445 lines
16 KiB
C
445 lines
16 KiB
C
/* Parameters for targe of a Gould Powernode, for GDB, the GNU debugger.
|
||
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
GDB is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GDB is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GDB; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#define GOULD_PN
|
||
|
||
#define TARGET_BYTE_ORDER BIG_ENDIAN
|
||
|
||
/* This code appears in libraries on Gould machines. Ignore it. */
|
||
#define IGNORE_SYMBOL(type) (type == N_ENTRY)
|
||
|
||
/* We don't want the extra gnu symbols on the machine;
|
||
they will interfere with the shared segment symbols. */
|
||
#define NO_GNU_STABS
|
||
|
||
/* Macro for text-offset and data info (in PN a.out format). */
|
||
#define TEXTINFO \
|
||
text_offset = N_TXTOFF (exec_coffhdr); \
|
||
exec_data_offset = N_TXTOFF (exec_coffhdr) \
|
||
+ exec_aouthdr.a_text
|
||
|
||
/* Macro for number of symbol table entries */
|
||
#define END_OF_TEXT_DEFAULT \
|
||
(0xffffff)
|
||
|
||
/* Macro for number of symbol table entries */
|
||
#define NUMBER_OF_SYMBOLS \
|
||
(coffhdr.f_nsyms)
|
||
|
||
/* Macro for file-offset of symbol table (in usual a.out format). */
|
||
#define SYMBOL_TABLE_OFFSET \
|
||
N_SYMOFF (coffhdr)
|
||
|
||
/* Macro for file-offset of string table (in usual a.out format). */
|
||
#define STRING_TABLE_OFFSET \
|
||
(N_STROFF (coffhdr) + sizeof(int))
|
||
|
||
/* Macro to store the length of the string table data in INTO. */
|
||
#define READ_STRING_TABLE_SIZE(INTO) \
|
||
{ INTO = hdr.a_stsize; }
|
||
|
||
/* Macro to declare variables to hold the file's header data. */
|
||
#define DECLARE_FILE_HEADERS struct old_exec hdr; \
|
||
FILHDR coffhdr
|
||
|
||
/* Macro to read the header data from descriptor DESC and validate it.
|
||
NAME is the file name, for error messages. */
|
||
#define READ_FILE_HEADERS(DESC, NAME) \
|
||
{ val = myread (DESC, &coffhdr, sizeof coffhdr); \
|
||
if (val < 0) \
|
||
perror_with_name (NAME); \
|
||
val = myread (DESC, &hdr, sizeof hdr); \
|
||
if (val < 0) \
|
||
perror_with_name (NAME); \
|
||
if (coffhdr.f_magic != GNP1MAGIC) \
|
||
error ("File \"%s\" not in coff executable format.", NAME); \
|
||
if (N_BADMAG (hdr)) \
|
||
error ("File \"%s\" not in executable format.", NAME); }
|
||
|
||
/* Define COFF and other symbolic names needed on NP1 */
|
||
#define NS32GMAGIC GDPMAGIC
|
||
#define NS32SMAGIC PN_MAGIC
|
||
/* Define this if the C compiler puts an underscore at the front
|
||
of external names before giving them to the linker. */
|
||
#define NAMES_HAVE_UNDERSCORE
|
||
|
||
/* Debugger information will be in DBX format. */
|
||
#define READ_DBX_FORMAT
|
||
|
||
/* Offset from address of function to start of its code.
|
||
Zero on most machines. */
|
||
#define FUNCTION_START_OFFSET 4
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code. One PN we can have one or two startup
|
||
sequences depending on the size of the local stack:
|
||
|
||
Either:
|
||
"suabr b2, #"
|
||
of
|
||
"lil r4, #", "suabr b2, #(r4)"
|
||
|
||
"lwbr b6, #", "stw r1, 8(b2)"
|
||
Optional "stwbr b3, c(b2)"
|
||
Optional "trr r2,r7" (Gould first argument register passing)
|
||
or
|
||
Optional "stw r2,8(b3)" (Gould first argument register passing)
|
||
*/
|
||
#define SKIP_PROLOGUE(pc) { \
|
||
register int op = read_memory_integer ((pc), 4); \
|
||
if ((op & 0xffff0000) == 0x580B0000) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if ((op & 0xffff0000) == 0x59400000) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if ((op & 0xffff0000) == 0x5F000000) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0xD4820008) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0x5582000C) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 2); \
|
||
if (op == 0x2fa0) { \
|
||
pc += 2; \
|
||
} else { \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0xd5030008) { \
|
||
pc += 4; \
|
||
} \
|
||
} \
|
||
} else { \
|
||
op = read_memory_integer ((pc), 2); \
|
||
if (op == 0x2fa0) { \
|
||
pc += 2; \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
if ((op & 0xffff0000) == 0x59000000) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if ((op & 0xffff0000) == 0x5F000000) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0xD4820008) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0x5582000C) { \
|
||
pc += 4; \
|
||
op = read_memory_integer ((pc), 2); \
|
||
if (op == 0x2fa0) { \
|
||
pc += 2; \
|
||
} else { \
|
||
op = read_memory_integer ((pc), 4); \
|
||
if (op == 0xd5030008) { \
|
||
pc += 4; \
|
||
} \
|
||
} \
|
||
} else { \
|
||
op = read_memory_integer ((pc), 2); \
|
||
if (op == 0x2fa0) { \
|
||
pc += 2; \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. True on PN! Return address is in R1.
|
||
Note: true return location is 4 bytes past R1! */
|
||
#define SAVED_PC_AFTER_CALL(frame) \
|
||
(read_register(R1_REGNUM) + 4)
|
||
|
||
/* Address of end of stack space. */
|
||
#define STACK_END_ADDR 0x480000
|
||
|
||
/* Stack grows downward. */
|
||
#define INNER_THAN <
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
#define BREAKPOINT {0x28, 0x09}
|
||
|
||
/* Amount PC must be decremented by after a breakpoint.
|
||
This is often the number of bytes in BREAKPOINT
|
||
but not always. */
|
||
#define DECR_PC_AFTER_BREAK 2
|
||
|
||
/* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */
|
||
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0xEC100004)
|
||
|
||
/* Return 1 if P points to an invalid floating point value. */
|
||
#define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000)
|
||
|
||
/* Say how long (ordinary) registers are. */
|
||
#define REGISTER_TYPE long
|
||
|
||
/* Number of machine registers */
|
||
#define NUM_REGS 19
|
||
#define NUM_GEN_REGS 16
|
||
#define NUM_CPU_REGS 3
|
||
|
||
/* Initializer for an array of names of registers.
|
||
There should be NUM_REGS strings in this initializer. */
|
||
#define REGISTER_NAMES { \
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
|
||
"sp", "ps", "pc", \
|
||
}
|
||
|
||
/* Register numbers of various important registers.
|
||
Note that some of these values are "real" register numbers,
|
||
and correspond to the general registers of the machine,
|
||
and some are "phony" register numbers which are too large
|
||
to be actual register numbers as far as the user is concerned
|
||
but do serve to get the desired values when passed to read_register. */
|
||
#define R1_REGNUM 1 /* Gr1 => return address of caller */
|
||
#define R4_REGNUM 4 /* Gr4 => register save area */
|
||
#define R5_REGNUM 5 /* Gr5 => register save area */
|
||
#define R6_REGNUM 6 /* Gr6 => register save area */
|
||
#define R7_REGNUM 7 /* Gr7 => register save area */
|
||
#define B1_REGNUM 9 /* Br1 => start of this code routine */
|
||
#define FP_REGNUM 10 /* Br2 == (sp) */
|
||
#define AP_REGNUM 11 /* Br3 == (ap) */
|
||
#define SP_REGNUM 16 /* A copy of Br2 saved in trap */
|
||
#define PS_REGNUM 17 /* Contains processor status */
|
||
#define PC_REGNUM 18 /* Contains program counter */
|
||
|
||
/* This is a piece of magic that is given a register number REGNO
|
||
and as BLOCKEND the address in the system of the end of the user structure
|
||
and stores in ADDR the address in the kernel or core dump
|
||
of that register. */
|
||
#define REGISTER_U_ADDR(addr, blockend, regno) { \
|
||
addr = blockend + regno * 4; \
|
||
if (regno == PC_REGNUM) addr = blockend - 8 * 4; \
|
||
if (regno == PS_REGNUM) addr = blockend - 7 * 4; \
|
||
if (regno == SP_REGNUM) addr = blockend - 6 * 4; \
|
||
}
|
||
|
||
/* Total amount of space needed to store our copies of the machine's
|
||
register state, the array `registers'. */
|
||
#define REGISTER_BYTES (NUM_GEN_REGS*4 + NUM_CPU_REGS*4)
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
#define REGISTER_BYTE(N) ((N) * 4)
|
||
|
||
/* Number of bytes of storage in the actual machine representation
|
||
for register N. On the PN, all normal regs are 4 bytes. */
|
||
#define REGISTER_RAW_SIZE(N) (4)
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. On the PN, all regs are 4 bytes. */
|
||
#define REGISTER_VIRTUAL_SIZE(N) (4)
|
||
|
||
/* Largest value REGISTER_RAW_SIZE can have. */
|
||
#define MAX_REGISTER_RAW_SIZE (4)
|
||
|
||
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
||
#define MAX_REGISTER_VIRTUAL_SIZE (4)
|
||
|
||
/* Nonzero if register N requires conversion
|
||
from raw format to virtual format. */
|
||
#define REGISTER_CONVERTIBLE(N) (0)
|
||
|
||
/* Convert data from raw format for register REGNUM
|
||
to virtual format for register REGNUM. */
|
||
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
||
bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM));
|
||
|
||
/* Convert data from virtual format for register REGNUM
|
||
to raw format for register REGNUM. */
|
||
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
||
bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM));
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
#define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int)
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function.
|
||
|
||
On this machine this is a no-op, because gcc isn't used on it
|
||
yet. So this calling convention is not used. */
|
||
|
||
#define STORE_STRUCT_RETURN(ADDR, SP)
|
||
|
||
/* Extract from an arrary REGBUF containing the (raw) register state
|
||
a function return value of type TYPE, and copy that, in virtual format,
|
||
into VALBUF. */
|
||
|
||
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
||
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
|
||
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
||
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
||
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* FRAME_CHAIN takes a frame's nominal address
|
||
and produces the frame's chain-pointer.
|
||
|
||
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
||
and produces the nominal address of the caller frame.
|
||
|
||
However, if FRAME_CHAIN_VALID returns zero,
|
||
it means the given frame is the outermost one and has no caller.
|
||
In that case, FRAME_CHAIN_COMBINE is not used. */
|
||
|
||
/* In the case of the NPL, the frame's norminal address is Br2 and the
|
||
previous routines frame is up the stack X bytes, where X is the
|
||
value stored in the code function header xA(Br1). */
|
||
#define FRAME_CHAIN(thisframe) (findframe(thisframe))
|
||
|
||
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
||
(chain != 0 && chain != (thisframe)->frame)
|
||
|
||
#define FRAME_CHAIN_COMBINE(chain, thisframe) \
|
||
(chain)
|
||
|
||
/* Define other aspects of the stack frame on NPL. */
|
||
#define FRAME_SAVED_PC(frame) \
|
||
(read_memory_integer ((frame)->frame + 8, 4))
|
||
|
||
#define FRAME_ARGS_ADDRESS(fi) \
|
||
((fi)->next_frame ? \
|
||
read_memory_integer ((fi)->frame + 12, 4) : \
|
||
read_register (AP_REGNUM))
|
||
|
||
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame + 80)
|
||
|
||
/* Set VAL to the number of args passed to frame described by FI.
|
||
Can set VAL to -1, meaning no way to tell. */
|
||
|
||
/* We can check the stab info to see how
|
||
many arg we have. No info in stack will tell us */
|
||
#define FRAME_NUM_ARGS(val,fi) (val = findarg(fi))
|
||
|
||
/* Return number of bytes at start of arglist that are not really args. */
|
||
#define FRAME_ARGS_SKIP 8
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
||
{ \
|
||
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
||
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \
|
||
(frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \
|
||
(frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \
|
||
(frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \
|
||
(frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \
|
||
}
|
||
|
||
/* Things needed for making the inferior call functions. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
#define PUSH_DUMMY_FRAME \
|
||
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
||
register int regnum; \
|
||
sp = push_word (sp, read_register (PC_REGNUM)); \
|
||
sp = push_word (sp, read_register (FP_REGNUM)); \
|
||
write_register (FP_REGNUM, sp); \
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||
sp = push_word (sp, read_register (regnum)); \
|
||
sp = push_word (sp, read_register (PS_REGNUM)); \
|
||
write_register (SP_REGNUM, sp); }
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
|
||
#define POP_FRAME \
|
||
{ register FRAME frame = get_current_frame (); \
|
||
register CORE_ADDR fp; \
|
||
register int regnum; \
|
||
struct frame_saved_regs fsr; \
|
||
struct frame_info *fi; \
|
||
fi = get_frame_info (frame); \
|
||
fp = fi->frame; \
|
||
get_frame_saved_regs (fi, &fsr); \
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
||
if (fsr.regs[regnum]) \
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
||
if (fsr.regs[PS_REGNUM]) \
|
||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
||
write_register (SP_REGNUM, fp + 8); \
|
||
flush_cached_frames (); \
|
||
set_current_frame ( create_new_frame (read_register (FP_REGNUM),\
|
||
read_pc ())); }
|
||
|
||
/* This sequence of words is the instructions:
|
||
halt
|
||
halt
|
||
halt
|
||
halt
|
||
suabr b2, #<stacksize>
|
||
lwbr b6, #con
|
||
stw r1, 8(b2) - save caller address, do we care?
|
||
lw r2, 60(b2) - arg1
|
||
labr b3, 50(b2)
|
||
std r4, 30(b2) - save r4-r7
|
||
std r6, 38(b2)
|
||
lwbr b1, #<func> - load function call address
|
||
brlnk r1, 8(b1) - call function
|
||
halt
|
||
halt
|
||
ld r4, 30(b2) - restore r4-r7
|
||
ld r6, 38(b2)
|
||
|
||
Setup our stack frame, load argumemts, call and then restore registers.
|
||
*/
|
||
|
||
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
|
||
|
||
#define CALL_DUMMY_LENGTH 28
|
||
|
||
#define CALL_DUMMY_START_OFFSET 12
|
||
|
||
/* Insert the specified number of args and function address
|
||
into a call sequence of the above form stored at DUMMYNAME. */
|
||
|
||
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
|
||
{ *(int *)((char *) dummyname + 20) = nargs * 4; \
|
||
*(int *)((char *) dummyname + 14) = fun; }
|