0877841d73
GOT relocs either.
2994 lines
81 KiB
C
2994 lines
81 KiB
C
/* i386.c -- Assemble code for the Intel 80386
|
||
Copyright (C) 1989, 1991, 1992, 1993 Free Software Foundation.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*
|
||
Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better.
|
||
*/
|
||
|
||
#include <ctype.h>
|
||
|
||
#include "as.h"
|
||
#include "subsegs.h"
|
||
|
||
#include "obstack.h"
|
||
#include "opcode/i386.h"
|
||
|
||
#ifndef TC_RELOC
|
||
#define TC_RELOC(X,Y) (Y)
|
||
#endif
|
||
|
||
/* 'md_assemble ()' gathers together information and puts it into a
|
||
i386_insn. */
|
||
|
||
struct _i386_insn
|
||
{
|
||
/* TM holds the template for the insn were currently assembling. */
|
||
template tm;
|
||
/* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */
|
||
char suffix;
|
||
/* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
|
||
|
||
/* OPERANDS gives the number of given operands. */
|
||
unsigned int operands;
|
||
|
||
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
|
||
of given register, displacement, memory operands and immediate
|
||
operands. */
|
||
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
|
||
|
||
/* TYPES [i] is the type (see above #defines) which tells us how to
|
||
search through DISPS [i] & IMMS [i] & REGS [i] for the required
|
||
operand. */
|
||
unsigned int types[MAX_OPERANDS];
|
||
|
||
/* Displacements (if given) for each operand. */
|
||
expressionS *disps[MAX_OPERANDS];
|
||
|
||
/* Relocation type for operand */
|
||
#ifdef BFD_ASSEMBLER
|
||
enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
|
||
#else
|
||
int disp_reloc[MAX_OPERANDS];
|
||
#endif
|
||
|
||
/* Immediate operands (if given) for each operand. */
|
||
expressionS *imms[MAX_OPERANDS];
|
||
|
||
/* Register operands (if given) for each operand. */
|
||
reg_entry *regs[MAX_OPERANDS];
|
||
|
||
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
|
||
the base index byte below. */
|
||
reg_entry *base_reg;
|
||
reg_entry *index_reg;
|
||
unsigned int log2_scale_factor;
|
||
|
||
/* SEG gives the seg_entry of this insn. It is equal to zero unless
|
||
an explicit segment override is given. */
|
||
const seg_entry *seg; /* segment for memory operands (if given) */
|
||
|
||
/* PREFIX holds all the given prefix opcodes (usually null).
|
||
PREFIXES is the size of PREFIX. */
|
||
/* richfix: really unsigned? */
|
||
unsigned char prefix[MAX_PREFIXES];
|
||
unsigned int prefixes;
|
||
|
||
/* RM and IB are the modrm byte and the base index byte where the
|
||
addressing modes of this insn are encoded. */
|
||
|
||
modrm_byte rm;
|
||
base_index_byte bi;
|
||
};
|
||
|
||
typedef struct _i386_insn i386_insn;
|
||
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful */
|
||
#if defined (TE_I386AIX) || defined (OBJ_ELF)
|
||
const char comment_chars[] = "#/";
|
||
#else
|
||
const char comment_chars[] = "#";
|
||
#endif
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output */
|
||
/* Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output. */
|
||
/* Also note that comments started like this one will always work if
|
||
'/' isn't otherwise defined. */
|
||
#if defined (TE_I386AIX) || defined (OBJ_ELF)
|
||
const char line_comment_chars[] = "";
|
||
#else
|
||
const char line_comment_chars[] = "/";
|
||
#endif
|
||
const char line_separator_chars[] = "";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant */
|
||
/* As in 0f12.456 */
|
||
/* or 0d1.2345e12 */
|
||
const char FLT_CHARS[] = "fFdDxX";
|
||
|
||
/* tables for lexical analysis */
|
||
static char opcode_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char space_chars[256];
|
||
static char identifier_chars[256];
|
||
static char digit_chars[256];
|
||
|
||
/* lexical macros */
|
||
#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) (space_chars[(unsigned char) x])
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
#define is_digit_char(x) (digit_chars[(unsigned char) x])
|
||
|
||
/* put here all non-digit non-letter charcters that may occur in an operand */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
|
||
|
||
static char *ordinal_names[] = {"first", "second", "third"}; /* for printfs */
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p; /* stack pointer */
|
||
#define END_STRING_AND_SAVE(s) *save_stack_p++ = *s; *s = '\0'
|
||
#define RESTORE_END_STRING(s) *s = *--save_stack_p
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
|
||
static expressionS disp_expressions[2], im_expressions[2];
|
||
|
||
/* pointers to ebp & esp entries in reg_hash hash table */
|
||
static reg_entry *ebp, *esp;
|
||
|
||
static int this_operand; /* current operand we are working on */
|
||
|
||
static int flag_do_long_jump; /* FIXME what does this do? */
|
||
|
||
static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
|
||
|
||
/* Interface to relax_segment.
|
||
There are 2 relax states for 386 jump insns: one for conditional &
|
||
one for unconditional jumps. This is because the these two types
|
||
of jumps add different sizes to frags when we're figuring out what
|
||
sort of jump to choose to reach a given label. */
|
||
|
||
/* types */
|
||
#define COND_JUMP 1 /* conditional jump */
|
||
#define UNCOND_JUMP 2 /* unconditional jump */
|
||
/* sizes */
|
||
#define BYTE 0
|
||
#define WORD 1
|
||
#define DWORD 2
|
||
#define UNKNOWN_SIZE 3
|
||
|
||
#ifndef INLINE
|
||
#ifdef __GNUC__
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
#define ENCODE_RELAX_STATE(type,size) \
|
||
((relax_substateT)((type<<2) | (size)))
|
||
#define SIZE_FROM_RELAX_STATE(s) \
|
||
( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) )
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will add to the size of the current frag
|
||
4) which index into the table to try if we can't fit into this one.
|
||
*/
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
/* For now we don't use word displacement jumps; they may be
|
||
untrustworthy. */
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, DWORD)},
|
||
/* word conditionals add 3 bytes to frag:
|
||
2 opcode prefix; 1 displacement bytes */
|
||
{32767 + 2, -32768 + 2, 3, ENCODE_RELAX_STATE (COND_JUMP, DWORD)},
|
||
/* dword conditionals adds 4 bytes to frag:
|
||
1 opcode prefix; 3 displacement bytes */
|
||
{0, 0, 4, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
{127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD)},
|
||
/* word jmp adds 2 bytes to frag:
|
||
1 opcode prefix; 1 displacement bytes */
|
||
{32767 + 2, -32768 + 2, 2, ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD)},
|
||
/* dword jmp adds 3 bytes to frag:
|
||
0 opcode prefix; 3 displacement bytes */
|
||
{0, 0, 3, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
};
|
||
|
||
static char *output_invalid PARAMS ((int c));
|
||
static int i386_operand PARAMS ((char *operand_string));
|
||
static reg_entry *parse_register PARAMS ((char *reg_string));
|
||
#ifndef I386COFF
|
||
static void s_bss PARAMS ((int));
|
||
#endif
|
||
|
||
symbolS *GOT_symbol; /* Pre-defined "__GLOBAL_OFFSET_TABLE" */
|
||
|
||
static INLINE unsigned long
|
||
mode_from_disp_size (t)
|
||
unsigned long t;
|
||
{
|
||
return (t & Disp8) ? 1 : (t & Disp32) ? 2 : 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Not used. */
|
||
/* convert opcode suffix ('b' 'w' 'l' typically) into type specifier */
|
||
|
||
static INLINE unsigned long
|
||
opcode_suffix_to_type (s)
|
||
unsigned long s;
|
||
{
|
||
return (s == BYTE_OPCODE_SUFFIX
|
||
? Byte : (s == WORD_OPCODE_SUFFIX
|
||
? Word : DWord));
|
||
} /* opcode_suffix_to_type() */
|
||
#endif
|
||
|
||
static INLINE int
|
||
fits_in_signed_byte (num)
|
||
long num;
|
||
{
|
||
return (num >= -128) && (num <= 127);
|
||
} /* fits_in_signed_byte() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_byte (num)
|
||
long num;
|
||
{
|
||
return (num & 0xff) == num;
|
||
} /* fits_in_unsigned_byte() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_word (num)
|
||
long num;
|
||
{
|
||
return (num & 0xffff) == num;
|
||
} /* fits_in_unsigned_word() */
|
||
|
||
static INLINE int
|
||
fits_in_signed_word (num)
|
||
long num;
|
||
{
|
||
return (-32768 <= num) && (num <= 32767);
|
||
} /* fits_in_signed_word() */
|
||
|
||
static int
|
||
smallest_imm_type (num)
|
||
long num;
|
||
{
|
||
#if 0
|
||
/* This code is disabled because all the Imm1 forms in the opcode table
|
||
are slower on the i486, and they're the versions with the implicitly
|
||
specified single-position displacement, which has another syntax if
|
||
you really want to use that form. If you really prefer to have the
|
||
one-byte-shorter Imm1 form despite these problems, re-enable this
|
||
code. */
|
||
if (num == 1)
|
||
return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
|
||
#endif
|
||
return (fits_in_signed_byte (num)
|
||
? (Imm8S | Imm8 | Imm16 | Imm32)
|
||
: fits_in_unsigned_byte (num)
|
||
? (Imm8 | Imm16 | Imm32)
|
||
: (fits_in_signed_word (num) || fits_in_unsigned_word (num))
|
||
? (Imm16 | Imm32)
|
||
: (Imm32));
|
||
} /* smallest_imm_type() */
|
||
|
||
void set_16bit_code_flag(new_16bit_code_flag)
|
||
int new_16bit_code_flag;
|
||
{
|
||
flag_16bit_code = new_16bit_code_flag;
|
||
}
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
#ifndef I386COFF
|
||
{"bss", s_bss, 0},
|
||
#endif
|
||
#ifndef OBJ_AOUT
|
||
{"align", s_align_bytes, 0},
|
||
#else
|
||
{"align", s_align_ptwo, 0},
|
||
#endif
|
||
{"ffloat", float_cons, 'f'},
|
||
{"dfloat", float_cons, 'd'},
|
||
{"tfloat", float_cons, 'x'},
|
||
{"value", cons, 2},
|
||
{"noopt", s_ignore, 0},
|
||
{"optim", s_ignore, 0},
|
||
{"code16", set_16bit_code_flag, 1},
|
||
{"code32", set_16bit_code_flag, 0},
|
||
{0, 0, 0}
|
||
};
|
||
|
||
/* for interface with expression () */
|
||
extern char *input_line_pointer;
|
||
|
||
/* obstack for constructing various things in md_begin */
|
||
struct obstack o;
|
||
|
||
/* hash table for opcode lookup */
|
||
static struct hash_control *op_hash;
|
||
/* hash table for register lookup */
|
||
static struct hash_control *reg_hash;
|
||
/* hash table for prefix lookup */
|
||
static struct hash_control *prefix_hash;
|
||
|
||
|
||
void
|
||
md_begin ()
|
||
{
|
||
const char *hash_err;
|
||
|
||
obstack_begin (&o, 4096);
|
||
|
||
/* initialize op_hash hash table */
|
||
op_hash = hash_new ();
|
||
|
||
{
|
||
register const template *optab;
|
||
register templates *core_optab;
|
||
char *prev_name;
|
||
|
||
optab = i386_optab; /* setup for loop */
|
||
prev_name = optab->name;
|
||
obstack_grow (&o, optab, sizeof (template));
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
|
||
for (optab++; optab < i386_optab_end; optab++)
|
||
{
|
||
if (!strcmp (optab->name, prev_name))
|
||
{
|
||
/* same name as before --> append to current template list */
|
||
obstack_grow (&o, optab, sizeof (template));
|
||
}
|
||
else
|
||
{
|
||
/* different name --> ship out current template list;
|
||
add to hash table; & begin anew */
|
||
/* Note: end must be set before start! since obstack_next_free
|
||
changes upon opstack_finish */
|
||
core_optab->end = (template *) obstack_next_free (&o);
|
||
core_optab->start = (template *) obstack_finish (&o);
|
||
hash_err = hash_insert (op_hash, prev_name, (char *) core_optab);
|
||
if (hash_err)
|
||
{
|
||
hash_error:
|
||
as_fatal ("Internal Error: Can't hash %s: %s", prev_name,
|
||
hash_err);
|
||
}
|
||
prev_name = optab->name;
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
obstack_grow (&o, optab, sizeof (template));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* initialize reg_hash hash table */
|
||
reg_hash = hash_new ();
|
||
{
|
||
register const reg_entry *regtab;
|
||
|
||
for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++)
|
||
{
|
||
hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
|
||
if (hash_err)
|
||
goto hash_error;
|
||
}
|
||
}
|
||
|
||
esp = (reg_entry *) hash_find (reg_hash, "esp");
|
||
ebp = (reg_entry *) hash_find (reg_hash, "ebp");
|
||
|
||
/* initialize reg_hash hash table */
|
||
prefix_hash = hash_new ();
|
||
{
|
||
register const prefix_entry *prefixtab;
|
||
|
||
for (prefixtab = i386_prefixtab;
|
||
prefixtab < i386_prefixtab_end; prefixtab++)
|
||
{
|
||
hash_err = hash_insert (prefix_hash, prefixtab->prefix_name,
|
||
(PTR) prefixtab);
|
||
if (hash_err)
|
||
goto hash_error;
|
||
}
|
||
}
|
||
|
||
/* fill in lexical tables: opcode_chars, operand_chars, space_chars */
|
||
{
|
||
register int c;
|
||
register char *p;
|
||
|
||
for (c = 0; c < 256; c++)
|
||
{
|
||
if (islower (c) || isdigit (c))
|
||
{
|
||
opcode_chars[c] = c;
|
||
register_chars[c] = c;
|
||
}
|
||
else if (isupper (c))
|
||
{
|
||
opcode_chars[c] = tolower (c);
|
||
register_chars[c] = opcode_chars[c];
|
||
}
|
||
else if (c == PREFIX_SEPERATOR)
|
||
{
|
||
opcode_chars[c] = c;
|
||
}
|
||
else if (c == ')' || c == '(')
|
||
{
|
||
register_chars[c] = c;
|
||
}
|
||
|
||
if (isupper (c) || islower (c) || isdigit (c))
|
||
operand_chars[c] = c;
|
||
|
||
if (isdigit (c) || c == '-')
|
||
digit_chars[c] = c;
|
||
|
||
if (isalpha (c) || c == '_' || c == '.' || isdigit (c))
|
||
identifier_chars[c] = c;
|
||
|
||
if (c == ' ' || c == '\t')
|
||
space_chars[c] = c;
|
||
}
|
||
|
||
for (p = operand_special_chars; *p != '\0'; p++)
|
||
operand_chars[(unsigned char) *p] = *p;
|
||
}
|
||
|
||
#ifdef OBJ_ELF
|
||
record_alignment (text_section, 2);
|
||
record_alignment (data_section, 2);
|
||
record_alignment (bss_section, 2);
|
||
#endif
|
||
}
|
||
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* debugging routines for md_assemble */
|
||
static void pi PARAMS ((char *, i386_insn *));
|
||
static void pte PARAMS ((template *));
|
||
static void pt PARAMS ((unsigned int));
|
||
static void pe PARAMS ((expressionS *));
|
||
static void ps PARAMS ((symbolS *));
|
||
|
||
static void
|
||
pi (line, x)
|
||
char *line;
|
||
i386_insn *x;
|
||
{
|
||
register template *p;
|
||
int i;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " base %x index %x scale %x\n",
|
||
x->bi.base, x->bi.index, x->bi.scale);
|
||
for (i = 0; i < x->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d: ", i + 1);
|
||
pt (x->types[i]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[i] & Reg)
|
||
fprintf (stdout, "%s\n", x->regs[i]->reg_name);
|
||
if (x->types[i] & Imm)
|
||
pe (x->imms[i]);
|
||
if (x->types[i] & (Disp | Abs))
|
||
pe (x->disps[i]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pte (t)
|
||
template *t;
|
||
{
|
||
int i;
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
fprintf (stdout, "opcode %x ",
|
||
t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier & D)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier & W)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (i = 0; i < t->operands; i++)
|
||
{
|
||
fprintf (stdout, " #%d type ", i + 1);
|
||
pt (t->operand_types[i]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
pe (e)
|
||
expressionS *e;
|
||
{
|
||
fprintf (stdout, " operation %d\n", e->X_op);
|
||
fprintf (stdout, " add_number %d (%x)\n",
|
||
e->X_add_number, e->X_add_number);
|
||
if (e->X_add_symbol)
|
||
{
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_op_symbol)
|
||
{
|
||
fprintf (stdout, " op_symbol ");
|
||
ps (e->X_op_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
ps (s)
|
||
symbolS *s;
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
S_GET_NAME (s),
|
||
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
|
||
segment_name (S_GET_SEGMENT (s)));
|
||
}
|
||
|
||
struct type_name
|
||
{
|
||
unsigned int mask;
|
||
char *tname;
|
||
}
|
||
|
||
type_names[] =
|
||
{
|
||
{ Reg8, "r8" },
|
||
{ Reg16, "r16" },
|
||
{ Reg32, "r32" },
|
||
{ Imm8, "i8" },
|
||
{ Imm8S, "i8s" },
|
||
{ Imm16, "i16" },
|
||
{ Imm32, "i32" },
|
||
{ Mem8, "Mem8" },
|
||
{ Mem16, "Mem16" },
|
||
{ Mem32, "Mem32" },
|
||
{ BaseIndex, "BaseIndex" },
|
||
{ Abs8, "Abs8" },
|
||
{ Abs16, "Abs16" },
|
||
{ Abs32, "Abs32" },
|
||
{ Disp8, "d8" },
|
||
{ Disp16, "d16" },
|
||
{ Disp32, "d32" },
|
||
{ SReg2, "SReg2" },
|
||
{ SReg3, "SReg3" },
|
||
{ Acc, "Acc" },
|
||
{ InOutPortReg, "InOutPortReg" },
|
||
{ ShiftCount, "ShiftCount" },
|
||
{ Imm1, "i1" },
|
||
{ Control, "control reg" },
|
||
{ Test, "test reg" },
|
||
{ FloatReg, "FReg" },
|
||
{ FloatAcc, "FAcc" },
|
||
{ JumpAbsolute, "Jump Absolute" },
|
||
{ 0, "" }
|
||
};
|
||
|
||
static void
|
||
pt (t)
|
||
unsigned int t;
|
||
{
|
||
register struct type_name *ty;
|
||
|
||
if (t == Unknown)
|
||
{
|
||
fprintf (stdout, "Unknown");
|
||
}
|
||
else
|
||
{
|
||
for (ty = type_names; ty->mask; ty++)
|
||
if (t & ty->mask)
|
||
fprintf (stdout, "%s, ", ty->tname);
|
||
}
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
static bfd_reloc_code_real_type
|
||
reloc (size, pcrel, other)
|
||
int size;
|
||
int pcrel;
|
||
bfd_reloc_code_real_type other;
|
||
{
|
||
if (other != NO_RELOC) return other;
|
||
|
||
if (pcrel)
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8_PCREL;
|
||
case 2: return BFD_RELOC_16_PCREL;
|
||
case 4: return BFD_RELOC_32_PCREL;
|
||
}
|
||
else
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8;
|
||
case 2: return BFD_RELOC_16;
|
||
case 4: return BFD_RELOC_32;
|
||
}
|
||
|
||
as_bad ("Can not do %d byte %srelocation", size,
|
||
pcrel ? "pc-relative " : "");
|
||
return BFD_RELOC_NONE;
|
||
}
|
||
#else
|
||
#define reloc(SIZE,PCREL,OTHER) 0
|
||
#define BFD_RELOC_32 0
|
||
#define BFD_RELOC_32_PCREL 0
|
||
#define BFD_RELOC_386_PLT32 0
|
||
#define BFD_RELOC_386_GOT32 0
|
||
#define BFD_RELOC_386_GOTOFF 0
|
||
#endif
|
||
|
||
/*
|
||
* Here we decide which fixups can be adjusted to make them relative to
|
||
* the beginning of the section instead of the symbol. Basically we need
|
||
* to make sure that the dynamic relocations are done correctly, so in
|
||
* some cases we force the original symbol to be used.
|
||
*/
|
||
int
|
||
tc_i386_fix_adjustable(fixP)
|
||
fixS * fixP;
|
||
{
|
||
#ifndef OBJ_AOUT
|
||
/* Prevent all adjustments to global symbols. */
|
||
if (S_IS_EXTERN (fixP->fx_addsy))
|
||
return 0;
|
||
#endif
|
||
#ifdef BFD_ASSEMBLER
|
||
/* adjust_reloc_syms doesn't know about the GOT */
|
||
if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_386_PLT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32)
|
||
return 0;
|
||
#endif
|
||
return 1;
|
||
}
|
||
|
||
/* This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (line)
|
||
char *line;
|
||
{
|
||
/* Holds template once we've found it. */
|
||
template *t;
|
||
|
||
/* Count the size of the instruction generated. */
|
||
int insn_size = 0;
|
||
|
||
/* Possible templates for current insn */
|
||
templates *current_templates = (templates *) 0;
|
||
|
||
int j;
|
||
|
||
/* Initialize globals. */
|
||
memset (&i, '\0', sizeof (i));
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
i.disp_reloc[j] = NO_RELOC;
|
||
memset (disp_expressions, '\0', sizeof (disp_expressions));
|
||
memset (im_expressions, '\0', sizeof (im_expressions));
|
||
save_stack_p = save_stack; /* reset stack pointer */
|
||
|
||
/* Fist parse an opcode & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) opcode. */
|
||
{
|
||
char *l = line;
|
||
|
||
/* 1 if operand is pending after ','. */
|
||
unsigned int expecting_operand = 0;
|
||
/* 1 if we found a prefix only acceptable with string insns. */
|
||
unsigned int expecting_string_instruction = 0;
|
||
/* Non-zero if operand parens not balenced. */
|
||
unsigned int paren_not_balenced;
|
||
char *token_start = l;
|
||
|
||
while (!is_space_char (*l) && *l != END_OF_INSN)
|
||
{
|
||
if (!is_opcode_char (*l))
|
||
{
|
||
as_bad ("invalid character %s in opcode", output_invalid (*l));
|
||
return;
|
||
}
|
||
else if (*l != PREFIX_SEPERATOR)
|
||
{
|
||
*l = opcode_chars[(unsigned char) *l]; /* fold case of opcodes */
|
||
l++;
|
||
}
|
||
else
|
||
{
|
||
/* This opcode's got a prefix. */
|
||
unsigned int q;
|
||
prefix_entry *prefix;
|
||
|
||
if (l == token_start)
|
||
{
|
||
as_bad ("expecting prefix; got nothing");
|
||
return;
|
||
}
|
||
END_STRING_AND_SAVE (l);
|
||
prefix = (prefix_entry *) hash_find (prefix_hash, token_start);
|
||
if (!prefix)
|
||
{
|
||
as_bad ("no such opcode prefix ('%s')", token_start);
|
||
return;
|
||
}
|
||
RESTORE_END_STRING (l);
|
||
/* check for repeated prefix */
|
||
for (q = 0; q < i.prefixes; q++)
|
||
if (i.prefix[q] == prefix->prefix_code)
|
||
{
|
||
as_bad ("same prefix used twice; you don't really want this!");
|
||
return;
|
||
}
|
||
if (i.prefixes == MAX_PREFIXES)
|
||
{
|
||
as_bad ("too many opcode prefixes");
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = prefix->prefix_code;
|
||
if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE)
|
||
expecting_string_instruction = 1;
|
||
/* skip past PREFIX_SEPERATOR and reset token_start */
|
||
token_start = ++l;
|
||
}
|
||
}
|
||
END_STRING_AND_SAVE (l);
|
||
if (token_start == l)
|
||
{
|
||
as_bad ("expecting opcode; got nothing");
|
||
return;
|
||
}
|
||
|
||
/* Lookup insn in hash; try intel & att naming conventions if appropriate;
|
||
that is: we only use the opcode suffix 'b' 'w' or 'l' if we need to. */
|
||
current_templates = (templates *) hash_find (op_hash, token_start);
|
||
if (!current_templates)
|
||
{
|
||
int last_index = strlen (token_start) - 1;
|
||
char last_char = token_start[last_index];
|
||
switch (last_char)
|
||
{
|
||
case DWORD_OPCODE_SUFFIX:
|
||
case WORD_OPCODE_SUFFIX:
|
||
case BYTE_OPCODE_SUFFIX:
|
||
token_start[last_index] = '\0';
|
||
current_templates = (templates *) hash_find (op_hash, token_start);
|
||
token_start[last_index] = last_char;
|
||
i.suffix = last_char;
|
||
}
|
||
if (!current_templates)
|
||
{
|
||
as_bad ("no such 386 instruction: `%s'", token_start);
|
||
return;
|
||
}
|
||
}
|
||
RESTORE_END_STRING (l);
|
||
|
||
/* check for rep/repne without a string instruction */
|
||
if (expecting_string_instruction &&
|
||
!IS_STRING_INSTRUCTION (current_templates->
|
||
start->base_opcode))
|
||
{
|
||
as_bad ("expecting string instruction after rep/repne");
|
||
return;
|
||
}
|
||
|
||
/* There may be operands to parse. */
|
||
if (*l != END_OF_INSN &&
|
||
/* For string instructions, we ignore any operands if given. This
|
||
kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where
|
||
the operands are always going to be the same, and are not really
|
||
encoded in machine code. */
|
||
!IS_STRING_INSTRUCTION (current_templates->
|
||
start->base_opcode))
|
||
{
|
||
/* parse operands */
|
||
do
|
||
{
|
||
/* skip optional white space before operand */
|
||
while (!is_operand_char (*l) && *l != END_OF_INSN)
|
||
{
|
||
if (!is_space_char (*l))
|
||
{
|
||
as_bad ("invalid character %s before %s operand",
|
||
output_invalid (*l),
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
}
|
||
l++;
|
||
}
|
||
token_start = l; /* after white space */
|
||
paren_not_balenced = 0;
|
||
while (paren_not_balenced || *l != ',')
|
||
{
|
||
if (*l == END_OF_INSN)
|
||
{
|
||
if (paren_not_balenced)
|
||
{
|
||
as_bad ("unbalenced parenthesis in %s operand.",
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
}
|
||
else
|
||
break; /* we are done */
|
||
}
|
||
else if (!is_operand_char (*l) && !is_space_char (*l))
|
||
{
|
||
as_bad ("invalid character %s in %s operand",
|
||
output_invalid (*l),
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
}
|
||
if (*l == '(')
|
||
++paren_not_balenced;
|
||
if (*l == ')')
|
||
--paren_not_balenced;
|
||
l++;
|
||
}
|
||
if (l != token_start)
|
||
{ /* yes, we've read in another operand */
|
||
unsigned int operand_ok;
|
||
this_operand = i.operands++;
|
||
if (i.operands > MAX_OPERANDS)
|
||
{
|
||
as_bad ("spurious operands; (%d operands/instruction max)",
|
||
MAX_OPERANDS);
|
||
return;
|
||
}
|
||
/* now parse operand adding info to 'i' as we go along */
|
||
END_STRING_AND_SAVE (l);
|
||
operand_ok = i386_operand (token_start);
|
||
RESTORE_END_STRING (l); /* restore old contents */
|
||
if (!operand_ok)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (expecting_operand)
|
||
{
|
||
expecting_operand_after_comma:
|
||
as_bad ("expecting operand after ','; got nothing");
|
||
return;
|
||
}
|
||
if (*l == ',')
|
||
{
|
||
as_bad ("expecting operand before ','; got nothing");
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* now *l must be either ',' or END_OF_INSN */
|
||
if (*l == ',')
|
||
{
|
||
if (*++l == END_OF_INSN)
|
||
{ /* just skip it, if it's \n complain */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = 1;
|
||
}
|
||
}
|
||
while (*l != END_OF_INSN); /* until we get end of insn */
|
||
}
|
||
}
|
||
|
||
/* Now we've parsed the opcode into a set of templates, and have the
|
||
operands at hand.
|
||
|
||
Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
#define MATCH(overlap,given_type) \
|
||
(overlap && \
|
||
(((overlap & (JumpAbsolute|BaseIndex|Mem8)) \
|
||
== (given_type & (JumpAbsolute|BaseIndex|Mem8))) \
|
||
|| (overlap == InOutPortReg)))
|
||
|
||
|
||
/* If m0 and m1 are register matches they must be consistent
|
||
with the expected operand types t0 and t1.
|
||
That is, if both m0 & m1 are register matches
|
||
i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ?
|
||
then, either 1. or 2. must be true:
|
||
1. the expected operand type register overlap is null:
|
||
(t0 & t1 & Reg) == 0
|
||
AND
|
||
the given register overlap is null:
|
||
(m0 & m1 & Reg) == 0
|
||
2. the expected operand type register overlap == the given
|
||
operand type overlap: (t0 & t1 & m0 & m1 & Reg).
|
||
*/
|
||
#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \
|
||
( ((m0 & (Reg)) && (m1 & (Reg))) ? \
|
||
( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \
|
||
((t0 & t1) & (m0 & m1) & (Reg)) \
|
||
) : 1)
|
||
{
|
||
register unsigned int overlap0, overlap1;
|
||
expressionS *exp;
|
||
unsigned int overlap2;
|
||
unsigned int found_reverse_match;
|
||
|
||
overlap0 = overlap1 = overlap2 = found_reverse_match = 0;
|
||
for (t = current_templates->start;
|
||
t < current_templates->end;
|
||
t++)
|
||
{
|
||
/* must have right number of operands */
|
||
if (i.operands != t->operands)
|
||
continue;
|
||
else if (!t->operands)
|
||
break; /* 0 operands always matches */
|
||
|
||
overlap0 = i.types[0] & t->operand_types[0];
|
||
switch (t->operands)
|
||
{
|
||
case 1:
|
||
if (!MATCH (overlap0, i.types[0]))
|
||
continue;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
overlap1 = i.types[1] & t->operand_types[1];
|
||
if (!MATCH (overlap0, i.types[0]) ||
|
||
!MATCH (overlap1, i.types[1]) ||
|
||
!CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
|
||
t->operand_types[0],
|
||
t->operand_types[1]))
|
||
{
|
||
|
||
/* check if other direction is valid ... */
|
||
if (!(t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS))
|
||
continue;
|
||
|
||
/* try reversing direction of operands */
|
||
overlap0 = i.types[0] & t->operand_types[1];
|
||
overlap1 = i.types[1] & t->operand_types[0];
|
||
if (!MATCH (overlap0, i.types[0]) ||
|
||
!MATCH (overlap1, i.types[1]) ||
|
||
!CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
|
||
t->operand_types[0],
|
||
t->operand_types[1]))
|
||
{
|
||
/* does not match either direction */
|
||
continue;
|
||
}
|
||
/* found a reverse match here -- slip through */
|
||
/* found_reverse_match holds which of D or FloatD we've found */
|
||
found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS;
|
||
} /* endif: not forward match */
|
||
/* found either forward/reverse 2 operand match here */
|
||
if (t->operands == 3)
|
||
{
|
||
overlap2 = i.types[2] & t->operand_types[2];
|
||
if (!MATCH (overlap2, i.types[2]) ||
|
||
!CONSISTENT_REGISTER_MATCH (overlap0, overlap2,
|
||
t->operand_types[0],
|
||
t->operand_types[2]) ||
|
||
!CONSISTENT_REGISTER_MATCH (overlap1, overlap2,
|
||
t->operand_types[1],
|
||
t->operand_types[2]))
|
||
continue;
|
||
}
|
||
/* found either forward/reverse 2 or 3 operand match here:
|
||
slip through to break */
|
||
}
|
||
break; /* we've found a match; break out of loop */
|
||
} /* for (t = ... */
|
||
if (t == current_templates->end)
|
||
{ /* we found no match */
|
||
as_bad ("operands given don't match any known 386 instruction");
|
||
return;
|
||
}
|
||
|
||
/* Copy the template we found (we may change it!). */
|
||
i.tm = *t;
|
||
t = &i.tm; /* alter new copy of template */
|
||
|
||
/* If the matched instruction specifies an explicit opcode suffix,
|
||
use it - and make sure none has already been specified. */
|
||
if (t->opcode_modifier & (Data16|Data32))
|
||
{
|
||
if (i.suffix)
|
||
{
|
||
as_bad ("extraneous opcode suffix given");
|
||
return;
|
||
}
|
||
if (t->opcode_modifier & Data16)
|
||
i.suffix = WORD_OPCODE_SUFFIX;
|
||
else
|
||
i.suffix = DWORD_OPCODE_SUFFIX;
|
||
}
|
||
|
||
/* If there's no opcode suffix we try to invent one based on register
|
||
operands. */
|
||
if (!i.suffix && i.reg_operands)
|
||
{
|
||
/* We take i.suffix from the LAST register operand specified. This
|
||
assumes that the last register operands is the destination register
|
||
operand. */
|
||
int op;
|
||
for (op = 0; op < MAX_OPERANDS; op++)
|
||
if (i.types[op] & Reg)
|
||
{
|
||
i.suffix = ((i.types[op] == Reg8) ? BYTE_OPCODE_SUFFIX :
|
||
(i.types[op] == Reg16) ? WORD_OPCODE_SUFFIX :
|
||
DWORD_OPCODE_SUFFIX);
|
||
}
|
||
}
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. Note: overlap2 cannot be an immediate!
|
||
We assume this. */
|
||
if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
|
||
&& overlap0 != Imm8 && overlap0 != Imm8S
|
||
&& overlap0 != Imm16 && overlap0 != Imm32)
|
||
{
|
||
if (!i.suffix)
|
||
{
|
||
as_bad ("no opcode suffix given; can't determine immediate size");
|
||
return;
|
||
}
|
||
overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
|
||
&& overlap1 != Imm8 && overlap1 != Imm8S
|
||
&& overlap1 != Imm16 && overlap1 != Imm32)
|
||
{
|
||
if (!i.suffix)
|
||
{
|
||
as_bad ("no opcode suffix given; can't determine immediate size");
|
||
return;
|
||
}
|
||
overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8 | Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
|
||
i.types[0] = overlap0;
|
||
i.types[1] = overlap1;
|
||
i.types[2] = overlap2;
|
||
|
||
if (overlap0 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (overlap1 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (overlap2 & ImplicitRegister)
|
||
i.reg_operands--;
|
||
if (overlap0 & Imm1)
|
||
i.imm_operands = 0; /* kludge for shift insns */
|
||
|
||
if (found_reverse_match)
|
||
{
|
||
unsigned int save;
|
||
save = t->operand_types[0];
|
||
t->operand_types[0] = t->operand_types[1];
|
||
t->operand_types[1] = save;
|
||
}
|
||
|
||
/* Finalize opcode. First, we change the opcode based on the operand
|
||
size given by i.suffix: we never have to change things for byte insns,
|
||
or when no opcode suffix is need to size the operands. */
|
||
|
||
if (!i.suffix && (t->opcode_modifier & W))
|
||
{
|
||
as_bad ("no opcode suffix given and no register operands; can't size instruction");
|
||
return;
|
||
}
|
||
|
||
if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX)
|
||
{
|
||
/* Select between byte and word/dword operations. */
|
||
if (t->opcode_modifier & W)
|
||
t->base_opcode |= W;
|
||
/* Now select between word & dword operations via the
|
||
operand size prefix. */
|
||
if ((i.suffix == WORD_OPCODE_SUFFIX) ^ flag_16bit_code)
|
||
{
|
||
if (i.prefixes == MAX_PREFIXES)
|
||
{
|
||
as_bad ("%d prefixes given and 'w' opcode suffix gives too many prefixes",
|
||
MAX_PREFIXES);
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE;
|
||
}
|
||
}
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands)
|
||
{
|
||
/* Default segment register this instruction will use
|
||
for memory accesses. 0 means unknown.
|
||
This is only for optimizing out unnecessary segment overrides. */
|
||
const seg_entry *default_seg = 0;
|
||
|
||
/* True if this instruction uses a memory addressing mode,
|
||
and therefore may need an address-size prefix. */
|
||
int uses_mem_addrmode = 0;
|
||
|
||
|
||
/* If we found a reverse match we must alter the opcode direction bit
|
||
found_reverse_match holds bit to set (different for int &
|
||
float insns). */
|
||
|
||
if (found_reverse_match)
|
||
{
|
||
t->base_opcode |= found_reverse_match;
|
||
}
|
||
|
||
/* The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg. */
|
||
if (t->opcode_modifier & imulKludge)
|
||
{
|
||
/* Pretend we saw the 3 operand case. */
|
||
i.regs[2] = i.regs[1];
|
||
i.reg_operands = 2;
|
||
}
|
||
|
||
/* Certain instructions expect the destination to be in the i.rm.reg
|
||
field. This is by far the exceptional case. For these
|
||
instructions, if the source operand is a register, we must reverse
|
||
the i.rm.reg and i.rm.regmem fields. We accomplish this by faking
|
||
that the two register operands were given in the reverse order. */
|
||
if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2)
|
||
{
|
||
unsigned int first_reg_operand = (i.types[0] & Reg) ? 0 : 1;
|
||
unsigned int second_reg_operand = first_reg_operand + 1;
|
||
reg_entry *tmp = i.regs[first_reg_operand];
|
||
i.regs[first_reg_operand] = i.regs[second_reg_operand];
|
||
i.regs[second_reg_operand] = tmp;
|
||
}
|
||
|
||
if (t->opcode_modifier & ShortForm)
|
||
{
|
||
/* The register or float register operand is in operand 0 or 1. */
|
||
unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
t->base_opcode |= i.regs[op]->reg_num;
|
||
}
|
||
else if (t->opcode_modifier & ShortFormW)
|
||
{
|
||
/* Short form with 0x8 width bit. Register is always dest. operand */
|
||
t->base_opcode |= i.regs[1]->reg_num;
|
||
if (i.suffix == WORD_OPCODE_SUFFIX ||
|
||
i.suffix == DWORD_OPCODE_SUFFIX)
|
||
t->base_opcode |= 0x8;
|
||
}
|
||
else if (t->opcode_modifier & Seg2ShortForm)
|
||
{
|
||
if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
|
||
{
|
||
as_bad ("you can't 'pop cs' on the 386.");
|
||
return;
|
||
}
|
||
t->base_opcode |= (i.regs[0]->reg_num << 3);
|
||
}
|
||
else if (t->opcode_modifier & Seg3ShortForm)
|
||
{
|
||
/* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1.
|
||
'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9.
|
||
So, only if i.regs[0]->reg_num == 5 (%gs) do we need
|
||
to change the opcode. */
|
||
if (i.regs[0]->reg_num == 5)
|
||
t->base_opcode |= 0x08;
|
||
}
|
||
else if ((t->base_opcode & ~DW) == MOV_AX_DISP32)
|
||
{
|
||
/* This is a special non-modrm instruction
|
||
that addresses memory with a 32-bit displacement mode anyway,
|
||
and thus requires an address-size prefix if in 16-bit mode. */
|
||
uses_mem_addrmode = 1;
|
||
default_seg = &ds;
|
||
}
|
||
else if (t->opcode_modifier & Modrm)
|
||
{
|
||
/* The opcode is completed (modulo t->extension_opcode which must
|
||
be put into the modrm byte.
|
||
Now, we make the modrm & index base bytes based on all the info
|
||
we've collected. */
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. */
|
||
if (i.reg_operands == 2)
|
||
{
|
||
unsigned int source, dest;
|
||
source = (i.types[0] & (Reg | SReg2 | SReg3 | Control | Debug | Test)) ? 0 : 1;
|
||
dest = source + 1;
|
||
i.rm.mode = 3;
|
||
/* We must be careful to make sure that all
|
||
segment/control/test/debug registers go into the i.rm.reg
|
||
field (despite the whether they are source or destination
|
||
operands). */
|
||
if (i.regs[dest]->reg_type & (SReg2 | SReg3 | Control | Debug | Test))
|
||
{
|
||
i.rm.reg = i.regs[dest]->reg_num;
|
||
i.rm.regmem = i.regs[source]->reg_num;
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.regs[source]->reg_num;
|
||
i.rm.regmem = i.regs[dest]->reg_num;
|
||
}
|
||
}
|
||
else
|
||
{ /* if it's not 2 reg operands... */
|
||
if (i.mem_operands)
|
||
{
|
||
unsigned int fake_zero_displacement = 0;
|
||
unsigned int op = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2);
|
||
|
||
/* Encode memory operand into modrm byte and base index
|
||
byte. */
|
||
|
||
if (i.base_reg == esp && !i.index_reg)
|
||
{
|
||
/* <disp>(%esp) becomes two byte modrm with no index
|
||
register. */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
i.bi.base = ESP_REG_NUM;
|
||
i.bi.index = NO_INDEX_REGISTER;
|
||
i.bi.scale = 0; /* Must be zero! */
|
||
}
|
||
else if (i.base_reg == ebp && !i.index_reg)
|
||
{
|
||
if (!(i.types[op] & Disp))
|
||
{
|
||
/* Must fake a zero byte displacement. There is
|
||
no direct way to code '(%ebp)' directly. */
|
||
fake_zero_displacement = 1;
|
||
/* fake_zero_displacement code does not set this. */
|
||
i.types[op] |= Disp8;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
i.rm.regmem = EBP_REG_NUM;
|
||
}
|
||
else if (!i.base_reg && (i.types[op] & BaseIndex))
|
||
{
|
||
/* There are three cases here.
|
||
Case 1: '<32bit disp>(,1)' -- indirect absolute.
|
||
(Same as cases 2 & 3 with NO index register)
|
||
Case 2: <32bit disp> (,<index>) -- no base register with disp
|
||
Case 3: (, <index>) --- no base register;
|
||
no disp (must add 32bit 0 disp). */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.rm.mode = 0; /* 32bit mode */
|
||
i.bi.base = NO_BASE_REGISTER;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32; /* Must be 32bit! */
|
||
if (i.index_reg)
|
||
{ /* case 2 or case 3 */
|
||
i.bi.index = i.index_reg->reg_num;
|
||
i.bi.scale = i.log2_scale_factor;
|
||
if (i.disp_operands == 0)
|
||
fake_zero_displacement = 1; /* case 3 */
|
||
}
|
||
else
|
||
{
|
||
i.bi.index = NO_INDEX_REGISTER;
|
||
i.bi.scale = 0;
|
||
}
|
||
}
|
||
else if (i.disp_operands && !i.base_reg && !i.index_reg)
|
||
{
|
||
/* Operand is just <32bit disp> */
|
||
i.rm.regmem = EBP_REG_NUM;
|
||
i.rm.mode = 0;
|
||
i.types[op] &= ~Disp;
|
||
i.types[op] |= Disp32;
|
||
}
|
||
else
|
||
{
|
||
/* It's not a special case; rev'em up. */
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
if (i.index_reg)
|
||
{
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.bi.base = i.base_reg->reg_num;
|
||
i.bi.index = i.index_reg->reg_num;
|
||
i.bi.scale = i.log2_scale_factor;
|
||
if (i.base_reg == ebp && i.disp_operands == 0)
|
||
{ /* pace */
|
||
fake_zero_displacement = 1;
|
||
i.types[op] |= Disp8;
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
}
|
||
}
|
||
if (fake_zero_displacement)
|
||
{
|
||
/* Fakes a zero displacement assuming that i.types[op]
|
||
holds the correct displacement size. */
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.disps[op] = exp;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
|
||
/* Find the default segment for the memory operand.
|
||
Used to optimize out explicit segment specifications. */
|
||
if (i.seg)
|
||
{
|
||
unsigned int seg_index;
|
||
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING)
|
||
{
|
||
seg_index = (i.rm.mode << 3) | i.bi.base;
|
||
default_seg = two_byte_segment_defaults[seg_index];
|
||
}
|
||
else
|
||
{
|
||
seg_index = (i.rm.mode << 3) | i.rm.regmem;
|
||
default_seg = one_byte_segment_defaults[seg_index];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register operand
|
||
(if any) based on t->extension_opcode. Again, we must be
|
||
careful to make sure that segment/control/debug/test
|
||
registers are coded into the i.rm.reg field. */
|
||
if (i.reg_operands)
|
||
{
|
||
unsigned int op =
|
||
(i.types[0] & (Reg | SReg2 | SReg3 | Control | Debug | Test)) ? 0 :
|
||
(i.types[1] & (Reg | SReg2 | SReg3 | Control | Debug | Test)) ? 1 : 2;
|
||
/* If there is an extension opcode to put here, the
|
||
register number must be put into the regmem field. */
|
||
if (t->extension_opcode != None)
|
||
i.rm.regmem = i.regs[op]->reg_num;
|
||
else
|
||
i.rm.reg = i.regs[op]->reg_num;
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
|
||
we must set it to 3 to indicate this is a register
|
||
operand int the regmem field */
|
||
if (!i.mem_operands)
|
||
i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (t->extension_opcode != None)
|
||
i.rm.reg = t->extension_opcode;
|
||
}
|
||
|
||
if (i.rm.mode != 3)
|
||
uses_mem_addrmode = 1;
|
||
}
|
||
|
||
/* GAS currently doesn't support 16-bit memory addressing modes at all,
|
||
so if we're writing 16-bit code and using a memory addressing mode,
|
||
always spew out an address size prefix. */
|
||
if (uses_mem_addrmode && flag_16bit_code)
|
||
{
|
||
if (i.prefixes == MAX_PREFIXES)
|
||
{
|
||
as_bad ("%d prefixes given and address size override gives too many prefixes",
|
||
MAX_PREFIXES);
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = ADDR_PREFIX_OPCODE;
|
||
}
|
||
|
||
/* If a segment was explicitly specified,
|
||
and the specified segment is not the default,
|
||
use an opcode prefix to select it.
|
||
If we never figured out what the default segment is,
|
||
then default_seg will be zero at this point,
|
||
and the specified segment prefix will always be used. */
|
||
if ((i.seg) && (i.seg != default_seg))
|
||
{
|
||
if (i.prefixes == MAX_PREFIXES)
|
||
{
|
||
as_bad ("%d prefixes given and %s segment override gives too many prefixes",
|
||
MAX_PREFIXES, i.seg->seg_name);
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = i.seg->seg_prefix;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. */
|
||
if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
|
||
{
|
||
t->base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
/* We are ready to output the insn. */
|
||
{
|
||
register char *p;
|
||
|
||
/* Output jumps. */
|
||
if (t->opcode_modifier & Jump)
|
||
{
|
||
unsigned long n = i.disps[0]->X_add_number;
|
||
|
||
if (i.disps[0]->X_op == O_constant)
|
||
{
|
||
if (fits_in_signed_byte (n))
|
||
{
|
||
p = frag_more (2);
|
||
insn_size += 2;
|
||
p[0] = t->base_opcode;
|
||
p[1] = n;
|
||
}
|
||
else
|
||
{ /* It's an absolute word/dword displacement. */
|
||
|
||
/* Use only 16-bit jumps for 16-bit code,
|
||
because text segments are limited to 64K anyway;
|
||
use only 32-bit jumps for 32-bit code,
|
||
because they're faster. */
|
||
int jmp_size = flag_16bit_code ? 2 : 4;
|
||
if (flag_16bit_code && !fits_in_signed_word (n))
|
||
{
|
||
as_bad ("16-bit jump out of range");
|
||
return;
|
||
}
|
||
|
||
if (t->base_opcode == JUMP_PC_RELATIVE)
|
||
{ /* pace */
|
||
/* unconditional jump */
|
||
p = frag_more (1 + jmp_size);
|
||
insn_size += 1 + jmp_size;
|
||
p[0] = (char) 0xe9;
|
||
md_number_to_chars (&p[1], (valueT) n, jmp_size);
|
||
}
|
||
else
|
||
{
|
||
/* conditional jump */
|
||
p = frag_more (2 + jmp_size);
|
||
insn_size += 2 + jmp_size;
|
||
p[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
p[1] = t->base_opcode + 0x10;
|
||
md_number_to_chars (&p[2], (valueT) n, jmp_size);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (flag_16bit_code)
|
||
{
|
||
FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
|
||
insn_size += 1;
|
||
}
|
||
|
||
/* It's a symbol; end frag & setup for relax.
|
||
Make sure there are more than 6 chars left in the current frag;
|
||
if not we'll have to start a new one. */
|
||
if (obstack_room (&frags) <= 6)
|
||
{
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
}
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
p[0] = t->base_opcode;
|
||
frag_var (rs_machine_dependent,
|
||
6, /* 2 opcode/prefix + 4 displacement */
|
||
1,
|
||
((unsigned char) *p == JUMP_PC_RELATIVE
|
||
? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE)
|
||
: ENCODE_RELAX_STATE (COND_JUMP, BYTE)),
|
||
i.disps[0]->X_add_symbol,
|
||
(long) n, p);
|
||
}
|
||
}
|
||
else if (t->opcode_modifier & (JumpByte | JumpDword))
|
||
{
|
||
int size = (t->opcode_modifier & JumpByte) ? 1 : 4;
|
||
unsigned long n = i.disps[0]->X_add_number;
|
||
unsigned char *q;
|
||
|
||
/* The jcx/jecx instruction might need a data size prefix. */
|
||
for (q = i.prefix; q < i.prefix + i.prefixes; q++)
|
||
{
|
||
if (*q == WORD_PREFIX_OPCODE)
|
||
{
|
||
FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
|
||
insn_size += 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if ((size == 4) && (flag_16bit_code))
|
||
{
|
||
FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
|
||
insn_size += 1;
|
||
}
|
||
|
||
if (fits_in_unsigned_byte (t->base_opcode))
|
||
{
|
||
FRAG_APPEND_1_CHAR (t->base_opcode);
|
||
insn_size += 1;
|
||
}
|
||
else
|
||
{
|
||
p = frag_more (2); /* opcode can be at most two bytes */
|
||
insn_size += 2;
|
||
/* put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = t->base_opcode & 0xff;
|
||
}
|
||
|
||
p = frag_more (size);
|
||
insn_size += size;
|
||
if (i.disps[0]->X_op == O_constant)
|
||
{
|
||
md_number_to_chars (p, (valueT) n, size);
|
||
if (size == 1 && !fits_in_signed_byte (n))
|
||
{
|
||
as_bad ("loop/jecx only takes byte displacement; %lu shortened to %d",
|
||
n, *p);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
|
||
|
||
}
|
||
}
|
||
else if (t->opcode_modifier & JumpInterSegment)
|
||
{
|
||
if (flag_16bit_code)
|
||
{
|
||
FRAG_APPEND_1_CHAR (WORD_PREFIX_OPCODE);
|
||
insn_size += 1;
|
||
}
|
||
|
||
p = frag_more (1 + 2 + 4); /* 1 opcode; 2 segment; 4 offset */
|
||
insn_size += 1 + 2 + 4;
|
||
p[0] = t->base_opcode;
|
||
if (i.imms[1]->X_op == O_constant)
|
||
md_number_to_chars (p + 1, (valueT) i.imms[1]->X_add_number, 4);
|
||
else
|
||
fix_new_exp (frag_now, p + 1 - frag_now->fr_literal, 4,
|
||
i.imms[1], 0, BFD_RELOC_32);
|
||
if (i.imms[0]->X_op != O_constant)
|
||
as_bad ("can't handle non absolute segment in long call/jmp");
|
||
md_number_to_chars (p + 5, (valueT) i.imms[0]->X_add_number, 2);
|
||
}
|
||
else
|
||
{
|
||
/* Output normal instructions here. */
|
||
unsigned char *q;
|
||
|
||
/* First the prefix bytes. */
|
||
for (q = i.prefix; q < i.prefix + i.prefixes; q++)
|
||
{
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
md_number_to_chars (p, (valueT) *q, 1);
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
if (fits_in_unsigned_byte (t->base_opcode))
|
||
{
|
||
FRAG_APPEND_1_CHAR (t->base_opcode);
|
||
insn_size += 1;
|
||
}
|
||
else if (fits_in_unsigned_word (t->base_opcode))
|
||
{
|
||
p = frag_more (2);
|
||
insn_size += 2;
|
||
/* put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = t->base_opcode & 0xff;
|
||
}
|
||
else
|
||
{ /* opcode is either 3 or 4 bytes */
|
||
if (t->base_opcode & 0xff000000)
|
||
{
|
||
p = frag_more (4);
|
||
insn_size += 4;
|
||
*p++ = (t->base_opcode >> 24) & 0xff;
|
||
}
|
||
else
|
||
{
|
||
p = frag_more (3);
|
||
insn_size += 3;
|
||
}
|
||
*p++ = (t->base_opcode >> 16) & 0xff;
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = (t->base_opcode) & 0xff;
|
||
}
|
||
|
||
/* Now the modrm byte and base index byte (if present). */
|
||
if (t->opcode_modifier & Modrm)
|
||
{
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
/* md_number_to_chars (p, i.rm, 1); */
|
||
md_number_to_chars (p,
|
||
(valueT) (i.rm.regmem << 0
|
||
| i.rm.reg << 3
|
||
| i.rm.mode << 6),
|
||
1);
|
||
/* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode)
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3)
|
||
{
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
/* md_number_to_chars (p, i.bi, 1); */
|
||
md_number_to_chars (p, (valueT) (i.bi.base << 0
|
||
| i.bi.index << 3
|
||
| i.bi.scale << 6),
|
||
1);
|
||
}
|
||
}
|
||
|
||
if (i.disp_operands)
|
||
{
|
||
register unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.disps[n])
|
||
{
|
||
if (i.disps[n]->X_op == O_constant)
|
||
{
|
||
if (i.types[n] & (Disp8 | Abs8))
|
||
{
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
1);
|
||
}
|
||
else if (i.types[n] & (Disp16 | Abs16))
|
||
{
|
||
p = frag_more (2);
|
||
insn_size += 2;
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
2);
|
||
}
|
||
else
|
||
{ /* Disp32|Abs32 */
|
||
p = frag_more (4);
|
||
insn_size += 4;
|
||
md_number_to_chars (p,
|
||
(valueT) i.disps[n]->X_add_number,
|
||
4);
|
||
}
|
||
}
|
||
else
|
||
{ /* not absolute_section */
|
||
/* need a 32-bit fixup (don't support 8bit non-absolute disps) */
|
||
p = frag_more (4);
|
||
insn_size += 4;
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
|
||
i.disps[n], 0,
|
||
TC_RELOC(i.disp_reloc[n], BFD_RELOC_32));
|
||
}
|
||
}
|
||
}
|
||
} /* end displacement output */
|
||
|
||
/* output immediate */
|
||
if (i.imm_operands)
|
||
{
|
||
register unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (i.imms[n])
|
||
{
|
||
if (i.imms[n]->X_op == O_constant)
|
||
{
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
{
|
||
p = frag_more (1);
|
||
insn_size += 1;
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
1);
|
||
}
|
||
else if (i.types[n] & Imm16)
|
||
{
|
||
p = frag_more (2);
|
||
insn_size += 2;
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
2);
|
||
}
|
||
else
|
||
{
|
||
p = frag_more (4);
|
||
insn_size += 4;
|
||
md_number_to_chars (p,
|
||
(valueT) i.imms[n]->X_add_number,
|
||
4);
|
||
}
|
||
}
|
||
else
|
||
{ /* not absolute_section */
|
||
/* Need a 32-bit fixup (don't support 8bit
|
||
non-absolute ims). Try to support other
|
||
sizes ... */
|
||
int r_type;
|
||
int size;
|
||
int pcrel = 0;
|
||
|
||
if (i.types[n] & (Imm8 | Imm8S))
|
||
size = 1;
|
||
else if (i.types[n] & Imm16)
|
||
size = 2;
|
||
else
|
||
size = 4;
|
||
r_type = reloc (size, 0, i.disp_reloc[0]);
|
||
p = frag_more (size);
|
||
insn_size += size;
|
||
#ifdef BFD_ASSEMBLER
|
||
if (r_type == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.imms[n]->X_add_symbol
|
||
&& (i.imms[n]->X_op == O_symbol
|
||
|| (i.imms[n]->X_op == O_add
|
||
&& (i.imms[n]->X_op_symbol->sy_value.X_op
|
||
== O_subtract))))
|
||
{
|
||
r_type = BFD_RELOC_386_GOTPC;
|
||
i.imms[n]->X_add_number += 3;
|
||
}
|
||
#endif
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.imms[n], pcrel, r_type);
|
||
}
|
||
}
|
||
}
|
||
} /* end immediate output */
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flag_debug)
|
||
{
|
||
pi (line, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
}
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
|
||
on error. */
|
||
|
||
static int
|
||
i386_operand (operand_string)
|
||
char *operand_string;
|
||
{
|
||
register char *op_string = operand_string;
|
||
|
||
/* Address of '\0' at end of operand_string. */
|
||
char *end_of_operand_string = operand_string + strlen (operand_string);
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char *displacement_string_start = NULL;
|
||
char *displacement_string_end = NULL;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
op_string++;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if (*op_string == REGISTER_PREFIX)
|
||
{
|
||
register reg_entry *r;
|
||
if (!(r = parse_register (op_string)))
|
||
{
|
||
as_bad ("bad register name ('%s')", op_string);
|
||
return 0;
|
||
}
|
||
/* Check for segment override, rather than segment register by
|
||
searching for ':' after %<x>s where <x> = s, c, d, e, f, g. */
|
||
if ((r->reg_type & (SReg2 | SReg3)) && op_string[3] == ':')
|
||
{
|
||
switch (r->reg_num)
|
||
{
|
||
case 0:
|
||
i.seg = (seg_entry *) & es;
|
||
break;
|
||
case 1:
|
||
i.seg = (seg_entry *) & cs;
|
||
break;
|
||
case 2:
|
||
i.seg = (seg_entry *) & ss;
|
||
break;
|
||
case 3:
|
||
i.seg = (seg_entry *) & ds;
|
||
break;
|
||
case 4:
|
||
i.seg = (seg_entry *) & fs;
|
||
break;
|
||
case 5:
|
||
i.seg = (seg_entry *) & gs;
|
||
break;
|
||
}
|
||
op_string += 4; /* skip % <x> s : */
|
||
operand_string = op_string; /* Pretend given string starts here. */
|
||
if (!is_digit_char (*op_string) && !is_identifier_char (*op_string)
|
||
&& *op_string != '(' && *op_string != ABSOLUTE_PREFIX)
|
||
{
|
||
as_bad ("bad memory operand after segment override");
|
||
return 0;
|
||
}
|
||
/* Handle case of %es:*foo. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
op_string++;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
i.types[this_operand] |= r->reg_type;
|
||
i.regs[this_operand] = r;
|
||
i.reg_operands++;
|
||
}
|
||
else if (*op_string == IMMEDIATE_PREFIX)
|
||
{ /* ... or an immediate */
|
||
char *save_input_line_pointer;
|
||
segT exp_seg = 0;
|
||
expressionS *exp;
|
||
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
|
||
{
|
||
as_bad ("only 1 or 2 immediate operands are allowed");
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.imms[this_operand] = exp;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = ++op_string; /* must advance op_string! */
|
||
SKIP_WHITESPACE ();
|
||
exp_seg = expression (exp);
|
||
input_line_pointer = save_input_line_pointer;
|
||
|
||
if (exp->X_op == O_absent)
|
||
{
|
||
/* missing or bad expr becomes absolute 0 */
|
||
as_bad ("missing or invalid immediate expression '%s' taken as 0",
|
||
operand_string);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
i.types[this_operand] |= Imm;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
i.types[this_operand] |=
|
||
smallest_imm_type ((unsigned long) exp->X_add_number);
|
||
}
|
||
#ifdef OBJ_AOUT
|
||
else if (exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
#ifdef BFD_ASSEMBLER
|
||
&& ! bfd_is_com_section (exp_seg)
|
||
#endif
|
||
)
|
||
{
|
||
seg_unimplemented:
|
||
as_bad ("Unimplemented segment type %d in parse_operand", exp_seg);
|
||
return 0;
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
/* this is an address ==> 32bit */
|
||
i.types[this_operand] |= Imm32;
|
||
}
|
||
/* shorten this type of this operand if the instruction wants
|
||
* fewer bits than are present in the immediate. The bit field
|
||
* code can put out 'andb $0xffffff, %al', for example. pace
|
||
* also 'movw $foo,(%eax)'
|
||
*/
|
||
switch (i.suffix)
|
||
{
|
||
case WORD_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16;
|
||
break;
|
||
case BYTE_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
|
||
break;
|
||
}
|
||
}
|
||
else if (is_digit_char (*op_string) || is_identifier_char (*op_string)
|
||
|| *op_string == '(')
|
||
{
|
||
/* This is a memory reference of some sort. */
|
||
register char *base_string;
|
||
unsigned int found_base_index_form;
|
||
|
||
do_memory_reference:
|
||
if (i.mem_operands == MAX_MEMORY_OPERANDS)
|
||
{
|
||
as_bad ("more than 1 memory reference in instruction");
|
||
return 0;
|
||
}
|
||
i.mem_operands++;
|
||
|
||
/* Determine type of memory operand from opcode_suffix;
|
||
no opcode suffix implies general memory references. */
|
||
switch (i.suffix)
|
||
{
|
||
case BYTE_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Mem8;
|
||
break;
|
||
case WORD_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Mem16;
|
||
break;
|
||
case DWORD_OPCODE_SUFFIX:
|
||
default:
|
||
i.types[this_operand] |= Mem32;
|
||
}
|
||
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after it. */
|
||
base_string = end_of_operand_string - 1;
|
||
found_base_index_form = 0;
|
||
if (*base_string == ')')
|
||
{
|
||
unsigned int parens_balenced = 1;
|
||
/* We've already checked that the number of left & right ()'s are
|
||
equal, so this loop will not be infinite. */
|
||
do
|
||
{
|
||
base_string--;
|
||
if (*base_string == ')')
|
||
parens_balenced++;
|
||
if (*base_string == '(')
|
||
parens_balenced--;
|
||
}
|
||
while (parens_balenced);
|
||
base_string++; /* Skip past '('. */
|
||
if (*base_string == REGISTER_PREFIX || *base_string == ',')
|
||
found_base_index_form = 1;
|
||
}
|
||
|
||
/* If we can't parse a base index register expression, we've found
|
||
a pure displacement expression. We set up displacement_string_start
|
||
and displacement_string_end for the code below. */
|
||
if (!found_base_index_form)
|
||
{
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = end_of_operand_string;
|
||
}
|
||
else
|
||
{
|
||
char *base_reg_name, *index_reg_name, *num_string;
|
||
int num;
|
||
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
/* If there is a displacement set-up for it to be parsed later. */
|
||
if (base_string != op_string + 1)
|
||
{
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string - 1;
|
||
}
|
||
|
||
/* Find base register (if any). */
|
||
if (*base_string != ',')
|
||
{
|
||
base_reg_name = base_string++;
|
||
/* skip past register name & parse it */
|
||
while (isalpha (*base_string))
|
||
base_string++;
|
||
if (base_string == base_reg_name + 1)
|
||
{
|
||
as_bad ("can't find base register name after '(%c'",
|
||
REGISTER_PREFIX);
|
||
return 0;
|
||
}
|
||
END_STRING_AND_SAVE (base_string);
|
||
if (!(i.base_reg = parse_register (base_reg_name)))
|
||
{
|
||
as_bad ("bad base register name ('%s')", base_reg_name);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
}
|
||
|
||
/* Now check seperator; must be ',' ==> index reg
|
||
OR num ==> no index reg. just scale factor
|
||
OR ')' ==> end. (scale factor = 1) */
|
||
if (*base_string != ',' && *base_string != ')')
|
||
{
|
||
as_bad ("expecting ',' or ')' after base register in `%s'",
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
|
||
/* There may index reg here; and there may be a scale factor. */
|
||
if (*base_string == ',' && *(base_string + 1) == REGISTER_PREFIX)
|
||
{
|
||
index_reg_name = ++base_string;
|
||
while (isalpha (*++base_string));
|
||
END_STRING_AND_SAVE (base_string);
|
||
if (!(i.index_reg = parse_register (index_reg_name)))
|
||
{
|
||
as_bad ("bad index register name ('%s')", index_reg_name);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (*base_string == ',' && isdigit (*(base_string + 1)))
|
||
{
|
||
num_string = ++base_string;
|
||
while (is_digit_char (*base_string))
|
||
base_string++;
|
||
if (base_string == num_string)
|
||
{
|
||
as_bad ("can't find a scale factor after ','");
|
||
return 0;
|
||
}
|
||
END_STRING_AND_SAVE (base_string);
|
||
/* We've got a scale factor. */
|
||
if (!sscanf (num_string, "%d", &num))
|
||
{
|
||
as_bad ("can't parse scale factor from '%s'", num_string);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
switch (num)
|
||
{ /* must be 1 digit scale */
|
||
case 1:
|
||
i.log2_scale_factor = 0;
|
||
break;
|
||
case 2:
|
||
i.log2_scale_factor = 1;
|
||
break;
|
||
case 4:
|
||
i.log2_scale_factor = 2;
|
||
break;
|
||
case 8:
|
||
i.log2_scale_factor = 3;
|
||
break;
|
||
default:
|
||
as_bad ("expecting scale factor of 1, 2, 4, 8; got %d", num);
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!i.index_reg && *base_string == ',')
|
||
{
|
||
as_bad ("expecting index register or scale factor after ','; got '%c'",
|
||
*(base_string + 1));
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If there's an expression begining the operand, parse it,
|
||
assuming displacement_string_start and displacement_string_end
|
||
are meaningful. */
|
||
if (displacement_string_start)
|
||
{
|
||
register expressionS *exp;
|
||
segT exp_seg = 0;
|
||
char *save_input_line_pointer;
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.disps[this_operand] = exp;
|
||
i.disp_reloc[this_operand] = NO_RELOC;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = displacement_string_start;
|
||
END_STRING_AND_SAVE (displacement_string_end);
|
||
|
||
{
|
||
/*
|
||
* We can have operands of the form
|
||
* <symbol>@GOTOFF+<nnn>
|
||
* Take the easy way out here and copy everything
|
||
* into a temporary buffer...
|
||
*/
|
||
register char *cp;
|
||
if ((cp = strchr (input_line_pointer,'@')) != NULL) {
|
||
char tmpbuf[BUFSIZ];
|
||
|
||
if(!GOT_symbol)
|
||
GOT_symbol = symbol_find_or_make(GLOBAL_OFFSET_TABLE_NAME);
|
||
|
||
if (strncmp(cp+1, "PLT", 3) == 0) {
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
|
||
*cp = '\0';
|
||
strcpy(tmpbuf, input_line_pointer);
|
||
strcat(tmpbuf, cp+1+3);
|
||
*cp = '@';
|
||
} else if (strncmp(cp+1, "GOTOFF", 6) == 0) {
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
|
||
*cp = '\0';
|
||
strcpy(tmpbuf, input_line_pointer);
|
||
strcat(tmpbuf, cp+1+6);
|
||
*cp = '@';
|
||
} else if (strncmp(cp+1, "GOT", 3) == 0) {
|
||
i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
|
||
*cp = '\0';
|
||
strcpy(tmpbuf, input_line_pointer);
|
||
strcat(tmpbuf, cp+1+3);
|
||
*cp = '@';
|
||
} else
|
||
as_bad("Bad reloc specifier '%s' in expression", cp+1);
|
||
input_line_pointer = tmpbuf;
|
||
}
|
||
}
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
/* We do this to make sure that the section symbol is in
|
||
the symbol table. We will ultimately change the relocation
|
||
to be relative to the beginning of the section */
|
||
if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
|
||
{
|
||
if (S_IS_LOCAL(exp->X_add_symbol)
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
|
||
section_symbol(exp->X_add_symbol->bsym->section);
|
||
assert (exp->X_op == O_symbol);
|
||
exp->X_op = O_subtract;
|
||
exp->X_op_symbol = GOT_symbol;
|
||
i.disp_reloc[this_operand] = BFD_RELOC_32;
|
||
}
|
||
#endif
|
||
|
||
if (*input_line_pointer)
|
||
as_bad ("Ignoring junk '%s' after expression", input_line_pointer);
|
||
RESTORE_END_STRING (displacement_string_end);
|
||
input_line_pointer = save_input_line_pointer;
|
||
if (exp->X_op == O_absent)
|
||
{
|
||
/* missing expr becomes absolute 0 */
|
||
as_bad ("missing or invalid displacement '%s' taken as 0",
|
||
operand_string);
|
||
i.types[this_operand] |= (Disp | Abs);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number);
|
||
}
|
||
else if (exp_seg == text_section
|
||
|| exp_seg == data_section
|
||
|| exp_seg == bss_section
|
||
|| exp_seg == undefined_section)
|
||
{
|
||
i.types[this_operand] |= Disp32;
|
||
}
|
||
else
|
||
{
|
||
#ifndef OBJ_AOUT
|
||
i.types[this_operand] |= Disp32;
|
||
#else
|
||
goto seg_unimplemented;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Make sure the memory operand we've been dealt is valid. */
|
||
if (i.base_reg && i.index_reg &&
|
||
!(i.base_reg->reg_type & i.index_reg->reg_type & Reg))
|
||
{
|
||
as_bad ("register size mismatch in (base,index,scale) expression");
|
||
return 0;
|
||
}
|
||
/*
|
||
* special case for (%dx) while doing input/output op
|
||
*/
|
||
if ((i.base_reg &&
|
||
(i.base_reg->reg_type == (Reg16 | InOutPortReg)) &&
|
||
(i.index_reg == 0)))
|
||
{
|
||
i.types[this_operand] |= InOutPortReg;
|
||
return 1;
|
||
}
|
||
if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) ||
|
||
(i.index_reg && (i.index_reg->reg_type & Reg32) == 0))
|
||
{
|
||
as_bad ("base/index register must be 32 bit register");
|
||
return 0;
|
||
}
|
||
if (i.index_reg && i.index_reg == esp)
|
||
{
|
||
as_bad ("%s may not be used as an index register", esp->reg_name);
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{ /* it's not a memory operand; argh! */
|
||
as_bad ("invalid char %s begining %s operand '%s'",
|
||
output_invalid (*op_string), ordinal_names[this_operand],
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* normal return */
|
||
}
|
||
|
||
/*
|
||
* md_estimate_size_before_relax()
|
||
*
|
||
* Called just before relax().
|
||
* Any symbol that is now undefined will not become defined.
|
||
* Return the correct fr_subtype in the frag.
|
||
* Return the initial "guess for fr_var" to caller.
|
||
* The guess for fr_var is ACTUALLY the growth beyond fr_fix.
|
||
* Whatever we do to grow fr_fix or fr_var contributes to our returned value.
|
||
* Although it may not be explicit in the frag, pretend fr_var starts with a
|
||
* 0 value.
|
||
*/
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment)
|
||
register fragS *fragP;
|
||
register segT segment;
|
||
{
|
||
register unsigned char *opcode;
|
||
register int old_fr_fix;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
/* We've already got fragP->fr_subtype right; all we have to do is check
|
||
for un-relaxable symbols. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
|
||
{
|
||
/* symbol is undefined in this segment */
|
||
switch (opcode[0])
|
||
{
|
||
case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
|
||
opcode[0] = 0xe9; /* dword disp jmp */
|
||
fragP->fr_fix += 4;
|
||
fix_new (fragP, old_fr_fix, 4,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
(GOT_symbol && /* Not quite right - we should switch on
|
||
presence of @PLT, but I cannot see how
|
||
to get to that from here. We should have
|
||
done this in md_assemble to really
|
||
get it right all of the time, but I
|
||
think it does not matter that much, as
|
||
this will be right most of the time. ERY*/
|
||
S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)?
|
||
BFD_RELOC_386_PLT32 : BFD_RELOC_32_PCREL);
|
||
break;
|
||
|
||
default:
|
||
/* This changes the byte-displacement jump 0x7N -->
|
||
the dword-displacement jump 0x0f8N */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
|
||
fragP->fr_fix += 1 + 4; /* we've added an opcode byte */
|
||
fix_new (fragP, old_fr_fix + 1, 4,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
(GOT_symbol && /* Not quite right - we should switch on
|
||
presence of @PLT, but I cannot see how
|
||
to get to that from here. ERY */
|
||
S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)?
|
||
BFD_RELOC_386_PLT32 : BFD_RELOC_32_PCREL);
|
||
break;
|
||
}
|
||
frag_wane (fragP);
|
||
}
|
||
return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
|
||
} /* md_estimate_size_before_relax() */
|
||
|
||
/*
|
||
* md_convert_frag();
|
||
*
|
||
* Called after relax() is finished.
|
||
* In: Address of frag.
|
||
* fr_type == rs_machine_dependent.
|
||
* fr_subtype is what the address relaxed to.
|
||
*
|
||
* Out: Any fixSs and constants are set up.
|
||
* Caller will turn frag into a ".space 0".
|
||
*/
|
||
#ifndef BFD_ASSEMBLER
|
||
void
|
||
md_convert_frag (headers, fragP)
|
||
object_headers *headers;
|
||
register fragS *fragP;
|
||
#else
|
||
void
|
||
md_convert_frag (abfd, sec, fragP)
|
||
bfd *abfd;
|
||
segT sec;
|
||
register fragS *fragP;
|
||
#endif
|
||
{
|
||
register unsigned char *opcode;
|
||
unsigned char *where_to_put_displacement = NULL;
|
||
unsigned int target_address;
|
||
unsigned int opcode_address;
|
||
unsigned int extension = 0;
|
||
int displacement_from_opcode_start;
|
||
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
#ifdef BFD_ASSEMBLER /* not needed otherwise? */
|
||
target_address += fragP->fr_symbol->sy_frag->fr_address;
|
||
#endif
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BYTE):
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE):
|
||
/* don't have to change opcode */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, WORD):
|
||
opcode[1] = TWO_BYTE_OPCODE_ESCAPE;
|
||
opcode[2] = opcode[0] + 0x10;
|
||
opcode[0] = WORD_PREFIX_OPCODE;
|
||
extension = 4; /* 3 opcode + 2 displacement */
|
||
where_to_put_displacement = &opcode[3];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD):
|
||
opcode[1] = 0xe9;
|
||
opcode[0] = WORD_PREFIX_OPCODE;
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, DWORD):
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD):
|
||
opcode[0] = 0xe9;
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
/* now put displacement after opcode */
|
||
md_number_to_chars ((char *) where_to_put_displacement,
|
||
(valueT) (displacement_from_opcode_start - extension),
|
||
SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP->fr_fix += extension;
|
||
}
|
||
|
||
|
||
int md_short_jump_size = 2; /* size of byte displacement jmp */
|
||
int md_long_jump_size = 5; /* size of dword displacement jmp */
|
||
const int md_reloc_size = 8; /* Size of relocation record */
|
||
|
||
void
|
||
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
offset = to_addr - (from_addr + 2);
|
||
md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 1);
|
||
}
|
||
|
||
void
|
||
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
addressT from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
if (flag_do_long_jump)
|
||
{
|
||
offset = to_addr - S_GET_VALUE (to_symbol);
|
||
md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 4);
|
||
fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
|
||
to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
|
||
}
|
||
else
|
||
{
|
||
offset = to_addr - (from_addr + 5);
|
||
md_number_to_chars (ptr, (valueT) 0xe9, 1);
|
||
md_number_to_chars (ptr + 1, (valueT) offset, 4);
|
||
}
|
||
}
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_number_to_chars (con, value, nbytes)
|
||
char con[]; /* Return 'nbytes' of chars here. */
|
||
valueT value; /* The value of the bits. */
|
||
int nbytes; /* Number of bytes in the output. */
|
||
{
|
||
number_to_chars_littleendian (con, value, nbytes);
|
||
}
|
||
|
||
|
||
/* Apply a fixup (fixS) to segment data, once it has been determined
|
||
by our caller that we have all the info we need to fix it up.
|
||
|
||
On the 386, immediates, displacements, and data pointers are all in
|
||
the same (little-endian) format, so we don't need to care about which
|
||
we are handling. */
|
||
|
||
static void
|
||
md_apply_fix_1 (fixP, value)
|
||
fixS *fixP; /* The fix we're to put in */
|
||
long value; /* The value of the bits. */
|
||
{
|
||
register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
|
||
/*
|
||
* This is a hack. There should be a better way to
|
||
* handle this.
|
||
*/
|
||
if (fixP->fx_r_type == BFD_RELOC_32_PCREL && fixP->fx_addsy)
|
||
{
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#ifdef OBJ_ELF
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != undefined_section)
|
||
{
|
||
/* Yes, we add the values in twice. This is because
|
||
bfd_perform_relocation subtracts them out again. I think
|
||
bfd_perform_relocation is broken, but I don't dare change
|
||
it. FIXME. */
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Fix a few things - the dynamic linker expects certain values here,
|
||
and we must not dissappoint it. */
|
||
#ifdef OBJ_ELF
|
||
if (fixP->fx_addsy)
|
||
switch(fixP->fx_r_type) {
|
||
case BFD_RELOC_386_PLT32:
|
||
/* Make the jump instruction point to the address of the operand. At
|
||
runtime we merely add the offset to the actual PLT entry. */
|
||
value = 0xfffffffc;
|
||
break;
|
||
case BFD_RELOC_386_GOTPC:
|
||
/*
|
||
* This is tough to explain. We end up with this one if we have
|
||
* operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
|
||
* here is to obtain the absolute address of the GOT, and it is strongly
|
||
* preferable from a performance point of view to avoid using a runtime
|
||
* relocation for this. The actual sequence of instructions often look
|
||
* something like:
|
||
*
|
||
* call .L66
|
||
* .L66:
|
||
* popl %ebx
|
||
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
|
||
*
|
||
* The call and pop essentially return the absolute address of
|
||
* the label .L66 and store it in %ebx. The linker itself will
|
||
* ultimately change the first operand of the addl so that %ebx points to
|
||
* the GOT, but to keep things simple, the .o file must have this operand
|
||
* set so that it generates not the absolute address of .L66, but the
|
||
* absolute address of itself. This allows the linker itself simply
|
||
* treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
|
||
* added in, and the addend of the relocation is stored in the operand
|
||
* field for the instruction itself.
|
||
*
|
||
* Our job here is to fix the operand so that it would add the correct
|
||
* offset so that %ebx would point to itself. The thing that is tricky is
|
||
* that .-.L66 will point to the beginning of the instruction, so we need
|
||
* to further modify the operand so that it will point to itself.
|
||
* There are other cases where you have something like:
|
||
*
|
||
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
|
||
*
|
||
* and here no correction would be required. Internally in the assembler
|
||
* we treat operands of this form as not being pcrel since the '.' is
|
||
* explicitly mentioned, and I wonder whether it would simplify matters
|
||
* to do it this way. Who knows. In earlier versions of the PIC patches,
|
||
* the pcrel_adjust field was used to store the correction, but since the
|
||
* expression is not pcrel, I felt it would be confusing to do it this way.
|
||
*/
|
||
value -= 1;
|
||
break;
|
||
case BFD_RELOC_386_GOT32:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
break;
|
||
case BFD_RELOC_386_GOTOFF:
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
#endif
|
||
md_number_to_chars (p, value, fixP->fx_size);
|
||
}
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
int
|
||
md_apply_fix (fixP, valp)
|
||
fixS *fixP;
|
||
valueT *valp;
|
||
{
|
||
md_apply_fix_1 (fixP, *valp);
|
||
return 1;
|
||
}
|
||
#else
|
||
void
|
||
md_apply_fix (fixP, val)
|
||
fixS *fixP;
|
||
long val;
|
||
{
|
||
md_apply_fix_1 (fixP, val);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
/* This is never used. */
|
||
long /* Knows about the byte order in a word. */
|
||
md_chars_to_number (con, nbytes)
|
||
unsigned char con[]; /* Low order byte 1st. */
|
||
int nbytes; /* Number of bytes in the input. */
|
||
{
|
||
long retval;
|
||
for (retval = 0, con += nbytes - 1; nbytes--; con--)
|
||
{
|
||
retval <<= BITS_PER_CHAR;
|
||
retval |= *con;
|
||
}
|
||
return retval;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant of type
|
||
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
|
||
is stored in *sizeP . An error message is returned, or NULL on OK. */
|
||
char *
|
||
md_atof (type, litP, sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
|
||
switch (type)
|
||
{
|
||
case 'f':
|
||
case 'F':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 'x':
|
||
case 'X':
|
||
prec = 5;
|
||
break;
|
||
|
||
default:
|
||
*sizeP = 0;
|
||
return "Bad call to md_atof ()";
|
||
}
|
||
t = atof_ieee (input_line_pointer, type, words);
|
||
if (t)
|
||
input_line_pointer = t;
|
||
|
||
*sizeP = prec * sizeof (LITTLENUM_TYPE);
|
||
/* This loops outputs the LITTLENUMs in REVERSE order; in accord with
|
||
the bigendian 386. */
|
||
for (wordP = words + prec - 1; prec--;)
|
||
{
|
||
md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
|
||
litP += sizeof (LITTLENUM_TYPE);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
char output_invalid_buf[8];
|
||
|
||
static char *
|
||
output_invalid (c)
|
||
char c;
|
||
{
|
||
if (isprint (c))
|
||
sprintf (output_invalid_buf, "'%c'", c);
|
||
else
|
||
sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
/* reg_string starts *before* REGISTER_PREFIX */
|
||
static reg_entry *
|
||
parse_register (reg_string)
|
||
char *reg_string;
|
||
{
|
||
register char *s = reg_string;
|
||
register char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE];
|
||
|
||
s++; /* skip REGISTER_PREFIX */
|
||
for (p = reg_name_given; is_register_char (*s); p++, s++)
|
||
{
|
||
*p = register_chars[(unsigned char) *s];
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
return (reg_entry *) 0;
|
||
}
|
||
*p = '\0';
|
||
return (reg_entry *) hash_find (reg_hash, reg_name_given);
|
||
}
|
||
|
||
#ifdef OBJ_ELF
|
||
CONST char *md_shortopts = "mVQ:";
|
||
#else
|
||
CONST char *md_shortopts = "m";
|
||
#endif
|
||
struct option md_longopts[] = {
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof(md_longopts);
|
||
|
||
int
|
||
md_parse_option (c, arg)
|
||
int c;
|
||
char *arg;
|
||
{
|
||
switch (c)
|
||
{
|
||
case 'm':
|
||
flag_do_long_jump = 1;
|
||
break;
|
||
|
||
#ifdef OBJ_ELF
|
||
/* -V: SVR4 argument to print version ID. */
|
||
case 'V':
|
||
print_version_id ();
|
||
break;
|
||
|
||
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
|
||
should be emitted or not. FIXME: Not implemented. */
|
||
case 'Q':
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
md_show_usage (stream)
|
||
FILE *stream;
|
||
{
|
||
fprintf (stream, "\
|
||
-m do long jump\n");
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
/* ARGSUSED */
|
||
symbolS *
|
||
md_undefined_symbol (name)
|
||
char *name;
|
||
{
|
||
if (*name == '_' && *(name+1) == 'G'
|
||
&& strcmp(name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if(!GOT_symbol)
|
||
{
|
||
if(symbol_find(name))
|
||
as_bad("GOT already in symbol table");
|
||
GOT_symbol = symbol_new (name, undefined_section,
|
||
(valueT) 0, &zero_address_frag);
|
||
};
|
||
return GOT_symbol;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Parse an operand that is machine-specific.
|
||
We just return without modifying the expression if we have nothing
|
||
to do. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
valueT
|
||
md_section_align (segment, size)
|
||
segT segment;
|
||
valueT size;
|
||
{
|
||
return size; /* Byte alignment is fine */
|
||
}
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO? On the
|
||
i386, they're relative to the address of the offset, plus its
|
||
size. (??? Is this right? FIXME-SOON!) */
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
#ifndef I386COFF
|
||
|
||
static void
|
||
s_bss (ignore)
|
||
int ignore;
|
||
{
|
||
register int temp;
|
||
|
||
temp = get_absolute_expression ();
|
||
subseg_set (bss_section, (subsegT) temp);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
#ifdef BFD_ASSEMBLER
|
||
|
||
void
|
||
i386_validate_fix (fixp)
|
||
fixS *fixp;
|
||
{
|
||
if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
|
||
{
|
||
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
|
||
fixp->fx_subsy = 0;
|
||
}
|
||
}
|
||
|
||
#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
|
||
#define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
|
||
|
||
arelent *
|
||
tc_gen_reloc (section, fixp)
|
||
asection *section;
|
||
fixS *fixp;
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch(fixp->fx_r_type)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_386_GOTOFF:
|
||
case BFD_RELOC_386_GOTPC:
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
default:
|
||
switch (F (fixp->fx_size, fixp->fx_pcrel))
|
||
{
|
||
#ifndef OBJ_ELF
|
||
MAP (1, 0, BFD_RELOC_8);
|
||
MAP (2, 0, BFD_RELOC_16);
|
||
#endif
|
||
MAP (4, 0, BFD_RELOC_32);
|
||
#ifndef OBJ_ELF
|
||
MAP (1, 1, BFD_RELOC_8_PCREL);
|
||
MAP (2, 1, BFD_RELOC_16_PCREL);
|
||
#endif
|
||
MAP (4, 1, BFD_RELOC_32_PCREL);
|
||
default:
|
||
as_bad ("Can not do %d byte %srelocation", fixp->fx_size,
|
||
fixp->fx_pcrel ? "pc-relative" : "");
|
||
}
|
||
}
|
||
#undef MAP
|
||
#undef F
|
||
|
||
if (code == BFD_RELOC_32
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
code = BFD_RELOC_386_GOTPC;
|
||
|
||
rel = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
|
||
assert (rel != 0);
|
||
rel->sym_ptr_ptr = &fixp->fx_addsy->bsym;
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
if (fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_addnumber;
|
||
else
|
||
rel->addend = 0;
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (!rel->howto)
|
||
{
|
||
const char *name;
|
||
|
||
name = S_GET_NAME (fixp->fx_addsy);
|
||
if (name == NULL)
|
||
name = "<unknown>";
|
||
as_fatal ("Cannot generate relocation type for symbol %s, code %s",
|
||
name, bfd_get_reloc_code_name (code));
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#else /* ! BFD_ASSEMBLER */
|
||
|
||
#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
|
||
void
|
||
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
|
||
char *where;
|
||
fixS *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
/*
|
||
* In: length of relocation (or of address) in chars: 1, 2 or 4.
|
||
* Out: GNU LD relocation length code: 0, 1, or 2.
|
||
*/
|
||
|
||
static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
|
||
long r_symbolnum;
|
||
|
||
know (fixP->fx_addsy != NULL);
|
||
|
||
md_number_to_chars (where,
|
||
(valueT) (fixP->fx_frag->fr_address
|
||
+ fixP->fx_where - segment_address_in_file),
|
||
4);
|
||
|
||
r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
|
||
? S_GET_TYPE (fixP->fx_addsy)
|
||
: fixP->fx_addsy->sy_number);
|
||
|
||
where[6] = (r_symbolnum >> 16) & 0x0ff;
|
||
where[5] = (r_symbolnum >> 8) & 0x0ff;
|
||
where[4] = r_symbolnum & 0x0ff;
|
||
where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
|
||
| ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
|
||
| (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
|
||
}
|
||
|
||
#endif /* OBJ_AOUT or OBJ_BOUT */
|
||
|
||
#if defined (I386COFF)
|
||
|
||
short
|
||
tc_coff_fix2rtype (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return (fixP->fx_pcrel ?
|
||
(fixP->fx_size == 1 ? R_PCRBYTE :
|
||
fixP->fx_size == 2 ? R_PCRWORD :
|
||
R_PCRLONG) :
|
||
(fixP->fx_size == 1 ? R_RELBYTE :
|
||
fixP->fx_size == 2 ? R_RELWORD :
|
||
R_DIR32));
|
||
}
|
||
|
||
int
|
||
tc_coff_sizemachdep (frag)
|
||
fragS *frag;
|
||
{
|
||
if (frag->fr_next)
|
||
return (frag->fr_next->fr_address - frag->fr_address);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
#endif /* I386COFF */
|
||
|
||
#endif /* BFD_ASSEMBLER? */
|
||
|
||
/* end of tc-i386.c */
|