binutils-gdb/gdb/alpha-nat.c
1995-08-02 03:41:12 +00:00

221 lines
6.1 KiB
C

/* Low level Alpha interface, for GDB when running native.
Copyright 1993, 1995 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include <sys/ptrace.h>
#include <machine/reg.h>
/* Size of elements in jmpbuf */
#define JB_ELEMENT_SIZE 8
/* The definition for JB_PC in machine/reg.h is wrong.
And we can't get at the correct definition in setjmp.h as it is
not always available (eg. if _POSIX_SOURCE is defined which is the
default). As the defintion is unlikely to change (see comment
in <setjmp.h>, define the correct value here. */
#undef JB_PC
#define JB_PC 2
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from which
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
This routine returns true on success. */
int
get_longjmp_target (pc)
CORE_ADDR *pc;
{
CORE_ADDR jb_addr;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
jb_addr = read_register(A0_REGNUM);
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
sizeof(CORE_ADDR)))
return 0;
*pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
return 1;
}
/* Extract the register values out of the core file and store
them where `read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into memory.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float
on machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to
locate the registers in a large upage-plus-stack ".reg" section.
Original upage address X is at location core_reg_sect+x+reg_addr.
*/
void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
char *core_reg_sect;
unsigned core_reg_size;
int which;
unsigned reg_addr;
{
register int regno;
register int addr;
int bad_reg = -1;
/* Table to map a gdb regnum to an index in the core register section.
The floating point register values are garbage in OSF/1.2 core files. */
static int core_reg_mapping[NUM_REGS] =
{
#define EFL (EF_SIZE / 8)
EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7,
EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15,
EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23,
EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31,
EF_PC, -1
};
static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
for (regno = 0; regno < NUM_REGS; regno++)
{
if (CANNOT_FETCH_REGISTER (regno))
{
supply_register (regno, zerobuf);
continue;
}
addr = 8 * core_reg_mapping[regno];
if (addr < 0 || addr >= core_reg_size)
{
if (bad_reg < 0)
bad_reg = regno;
}
else
{
supply_register (regno, core_reg_sect + addr);
}
}
if (bad_reg >= 0)
{
error ("Register %s not found in core file.", reg_names[bad_reg]);
}
}
/* Map gdb internal register number to a ptrace ``address''.
These ``addresses'' are defined in <sys/ptrace.h> */
#define REGISTER_PTRACE_ADDR(regno) \
(regno < FP0_REGNUM ? GPR_BASE + (regno) \
: regno == PC_REGNUM ? PC \
: regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
: 0)
/* Return the ptrace ``address'' of register REGNO. */
unsigned int
register_addr (regno, blockend)
int regno;
int blockend;
{
return REGISTER_PTRACE_ADDR (regno);
}
#ifdef USE_PROC_FS
#include <sys/procfs.h>
/*
* See the comment in m68k-tdep.c regarding the utility of these functions.
*/
void
supply_gregset (gregsetp)
gregset_t *gregsetp;
{
register int regi;
register long *regp = gregsetp->regs;
static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
for (regi = 0; regi < 31; regi++)
supply_register (regi, (char *)(regp + regi));
supply_register (PC_REGNUM, (char *)(regp + 31));
/* Fill inaccessible registers with zero. */
supply_register (ZERO_REGNUM, zerobuf);
supply_register (FP_REGNUM, zerobuf);
}
void
fill_gregset (gregsetp, regno)
gregset_t *gregsetp;
int regno;
{
int regi;
register long *regp = gregsetp->regs;
for (regi = 0; regi < 31; regi++)
if ((regno == -1) || (regno == regi))
*(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
if ((regno == -1) || (regno == PC_REGNUM))
*(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
}
/*
* Now we do the same thing for floating-point registers.
* Again, see the comments in m68k-tdep.c.
*/
void
supply_fpregset (fpregsetp)
fpregset_t *fpregsetp;
{
register int regi;
register long *regp = fpregsetp->regs;
for (regi = 0; regi < 32; regi++)
supply_register (regi + FP0_REGNUM, (char *)(regp + regi));
}
void
fill_fpregset (fpregsetp, regno)
fpregset_t *fpregsetp;
int regno;
{
int regi;
register long *regp = fpregsetp->regs;
for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
{
if ((regno == -1) || (regno == regi))
{
*(regp + regi - FP0_REGNUM) =
*(long *) &registers[REGISTER_BYTE (regi)];
}
}
}
#endif