */
|
||
regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);
|
||
|
||
if (heap_offset > 0)
|
||
sp = heap_sp;
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Implement the dummy_id gdbarch method. */
|
||
|
||
static struct frame_id
|
||
or1k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
||
{
|
||
return frame_id_build (get_frame_sp (this_frame),
|
||
get_frame_pc (this_frame));
|
||
}
|
||
|
||
|
||
/* Support functions for frame handling. */
|
||
|
||
/* Initialize a prologue cache
|
||
|
||
We build a cache, saying where registers of the prev frame can be found
|
||
from the data so far set up in this this.
|
||
|
||
We also compute a unique ID for this frame, based on the function start
|
||
address and the stack pointer (as it will be, even if it has yet to be
|
||
computed.
|
||
|
||
STACK FORMAT
|
||
============
|
||
|
||
The OR1K has a falling stack frame and a simple prolog. The Stack
|
||
pointer is R1 and the frame pointer R2. The frame base is therefore the
|
||
address held in R2 and the stack pointer (R1) is the frame base of the
|
||
next frame.
|
||
|
||
l.addi r1,r1,-frame_size # SP now points to end of new stack frame
|
||
|
||
The stack pointer may not be set up in a frameless function (e.g. a
|
||
simple leaf function).
|
||
|
||
l.sw fp_loc(r1),r2 # old FP saved in new stack frame
|
||
l.addi r2,r1,frame_size # FP now points to base of new stack frame
|
||
|
||
The frame pointer is not necessarily saved right at the end of the stack
|
||
frame - OR1K saves enough space for any args to called functions right
|
||
at the end (this is a difference from the Architecture Manual).
|
||
|
||
l.sw lr_loc(r1),r9 # Link (return) address
|
||
|
||
The link register is usally saved at fp_loc - 4. It may not be saved at
|
||
all in a leaf function.
|
||
|
||
l.sw reg_loc(r1),ry # Save any callee saved regs
|
||
|
||
The offsets x for the callee saved registers generally (always?) rise in
|
||
increments of 4, starting at fp_loc + 4. If the frame pointer is
|
||
omitted (an option to GCC), then it may not be saved at all. There may
|
||
be no callee saved registers.
|
||
|
||
So in summary none of this may be present. However what is present
|
||
seems always to follow this fixed order, and occur before any
|
||
substantive code (it is possible for GCC to have more flexible
|
||
scheduling of the prologue, but this does not seem to occur for OR1K).
|
||
|
||
ANALYSIS
|
||
========
|
||
|
||
This prolog is used, even for -O3 with GCC.
|
||
|
||
All this analysis must allow for the possibility that the PC is in the
|
||
middle of the prologue. Data in the cache should only be set up insofar
|
||
as it has been computed.
|
||
|
||
HOWEVER. The frame_id must be created with the SP *as it will be* at
|
||
the end of the Prologue. Otherwise a recursive call, checking the frame
|
||
with the PC at the start address will end up with the same frame_id as
|
||
the caller.
|
||
|
||
A suite of "helper" routines are used, allowing reuse for
|
||
or1k_skip_prologue().
|
||
|
||
Reportedly, this is only valid for frames less than 0x7fff in size. */
|
||
|
||
static struct trad_frame_cache *
|
||
or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct trad_frame_cache *info;
|
||
|
||
CORE_ADDR this_pc;
|
||
CORE_ADDR this_sp;
|
||
CORE_ADDR this_sp_for_id;
|
||
int frame_size = 0;
|
||
|
||
CORE_ADDR start_addr;
|
||
CORE_ADDR end_addr;
|
||
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"or1k_frame_cache, prologue_cache = %s\n",
|
||
host_address_to_string (*prologue_cache));
|
||
|
||
/* Nothing to do if we already have this info. */
|
||
if (NULL != *prologue_cache)
|
||
return (struct trad_frame_cache *) *prologue_cache;
|
||
|
||
/* Get a new prologue cache and populate it with default values. */
|
||
info = trad_frame_cache_zalloc (this_frame);
|
||
*prologue_cache = info;
|
||
|
||
/* Find the start address of this function (which is a normal frame, even
|
||
if the next frame is the sentinel frame) and the end of its prologue. */
|
||
this_pc = get_frame_pc (this_frame);
|
||
find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
|
||
|
||
/* Get the stack pointer if we have one (if there's no process executing
|
||
yet we won't have a frame. */
|
||
this_sp = (NULL == this_frame) ? 0 :
|
||
get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);
|
||
|
||
/* Return early if GDB couldn't find the function. */
|
||
if (start_addr == 0)
|
||
{
|
||
if (or1k_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " couldn't find function\n");
|
||
|
||
/* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
|
||
crashing right at the beginning. Build the frame ID as best we
|
||
can. */
|
||
trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
|
||
|
||
return info;
|
||
}
|
||
|
||
/* The default frame base of this frame (for ID purposes only - frame
|
||
base is an overloaded term) is its stack pointer. For now we use the
|
||
value of the SP register in this frame. However if the PC is in the
|
||
prologue of this frame, before the SP has been set up, then the value
|
||
will actually be that of the prev frame, and we'll need to adjust it
|
||
later. */
|
||
trad_frame_set_this_base (info, this_sp);
|
||
this_sp_for_id = this_sp;
|
||
|
||
/* The default is to find the PC of the previous frame in the link
|
||
register of this frame. This may be changed if we find the link
|
||
register was saved on the stack. */
|
||
trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
|
||
|
||
/* We should only examine code that is in the prologue. This is all code
|
||
up to (but not including) end_addr. We should only populate the cache
|
||
while the address is up to (but not including) the PC or end_addr,
|
||
whichever is first. */
|
||
gdbarch = get_frame_arch (this_frame);
|
||
end_addr = or1k_skip_prologue (gdbarch, start_addr);
|
||
|
||
/* All the following analysis only occurs if we are in the prologue and
|
||
have executed the code. Check we have a sane prologue size, and if
|
||
zero we are frameless and can give up here. */
|
||
if (end_addr < start_addr)
|
||
error (_("end addr %s is less than start addr %s"),
|
||
paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
|
||
|
||
if (end_addr == start_addr)
|
||
frame_size = 0;
|
||
else
|
||
{
|
||
/* We have a frame. Look for the various components. */
|
||
CORE_ADDR addr = start_addr; /* Where we have got to */
|
||
uint32_t inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
unsigned int ra, rb, rd; /* for instruction analysis */
|
||
int simm;
|
||
|
||
/* Look for the new stack pointer being set up. */
|
||
if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
|
||
&& (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
|
||
&& (simm < 0) && (0 == (simm % 4)))
|
||
{
|
||
frame_size = -simm;
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* If the PC has not actually got to this point, then the frame
|
||
base will be wrong, and we adjust it.
|
||
|
||
If we are past this point, then we need to populate the stack
|
||
accordingly. */
|
||
if (this_pc <= addr)
|
||
{
|
||
/* Only do if executing. */
|
||
if (0 != this_sp)
|
||
{
|
||
this_sp_for_id = this_sp + frame_size;
|
||
trad_frame_set_this_base (info, this_sp_for_id);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We are past this point, so the stack pointer of the prev
|
||
frame is frame_size greater than the stack pointer of this
|
||
frame. */
|
||
trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
|
||
this_sp + frame_size);
|
||
}
|
||
}
|
||
|
||
/* From now on we are only populating the cache, so we stop once we
|
||
get to either the end OR the current PC. */
|
||
end_addr = (this_pc < end_addr) ? this_pc : end_addr;
|
||
|
||
/* Look for the frame pointer being manipulated. */
|
||
if ((addr < end_addr)
|
||
&& or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
|
||
&& (simm >= 0) && (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* At this stage, we can find the frame pointer of the previous
|
||
frame on the stack of the current frame. */
|
||
trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);
|
||
|
||
/* Look for the new frame pointer being set up. */
|
||
if ((addr < end_addr)
|
||
&& or1k_analyse_l_addi (inst, &rd, &ra, &simm)
|
||
&& (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
|
||
&& (simm == frame_size))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* If we have got this far, the stack pointer of the previous
|
||
frame is the frame pointer of this frame. */
|
||
trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
|
||
OR1K_FP_REGNUM);
|
||
}
|
||
}
|
||
|
||
/* Look for the link register being saved. */
|
||
if ((addr < end_addr)
|
||
&& or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
|
||
&& (simm >= 0) && (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* If the link register is saved in the this frame, it holds the
|
||
value of the PC in the previous frame. This overwrites the
|
||
previous information about finding the PC in the link
|
||
register. */
|
||
trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
|
||
}
|
||
|
||
/* Look for arguments or callee-saved register being saved. The
|
||
register must be one of the arguments (r3-r8) or the 10 callee
|
||
saved registers (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28,
|
||
r30). The base register must be the FP (for the args) or the SP
|
||
(for the callee_saved registers). */
|
||
while (addr < end_addr)
|
||
{
|
||
if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
|
||
&& (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
|
||
|| ((OR1K_SP_REGNUM == ra)
|
||
&& or1k_is_callee_saved_reg (rb)))
|
||
&& (0 == (simm % 4)))
|
||
{
|
||
addr += OR1K_INSTLEN;
|
||
inst = or1k_fetch_instruction (gdbarch, addr);
|
||
|
||
/* The register in the previous frame can be found at this
|
||
location in this frame. */
|
||
trad_frame_set_reg_addr (info, rb, this_sp + simm);
|
||
}
|
||
else
|
||
break; /* Not a register save instruction. */
|
||
}
|
||
}
|
||
|
||
/* Build the frame ID */
|
||
trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
|
||
|
||
if (or1k_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, " this_sp_for_id = %s\n",
|
||
paddress (gdbarch, this_sp_for_id));
|
||
fprintf_unfiltered (gdb_stdlog, " start_addr = %s\n",
|
||
paddress (gdbarch, start_addr));
|
||
}
|
||
|
||
return info;
|
||
}
|
||
|
||
/* Implement the this_id function for the stub unwinder. */
|
||
|
||
static void
|
||
or1k_frame_this_id (struct frame_info *this_frame,
|
||
void **prologue_cache, struct frame_id *this_id)
|
||
{
|
||
struct trad_frame_cache *info = or1k_frame_cache (this_frame,
|
||
prologue_cache);
|
||
|
||
trad_frame_get_id (info, this_id);
|
||
}
|
||
|
||
/* Implement the prev_register function for the stub unwinder. */
|
||
|
||
static struct value *
|
||
or1k_frame_prev_register (struct frame_info *this_frame,
|
||
void **prologue_cache, int regnum)
|
||
{
|
||
struct trad_frame_cache *info = or1k_frame_cache (this_frame,
|
||
prologue_cache);
|
||
|
||
return trad_frame_get_register (info, this_frame, regnum);
|
||
}
|
||
|
||
/* Data structures for the normal prologue-analysis-based unwinder. */
|
||
|
||
static const struct frame_unwind or1k_frame_unwind = {
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
or1k_frame_this_id,
|
||
or1k_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer,
|
||
NULL,
|
||
};
|
||
|
||
/* Architecture initialization for OpenRISC 1000. */
|
||
|
||
static struct gdbarch *
|
||
or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
const struct bfd_arch_info *binfo;
|
||
struct tdesc_arch_data *tdesc_data = NULL;
|
||
const struct target_desc *tdesc = info.target_desc;
|
||
|
||
/* Find a candidate among the list of pre-declared architectures. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (NULL != arches)
|
||
return arches->gdbarch;
|
||
|
||
/* None found, create a new architecture from the information
|
||
provided. Can't initialize all the target dependencies until we
|
||
actually know which target we are talking to, but put in some defaults
|
||
for now. */
|
||
binfo = info.bfd_arch_info;
|
||
tdep = XCNEW (struct gdbarch_tdep);
|
||
tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
|
||
tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
/* Target data types */
|
||
set_gdbarch_short_bit (gdbarch, 16);
|
||
set_gdbarch_int_bit (gdbarch, 32);
|
||
set_gdbarch_long_bit (gdbarch, 32);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_float_bit (gdbarch, 32);
|
||
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
||
set_gdbarch_double_bit (gdbarch, 64);
|
||
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
||
set_gdbarch_long_double_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
||
set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
|
||
set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
|
||
set_gdbarch_char_signed (gdbarch, 1);
|
||
|
||
/* Information about the target architecture */
|
||
set_gdbarch_return_value (gdbarch, or1k_return_value);
|
||
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
|
||
or1k_breakpoint::kind_from_pc);
|
||
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
|
||
or1k_breakpoint::bp_from_kind);
|
||
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
||
|
||
/* Register architecture */
|
||
set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
|
||
set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
|
||
set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
|
||
set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);
|
||
|
||
/* Functions to analyse frames */
|
||
set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_frame_align (gdbarch, or1k_frame_align);
|
||
set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);
|
||
|
||
/* Functions to access frame data */
|
||
set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
|
||
set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);
|
||
|
||
/* Functions handling dummy frames */
|
||
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
||
set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
|
||
set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);
|
||
set_gdbarch_dummy_id (gdbarch, or1k_dummy_id);
|
||
|
||
/* Frame unwinders. Use DWARF debug info if available, otherwise use our
|
||
own unwinder. */
|
||
dwarf2_append_unwinders (gdbarch);
|
||
frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);
|
||
|
||
/* Get a CGEN CPU descriptor for this architecture. */
|
||
{
|
||
|
||
const char *mach_name = binfo->printable_name;
|
||
enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
|
||
? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);
|
||
|
||
tdep->gdb_cgen_cpu_desc =
|
||
or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
|
||
CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);
|
||
|
||
or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
|
||
}
|
||
|
||
/* If this mach has a delay slot. */
|
||
if (binfo->mach == bfd_mach_or1k)
|
||
set_gdbarch_single_step_through_delay (gdbarch,
|
||
or1k_single_step_through_delay);
|
||
|
||
if (!tdesc_has_registers (info.target_desc))
|
||
/* Pick a default target description. */
|
||
tdesc = tdesc_or1k;
|
||
|
||
/* Check any target description for validity. */
|
||
if (tdesc_has_registers (tdesc))
|
||
{
|
||
const struct tdesc_feature *feature;
|
||
int valid_p;
|
||
int i;
|
||
|
||
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.or1k.group0");
|
||
if (feature == NULL)
|
||
return NULL;
|
||
|
||
tdesc_data = tdesc_data_alloc ();
|
||
|
||
valid_p = 1;
|
||
|
||
for (i = 0; i < OR1K_NUM_REGS; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
||
or1k_reg_names[i]);
|
||
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (tdesc_data != NULL)
|
||
{
|
||
/* If we are using tdesc, register our own reggroups, otherwise we
|
||
will used the defaults. */
|
||
reggroup_add (gdbarch, general_reggroup);
|
||
reggroup_add (gdbarch, system_reggroup);
|
||
reggroup_add (gdbarch, float_reggroup);
|
||
reggroup_add (gdbarch, vector_reggroup);
|
||
reggroup_add (gdbarch, all_reggroup);
|
||
reggroup_add (gdbarch, save_reggroup);
|
||
reggroup_add (gdbarch, restore_reggroup);
|
||
|
||
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
||
}
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
/* Dump the target specific data for this architecture. */
|
||
|
||
static void
|
||
or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (NULL == tdep)
|
||
return; /* Nothing to report */
|
||
|
||
fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per word\n",
|
||
tdep->bytes_per_word);
|
||
fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per address\n",
|
||
tdep->bytes_per_address);
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_or1k_tdep (void)
|
||
{
|
||
/* Register this architecture. */
|
||
gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
|
||
|
||
initialize_tdesc_or1k ();
|
||
|
||
/* Debugging flag. */
|
||
add_setshow_boolean_cmd ("or1k", class_maintenance, &or1k_debug,
|
||
_("Set OpenRISC debugging."),
|
||
_("Show OpenRISC debugging."),
|
||
_("When on, OpenRISC specific debugging is enabled."),
|
||
NULL,
|
||
show_or1k_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
}
|