Joel Sherrill 941100245a 2010-04-20 Tiemen Schut <T.Schut@sron.nl>
* erc32.c (sis_memory_write): Change prototype to const unsigned char *.
	* func.c (exec_cmd, event, advance_time, wait_for_irq): Use uint64
	for counts.
	* interf.c (run_sim): Change icount to uint64_t. Use strtol directly.
	(sim_resume): Specify maximum run time as uint64.
	* sis.c (run_sim): Change icount to uint64_t.
	* sis.h: Define uint64 as uint64_t. Change various fields and
	prototypes to uint64 to support longer simulations.
2010-05-11 14:18:20 +00:00

1890 lines
39 KiB
C

/*
* This file is part of SIS.
*
* SIS, SPARC instruction simulator V2.5 Copyright (C) 1995 Jiri Gaisler,
* European Space Agency
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 675
* Mass Ave, Cambridge, MA 02139, USA.
*
*/
/* The control space devices */
#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <termios.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <unistd.h>
#include "sis.h"
#include "end.h"
#include "sim-config.h"
extern int ctrl_c;
extern int32 sis_verbose;
extern int32 sparclite, sparclite_board;
extern int rom8,wrp,uben;
extern char uart_dev1[], uart_dev2[];
int dumbio = 0; /* normal, smart, terminal oriented IO by default */
/* MEC registers */
#define MEC_START 0x01f80000
#define MEC_END 0x01f80100
/* Memory exception waitstates */
#define MEM_EX_WS 1
/* ERC32 always adds one waitstate during RAM std */
#define STD_WS 1
#ifdef ERRINJ
extern int errmec;
#endif
/* The target's byte order is big-endian by default until we load a
little-endian program. */
int current_target_byte_order = BIG_ENDIAN;
#define MEC_WS 0 /* Waitstates per MEC access (0 ws) */
#define MOK 0
/* MEC register addresses */
#define MEC_MCR 0x000
#define MEC_SFR 0x004
#define MEC_PWDR 0x008
#define MEC_MEMCFG 0x010
#define MEC_IOCR 0x014
#define MEC_WCR 0x018
#define MEC_MAR0 0x020
#define MEC_MAR1 0x024
#define MEC_SSA1 0x020
#define MEC_SEA1 0x024
#define MEC_SSA2 0x028
#define MEC_SEA2 0x02C
#define MEC_ISR 0x044
#define MEC_IPR 0x048
#define MEC_IMR 0x04C
#define MEC_ICR 0x050
#define MEC_IFR 0x054
#define MEC_WDOG 0x060
#define MEC_TRAPD 0x064
#define MEC_RTC_COUNTER 0x080
#define MEC_RTC_RELOAD 0x080
#define MEC_RTC_SCALER 0x084
#define MEC_GPT_COUNTER 0x088
#define MEC_GPT_RELOAD 0x088
#define MEC_GPT_SCALER 0x08C
#define MEC_TIMER_CTRL 0x098
#define MEC_SFSR 0x0A0
#define MEC_FFAR 0x0A4
#define MEC_ERSR 0x0B0
#define MEC_DBG 0x0C0
#define MEC_TCR 0x0D0
#define MEC_BRK 0x0C4
#define MEC_WPR 0x0C8
#define MEC_UARTA 0x0E0
#define MEC_UARTB 0x0E4
#define MEC_UART_CTRL 0x0E8
#define SIM_LOAD 0x0F0
/* Memory exception causes */
#define PROT_EXC 0x3
#define UIMP_ACC 0x4
#define MEC_ACC 0x6
#define WATCH_EXC 0xa
#define BREAK_EXC 0xb
/* Size of UART buffers (bytes) */
#define UARTBUF 1024
/* Number of simulator ticks between flushing the UARTS. */
/* For good performance, keep above 1000 */
#define UART_FLUSH_TIME 3000
/* MEC timer control register bits */
#define TCR_GACR 1
#define TCR_GACL 2
#define TCR_GASE 4
#define TCR_GASL 8
#define TCR_TCRCR 0x100
#define TCR_TCRCL 0x200
#define TCR_TCRSE 0x400
#define TCR_TCRSL 0x800
/* New uart defines */
#define UART_TX_TIME 1000
#define UART_RX_TIME 1000
#define UARTA_DR 0x1
#define UARTA_SRE 0x2
#define UARTA_HRE 0x4
#define UARTA_OR 0x40
#define UARTA_CLR 0x80
#define UARTB_DR 0x10000
#define UARTB_SRE 0x20000
#define UARTB_HRE 0x40000
#define UARTB_OR 0x400000
#define UARTB_CLR 0x800000
#define UART_DR 0x100
#define UART_TSE 0x200
#define UART_THE 0x400
/* MEC registers */
static char fname[256];
static int32 find = 0;
static uint32 mec_ssa[2]; /* Write protection start address */
static uint32 mec_sea[2]; /* Write protection end address */
static uint32 mec_wpr[2]; /* Write protection control fields */
static uint32 mec_sfsr;
static uint32 mec_ffar;
static uint32 mec_ipr;
static uint32 mec_imr;
static uint32 mec_isr;
static uint32 mec_icr;
static uint32 mec_ifr;
static uint32 mec_mcr; /* MEC control register */
static uint32 mec_memcfg; /* Memory control register */
static uint32 mec_wcr; /* MEC waitstate register */
static uint32 mec_iocr; /* MEC IO control register */
static uint32 posted_irq;
static uint32 mec_ersr; /* MEC error and status register */
static uint32 mec_tcr; /* MEC test comtrol register */
static uint32 rtc_counter;
static uint32 rtc_reload;
static uint32 rtc_scaler;
static uint32 rtc_scaler_start;
static uint32 rtc_enabled;
static uint32 rtc_cr;
static uint32 rtc_se;
static uint32 gpt_counter;
static uint32 gpt_reload;
static uint32 gpt_scaler;
static uint32 gpt_scaler_start;
static uint32 gpt_enabled;
static uint32 gpt_cr;
static uint32 gpt_se;
static uint32 wdog_scaler;
static uint32 wdog_counter;
static uint32 wdog_rst_delay;
static uint32 wdog_rston;
enum wdog_type {
init, disabled, enabled, stopped
};
static enum wdog_type wdog_status;
/* ROM size 1024 Kbyte */
#define ROM_SZ 0x100000
#define ROM_MASK 0x0fffff
/* RAM size 4 Mbyte */
#define RAM_START 0x02000000
#define RAM_END 0x02400000
#define RAM_MASK 0x003fffff
/* SPARClite boards all seem to have RAM at the same place. */
#define RAM_START_SLITE 0x40000000
#define RAM_END_SLITE 0x40400000
#define RAM_MASK_SLITE 0x003fffff
/* Memory support variables */
static uint32 mem_ramr_ws; /* RAM read waitstates */
static uint32 mem_ramw_ws; /* RAM write waitstates */
static uint32 mem_romr_ws; /* ROM read waitstates */
static uint32 mem_romw_ws; /* ROM write waitstates */
static uint32 mem_ramstart; /* RAM start */
static uint32 mem_ramend; /* RAM end */
static uint32 mem_rammask; /* RAM address mask */
static uint32 mem_ramsz; /* RAM size */
static uint32 mem_romsz; /* ROM size */
static uint32 mem_accprot; /* RAM write protection enabled */
static uint32 mem_blockprot; /* RAM block write protection enabled */
static unsigned char romb[ROM_SZ];
static unsigned char ramb[RAM_END - RAM_START];
/* UART support variables */
static int32 fd1, fd2; /* file descriptor for input file */
static int32 Ucontrol; /* UART status register */
static unsigned char aq[UARTBUF], bq[UARTBUF];
static int32 anum, aind = 0;
static int32 bnum, bind = 0;
static char wbufa[UARTBUF], wbufb[UARTBUF];
static unsigned wnuma;
static unsigned wnumb;
static FILE *f1in, *f1out, *f2in, *f2out;
static struct termios ioc1, ioc2, iocold1, iocold2;
static int f1open = 0, f2open = 0;
static char uarta_sreg, uarta_hreg, uartb_sreg, uartb_hreg;
static uint32 uart_stat_reg;
static uint32 uarta_data, uartb_data;
#ifdef ERA
int era = 0;
int erareg;
#endif
/* Forward declarations */
static void decode_ersr PARAMS ((void));
#ifdef ERRINJ
static void iucomperr PARAMS ((void));
#endif
static void mecparerror PARAMS ((void));
static void decode_memcfg PARAMS ((void));
static void decode_wcr PARAMS ((void));
static void decode_mcr PARAMS ((void));
static void close_port PARAMS ((void));
static void mec_reset PARAMS ((void));
static void mec_intack PARAMS ((int32 level));
static void chk_irq PARAMS ((void));
static void mec_irq PARAMS ((int32 level));
static void set_sfsr PARAMS ((uint32 fault, uint32 addr,
uint32 asi, uint32 read));
static int32 mec_read PARAMS ((uint32 addr, uint32 asi, uint32 *data));
static int mec_write PARAMS ((uint32 addr, uint32 data));
static void port_init PARAMS ((void));
static uint32 read_uart PARAMS ((uint32 addr));
static void write_uart PARAMS ((uint32 addr, uint32 data));
static void flush_uart PARAMS ((void));
static void uarta_tx PARAMS ((void));
static void uartb_tx PARAMS ((void));
static void uart_rx PARAMS ((caddr_t arg));
static void uart_intr PARAMS ((caddr_t arg));
static void uart_irq_start PARAMS ((void));
static void wdog_intr PARAMS ((caddr_t arg));
static void wdog_start PARAMS ((void));
static void rtc_intr PARAMS ((caddr_t arg));
static void rtc_start PARAMS ((void));
static uint32 rtc_counter_read PARAMS ((void));
static void rtc_scaler_set PARAMS ((uint32 val));
static void rtc_reload_set PARAMS ((uint32 val));
static void gpt_intr PARAMS ((caddr_t arg));
static void gpt_start PARAMS ((void));
static uint32 gpt_counter_read PARAMS ((void));
static void gpt_scaler_set PARAMS ((uint32 val));
static void gpt_reload_set PARAMS ((uint32 val));
static void timer_ctrl PARAMS ((uint32 val));
static unsigned char *
get_mem_ptr PARAMS ((uint32 addr, uint32 size));
static void fetch_bytes PARAMS ((int asi, unsigned char *mem,
uint32 *data, int sz));
static void store_bytes PARAMS ((unsigned char *mem, uint32 *data, int sz));
extern int ext_irl;
/* One-time init */
void
init_sim()
{
port_init();
}
/* Power-on reset init */
void
reset()
{
mec_reset();
uart_irq_start();
wdog_start();
}
static void
decode_ersr()
{
if (mec_ersr & 0x01) {
if (!(mec_mcr & 0x20)) {
if (mec_mcr & 0x40) {
sys_reset();
mec_ersr = 0x8000;
if (sis_verbose)
printf("Error manager reset - IU in error mode\n");
} else {
sys_halt();
mec_ersr |= 0x2000;
if (sis_verbose)
printf("Error manager halt - IU in error mode\n");
}
} else
mec_irq(1);
}
if (mec_ersr & 0x04) {
if (!(mec_mcr & 0x200)) {
if (mec_mcr & 0x400) {
sys_reset();
mec_ersr = 0x8000;
if (sis_verbose)
printf("Error manager reset - IU comparison error\n");
} else {
sys_halt();
mec_ersr |= 0x2000;
if (sis_verbose)
printf("Error manager halt - IU comparison error\n");
}
} else
mec_irq(1);
}
if (mec_ersr & 0x20) {
if (!(mec_mcr & 0x2000)) {
if (mec_mcr & 0x4000) {
sys_reset();
mec_ersr = 0x8000;
if (sis_verbose)
printf("Error manager reset - MEC hardware error\n");
} else {
sys_halt();
mec_ersr |= 0x2000;
if (sis_verbose)
printf("Error manager halt - MEC hardware error\n");
}
} else
mec_irq(1);
}
}
#ifdef ERRINJ
static void
iucomperr()
{
mec_ersr |= 0x04;
decode_ersr();
}
#endif
static void
mecparerror()
{
mec_ersr |= 0x20;
decode_ersr();
}
/* IU error mode manager */
void
error_mode(pc)
uint32 pc;
{
mec_ersr |= 0x1;
decode_ersr();
}
/* Check memory settings */
static void
decode_memcfg()
{
if (rom8) mec_memcfg &= ~0x20000;
else mec_memcfg |= 0x20000;
mem_ramsz = (256 * 1024) << ((mec_memcfg >> 10) & 7);
mem_romsz = (128 * 1024) << ((mec_memcfg >> 18) & 7);
if (sparclite_board) {
mem_ramstart = RAM_START_SLITE;
mem_ramend = RAM_END_SLITE;
mem_rammask = RAM_MASK_SLITE;
}
else {
mem_ramstart = RAM_START;
mem_ramend = RAM_END;
mem_rammask = RAM_MASK;
}
if (sis_verbose)
printf("RAM start: 0x%x, RAM size: %d K, ROM size: %d K\n",
mem_ramstart, mem_ramsz >> 10, mem_romsz >> 10);
}
static void
decode_wcr()
{
mem_ramr_ws = mec_wcr & 3;
mem_ramw_ws = (mec_wcr >> 2) & 3;
mem_romr_ws = (mec_wcr >> 4) & 0x0f;
if (rom8) {
if (mem_romr_ws > 0 ) mem_romr_ws--;
mem_romr_ws = 5 + (4*mem_romr_ws);
}
mem_romw_ws = (mec_wcr >> 8) & 0x0f;
if (sis_verbose)
printf("Waitstates = RAM read: %d, RAM write: %d, ROM read: %d, ROM write: %d\n",
mem_ramr_ws, mem_ramw_ws, mem_romr_ws, mem_romw_ws);
}
static void
decode_mcr()
{
mem_accprot = (mec_wpr[0] | mec_wpr[1]);
mem_blockprot = (mec_mcr >> 3) & 1;
if (sis_verbose && mem_accprot)
printf("Memory block write protection enabled\n");
if (mec_mcr & 0x08000) {
mec_ersr |= 0x20;
decode_ersr();
}
if (sis_verbose && (mec_mcr & 2))
printf("Software reset enabled\n");
if (sis_verbose && (mec_mcr & 1))
printf("Power-down mode enabled\n");
}
/* Flush ports when simulator stops */
void
sim_halt()
{
#ifdef FAST_UART
flush_uart();
#endif
}
int
sim_stop(SIM_DESC sd)
{
ctrl_c = 1;
return 1;
}
static void
close_port()
{
if (f1open && f1in != stdin)
fclose(f1in);
if (f2open && f2in != stdin)
fclose(f2in);
}
void
exit_sim()
{
close_port();
}
static void
mec_reset()
{
int i;
find = 0;
for (i = 0; i < 2; i++)
mec_ssa[i] = mec_sea[i] = mec_wpr[i] = 0;
mec_mcr = 0x01350014;
mec_iocr = 0;
mec_sfsr = 0x078;
mec_ffar = 0;
mec_ipr = 0;
mec_imr = 0x7ffe;
mec_isr = 0;
mec_icr = 0;
mec_ifr = 0;
mec_memcfg = 0x10000;
mec_wcr = -1;
mec_ersr = 0; /* MEC error and status register */
mec_tcr = 0; /* MEC test comtrol register */
decode_memcfg();
decode_wcr();
decode_mcr();
posted_irq = 0;
wnuma = wnumb = 0;
anum = aind = bnum = bind = 0;
uart_stat_reg = UARTA_SRE | UARTA_HRE | UARTB_SRE | UARTB_HRE;
uarta_data = uartb_data = UART_THE | UART_TSE;
rtc_counter = 0xffffffff;
rtc_reload = 0xffffffff;
rtc_scaler = 0xff;
rtc_enabled = 0;
rtc_cr = 0;
rtc_se = 0;
gpt_counter = 0xffffffff;
gpt_reload = 0xffffffff;
gpt_scaler = 0xffff;
gpt_enabled = 0;
gpt_cr = 0;
gpt_se = 0;
wdog_scaler = 255;
wdog_rst_delay = 255;
wdog_counter = 0xffff;
wdog_rston = 0;
wdog_status = init;
#ifdef ERA
erareg = 0;
#endif
}
static void
mec_intack(level)
int32 level;
{
int irq_test;
if (sis_verbose)
printf("interrupt %d acknowledged\n", level);
irq_test = mec_tcr & 0x80000;
if ((irq_test) && (mec_ifr & (1 << level)))
mec_ifr &= ~(1 << level);
else
mec_ipr &= ~(1 << level);
chk_irq();
}
static void
chk_irq()
{
int32 i;
uint32 itmp;
int old_irl;
old_irl = ext_irl;
if (mec_tcr & 0x80000) itmp = mec_ifr;
else itmp = 0;
itmp = ((mec_ipr | itmp) & ~mec_imr) & 0x0fffe;
ext_irl = 0;
if (itmp != 0) {
for (i = 15; i > 0; i--) {
if (((itmp >> i) & 1) != 0) {
if ((sis_verbose) && (i > old_irl))
printf("IU irl: %d\n", i);
ext_irl = i;
set_int(i, mec_intack, i);
break;
}
}
}
}
static void
mec_irq(level)
int32 level;
{
mec_ipr |= (1 << level);
chk_irq();
}
static void
set_sfsr(fault, addr, asi, read)
uint32 fault;
uint32 addr;
uint32 asi;
uint32 read;
{
if ((asi == 0xa) || (asi == 0xb)) {
mec_ffar = addr;
mec_sfsr = (fault << 3) | (!read << 15);
mec_sfsr |= ((mec_sfsr & 1) ^ 1) | (mec_sfsr & 1);
switch (asi) {
case 0xa:
mec_sfsr |= 0x0004;
break;
case 0xb:
mec_sfsr |= 0x1004;
break;
}
}
}
static int32
mec_read(addr, asi, data)
uint32 addr;
uint32 asi;
uint32 *data;
{
switch (addr & 0x0ff) {
case MEC_MCR: /* 0x00 */
*data = mec_mcr;
break;
case MEC_MEMCFG: /* 0x10 */
*data = mec_memcfg;
break;
case MEC_IOCR:
*data = mec_iocr; /* 0x14 */
break;
case MEC_SSA1: /* 0x20 */
*data = mec_ssa[0] | (mec_wpr[0] << 23);
break;
case MEC_SEA1: /* 0x24 */
*data = mec_sea[0];
break;
case MEC_SSA2: /* 0x28 */
*data = mec_ssa[1] | (mec_wpr[1] << 23);
break;
case MEC_SEA2: /* 0x2c */
*data = mec_sea[1];
break;
case MEC_ISR: /* 0x44 */
*data = mec_isr;
break;
case MEC_IPR: /* 0x48 */
*data = mec_ipr;
break;
case MEC_IMR: /* 0x4c */
*data = mec_imr;
break;
case MEC_IFR: /* 0x54 */
*data = mec_ifr;
break;
case MEC_RTC_COUNTER: /* 0x80 */
*data = rtc_counter_read();
break;
case MEC_RTC_SCALER: /* 0x84 */
if (rtc_enabled)
*data = rtc_scaler - (now() - rtc_scaler_start);
else
*data = rtc_scaler;
break;
case MEC_GPT_COUNTER: /* 0x88 */
*data = gpt_counter_read();
break;
case MEC_GPT_SCALER: /* 0x8c */
if (rtc_enabled)
*data = gpt_scaler - (now() - gpt_scaler_start);
else
*data = gpt_scaler;
break;
case MEC_SFSR: /* 0xA0 */
*data = mec_sfsr;
break;
case MEC_FFAR: /* 0xA4 */
*data = mec_ffar;
break;
case SIM_LOAD:
fname[find] = 0;
if (find == 0)
strcpy(fname, "simload");
find = bfd_load(fname);
if (find == -1)
*data = 0;
else
*data = 1;
find = 0;
break;
case MEC_ERSR: /* 0xB0 */
*data = mec_ersr;
break;
case MEC_TCR: /* 0xD0 */
*data = mec_tcr;
break;
case MEC_UARTA: /* 0xE0 */
case MEC_UARTB: /* 0xE4 */
if (asi != 0xb) {
set_sfsr(MEC_ACC, addr, asi, 1);
return (1);
}
*data = read_uart(addr);
break;
case MEC_UART_CTRL: /* 0xE8 */
*data = read_uart(addr);
break;
default:
set_sfsr(MEC_ACC, addr, asi, 1);
return (1);
break;
}
return (MOK);
}
static int
mec_write(addr, data)
uint32 addr;
uint32 data;
{
if (sis_verbose > 1)
printf("MEC write a: %08x, d: %08x\n",addr,data);
switch (addr & 0x0ff) {
case MEC_MCR:
mec_mcr = data;
decode_mcr();
if (mec_mcr & 0x08000) mecparerror();
break;
case MEC_SFR:
if (mec_mcr & 0x2) {
sys_reset();
mec_ersr = 0x4000;
if (sis_verbose)
printf(" Software reset issued\n");
}
break;
case MEC_IOCR:
mec_iocr = data;
if (mec_iocr & 0xC0C0C0C0) mecparerror();
break;
case MEC_SSA1: /* 0x20 */
if (data & 0xFE000000) mecparerror();
mec_ssa[0] = data & 0x7fffff;
mec_wpr[0] = (data >> 23) & 0x03;
mem_accprot = mec_wpr[0] || mec_wpr[1];
if (sis_verbose && mec_wpr[0])
printf("Segment 1 memory protection enabled (0x02%06x - 0x02%06x)\n",
mec_ssa[0] << 2, mec_sea[0] << 2);
break;
case MEC_SEA1: /* 0x24 */
if (data & 0xFF800000) mecparerror();
mec_sea[0] = data & 0x7fffff;
break;
case MEC_SSA2: /* 0x28 */
if (data & 0xFE000000) mecparerror();
mec_ssa[1] = data & 0x7fffff;
mec_wpr[1] = (data >> 23) & 0x03;
mem_accprot = mec_wpr[0] || mec_wpr[1];
if (sis_verbose && mec_wpr[1])
printf("Segment 2 memory protection enabled (0x02%06x - 0x02%06x)\n",
mec_ssa[1] << 2, mec_sea[1] << 2);
break;
case MEC_SEA2: /* 0x2c */
if (data & 0xFF800000) mecparerror();
mec_sea[1] = data & 0x7fffff;
break;
case MEC_UARTA:
case MEC_UARTB:
if (data & 0xFFFFFF00) mecparerror();
case MEC_UART_CTRL:
if (data & 0xFF00FF00) mecparerror();
write_uart(addr, data);
break;
case MEC_GPT_RELOAD:
gpt_reload_set(data);
break;
case MEC_GPT_SCALER:
if (data & 0xFFFF0000) mecparerror();
gpt_scaler_set(data);
break;
case MEC_TIMER_CTRL:
if (data & 0xFFFFF0F0) mecparerror();
timer_ctrl(data);
break;
case MEC_RTC_RELOAD:
rtc_reload_set(data);
break;
case MEC_RTC_SCALER:
if (data & 0xFFFFFF00) mecparerror();
rtc_scaler_set(data);
break;
case MEC_SFSR: /* 0xA0 */
if (data & 0xFFFF0880) mecparerror();
mec_sfsr = 0x78;
break;
case MEC_ISR:
if (data & 0xFFFFE000) mecparerror();
mec_isr = data;
break;
case MEC_IMR: /* 0x4c */
if (data & 0xFFFF8001) mecparerror();
mec_imr = data & 0x7ffe;
chk_irq();
break;
case MEC_ICR: /* 0x50 */
if (data & 0xFFFF0001) mecparerror();
mec_ipr &= ~data & 0x0fffe;
chk_irq();
break;
case MEC_IFR: /* 0x54 */
if (mec_tcr & 0x080000) {
if (data & 0xFFFF0001) mecparerror();
mec_ifr = data & 0xfffe;
chk_irq();
}
break;
case SIM_LOAD:
fname[find++] = (char) data;
break;
case MEC_MEMCFG: /* 0x10 */
if (data & 0xC0E08000) mecparerror();
mec_memcfg = data;
decode_memcfg();
if (mec_memcfg & 0xc0e08000)
mecparerror();
break;
case MEC_WCR: /* 0x18 */
mec_wcr = data;
decode_wcr();
break;
case MEC_ERSR: /* 0xB0 */
if (mec_tcr & 0x100000)
if (data & 0xFFFFEFC0) mecparerror();
mec_ersr = data & 0x103f;
break;
case MEC_TCR: /* 0xD0 */
if (data & 0xFFE1FFC0) mecparerror();
mec_tcr = data & 0x1e003f;
break;
case MEC_WDOG: /* 0x60 */
wdog_scaler = (data >> 16) & 0x0ff;
wdog_counter = data & 0x0ffff;
wdog_rst_delay = data >> 24;
wdog_rston = 0;
if (wdog_status == stopped)
wdog_start();
wdog_status = enabled;
break;
case MEC_TRAPD: /* 0x64 */
if (wdog_status == init) {
wdog_status = disabled;
if (sis_verbose)
printf("Watchdog disabled\n");
}
break;
case MEC_PWDR:
if (mec_mcr & 1)
wait_for_irq();
break;
default:
set_sfsr(MEC_ACC, addr, 0xb, 0);
return (1);
break;
}
return (MOK);
}
/* MEC UARTS */
static int ifd1 = -1, ifd2 = -1, ofd1 = -1, ofd2 = -1;
void
init_stdio()
{
if (dumbio)
return; /* do nothing */
if (!ifd1)
tcsetattr(0, TCSANOW, &ioc1);
if (!ifd2)
tcsetattr(0, TCSANOW, &ioc2);
}
void
restore_stdio()
{
if (dumbio)
return; /* do nothing */
if (!ifd1)
tcsetattr(0, TCSANOW, &iocold1);
if (!ifd2)
tcsetattr(0, TCSANOW, &iocold2);
}
#define DO_STDIO_READ( _fd_, _buf_, _len_ ) \
( dumbio \
? (0) /* no bytes read, no delay */ \
: read( _fd_, _buf_, _len_ ) )
static void
port_init()
{
if (uben) {
f2in = stdin;
f1in = NULL;
f2out = stdout;
f1out = NULL;
} else {
f1in = stdin;
f2in = NULL;
f1out = stdout;
f2out = NULL;
}
if (uart_dev1[0] != 0)
if ((fd1 = open(uart_dev1, O_RDWR | O_NONBLOCK)) < 0) {
printf("Warning, couldn't open output device %s\n", uart_dev1);
} else {
if (sis_verbose)
printf("serial port A on %s\n", uart_dev1);
f1in = f1out = fdopen(fd1, "r+");
setbuf(f1out, NULL);
f1open = 1;
}
if (f1in) ifd1 = fileno(f1in);
if (ifd1 == 0) {
if (sis_verbose)
printf("serial port A on stdin/stdout\n");
if (!dumbio) {
tcgetattr(ifd1, &ioc1);
iocold1 = ioc1;
ioc1.c_lflag &= ~(ICANON | ECHO);
ioc1.c_cc[VMIN] = 0;
ioc1.c_cc[VTIME] = 0;
}
f1open = 1;
}
if (f1out) {
ofd1 = fileno(f1out);
if (!dumbio && ofd1 == 1) setbuf(f1out, NULL);
}
if (uart_dev2[0] != 0)
if ((fd2 = open(uart_dev2, O_RDWR | O_NONBLOCK)) < 0) {
printf("Warning, couldn't open output device %s\n", uart_dev2);
} else {
if (sis_verbose)
printf("serial port B on %s\n", uart_dev2);
f2in = f2out = fdopen(fd2, "r+");
setbuf(f2out, NULL);
f2open = 1;
}
if (f2in) ifd2 = fileno(f2in);
if (ifd2 == 0) {
if (sis_verbose)
printf("serial port B on stdin/stdout\n");
if (!dumbio) {
tcgetattr(ifd2, &ioc2);
iocold2 = ioc2;
ioc2.c_lflag &= ~(ICANON | ECHO);
ioc2.c_cc[VMIN] = 0;
ioc2.c_cc[VTIME] = 0;
}
f2open = 1;
}
if (f2out) {
ofd2 = fileno(f2out);
if (!dumbio && ofd2 == 1) setbuf(f2out, NULL);
}
wnuma = wnumb = 0;
}
static uint32
read_uart(addr)
uint32 addr;
{
unsigned tmp;
tmp = 0;
switch (addr & 0xff) {
case 0xE0: /* UART 1 */
#ifndef _WIN32
#ifdef FAST_UART
if (aind < anum) {
if ((aind + 1) < anum)
mec_irq(4);
return (0x700 | (uint32) aq[aind++]);
} else {
if (f1open) {
anum = DO_STDIO_READ(ifd1, aq, UARTBUF);
}
if (anum > 0) {
aind = 0;
if ((aind + 1) < anum)
mec_irq(4);
return (0x700 | (uint32) aq[aind++]);
} else {
return (0x600 | (uint32) aq[aind]);
}
}
#else
tmp = uarta_data;
uarta_data &= ~UART_DR;
uart_stat_reg &= ~UARTA_DR;
return tmp;
#endif
#else
return(0);
#endif
break;
case 0xE4: /* UART 2 */
#ifndef _WIN32
#ifdef FAST_UART
if (bind < bnum) {
if ((bind + 1) < bnum)
mec_irq(5);
return (0x700 | (uint32) bq[bind++]);
} else {
if (f2open) {
bnum = DO_STDIO_READ(ifd2, bq, UARTBUF);
}
if (bnum > 0) {
bind = 0;
if ((bind + 1) < bnum)
mec_irq(5);
return (0x700 | (uint32) bq[bind++]);
} else {
return (0x600 | (uint32) bq[bind]);
}
}
#else
tmp = uartb_data;
uartb_data &= ~UART_DR;
uart_stat_reg &= ~UARTB_DR;
return tmp;
#endif
#else
return(0);
#endif
break;
case 0xE8: /* UART status register */
#ifndef _WIN32
#ifdef FAST_UART
Ucontrol = 0;
if (aind < anum) {
Ucontrol |= 0x00000001;
} else {
if (f1open) {
anum = DO_STDIO_READ(ifd1, aq, UARTBUF);
}
if (anum > 0) {
Ucontrol |= 0x00000001;
aind = 0;
mec_irq(4);
}
}
if (bind < bnum) {
Ucontrol |= 0x00010000;
} else {
if (f2open) {
bnum = DO_STDIO_READ(ifd2, bq, UARTBUF);
}
if (bnum > 0) {
Ucontrol |= 0x00010000;
bind = 0;
mec_irq(5);
}
}
Ucontrol |= 0x00060006;
return (Ucontrol);
#else
return (uart_stat_reg);
#endif
#else
return(0x00060006);
#endif
break;
default:
if (sis_verbose)
printf("Read from unimplemented MEC register (%x)\n", addr);
}
return (0);
}
static void
write_uart(addr, data)
uint32 addr;
uint32 data;
{
unsigned char c;
c = (unsigned char) data;
switch (addr & 0xff) {
case 0xE0: /* UART A */
#ifdef FAST_UART
if (f1open) {
if (wnuma < UARTBUF)
wbufa[wnuma++] = c;
else {
while (wnuma)
wnuma -= fwrite(wbufa, 1, wnuma, f1out);
wbufa[wnuma++] = c;
}
}
mec_irq(4);
#else
if (uart_stat_reg & UARTA_SRE) {
uarta_sreg = c;
uart_stat_reg &= ~UARTA_SRE;
event(uarta_tx, 0, UART_TX_TIME);
} else {
uarta_hreg = c;
uart_stat_reg &= ~UARTA_HRE;
}
#endif
break;
case 0xE4: /* UART B */
#ifdef FAST_UART
if (f2open) {
if (wnumb < UARTBUF)
wbufb[wnumb++] = c;
else {
while (wnumb)
wnumb -= fwrite(wbufb, 1, wnumb, f2out);
wbufb[wnumb++] = c;
}
}
mec_irq(5);
#else
if (uart_stat_reg & UARTB_SRE) {
uartb_sreg = c;
uart_stat_reg &= ~UARTB_SRE;
event(uartb_tx, 0, UART_TX_TIME);
} else {
uartb_hreg = c;
uart_stat_reg &= ~UARTB_HRE;
}
#endif
break;
case 0xE8: /* UART status register */
#ifndef FAST_UART
if (data & UARTA_CLR) {
uart_stat_reg &= 0xFFFF0000;
uart_stat_reg |= UARTA_SRE | UARTA_HRE;
}
if (data & UARTB_CLR) {
uart_stat_reg &= 0x0000FFFF;
uart_stat_reg |= UARTB_SRE | UARTB_HRE;
}
#endif
break;
default:
if (sis_verbose)
printf("Write to unimplemented MEC register (%x)\n", addr);
}
}
static void
flush_uart()
{
while (wnuma && f1open)
wnuma -= fwrite(wbufa, 1, wnuma, f1out);
while (wnumb && f2open)
wnumb -= fwrite(wbufb, 1, wnumb, f2out);
}
static void
uarta_tx()
{
while (f1open && fwrite(&uarta_sreg, 1, 1, f1out) != 1);
if (uart_stat_reg & UARTA_HRE) {
uart_stat_reg |= UARTA_SRE;
} else {
uarta_sreg = uarta_hreg;
uart_stat_reg |= UARTA_HRE;
event(uarta_tx, 0, UART_TX_TIME);
}
mec_irq(4);
}
static void
uartb_tx()
{
while (f2open && fwrite(&uartb_sreg, 1, 1, f2out) != 1);
if (uart_stat_reg & UARTB_HRE) {
uart_stat_reg |= UARTB_SRE;
} else {
uartb_sreg = uartb_hreg;
uart_stat_reg |= UARTB_HRE;
event(uartb_tx, 0, UART_TX_TIME);
}
mec_irq(5);
}
static void
uart_rx(arg)
caddr_t arg;
{
int32 rsize;
char rxd;
rsize = 0;
if (f1open)
rsize = DO_STDIO_READ(ifd1, &rxd, 1);
if (rsize > 0) {
uarta_data = UART_DR | rxd;
if (uart_stat_reg & UARTA_HRE)
uarta_data |= UART_THE;
if (uart_stat_reg & UARTA_SRE)
uarta_data |= UART_TSE;
if (uart_stat_reg & UARTA_DR) {
uart_stat_reg |= UARTA_OR;
mec_irq(7); /* UART error interrupt */
}
uart_stat_reg |= UARTA_DR;
mec_irq(4);
}
rsize = 0;
if (f2open)
rsize = DO_STDIO_READ(ifd2, &rxd, 1);
if (rsize) {
uartb_data = UART_DR | rxd;
if (uart_stat_reg & UARTB_HRE)
uartb_data |= UART_THE;
if (uart_stat_reg & UARTB_SRE)
uartb_data |= UART_TSE;
if (uart_stat_reg & UARTB_DR) {
uart_stat_reg |= UARTB_OR;
mec_irq(7); /* UART error interrupt */
}
uart_stat_reg |= UARTB_DR;
mec_irq(5);
}
event(uart_rx, 0, UART_RX_TIME);
}
static void
uart_intr(arg)
caddr_t arg;
{
read_uart(0xE8); /* Check for UART interrupts every 1000 clk */
flush_uart(); /* Flush UART ports */
event(uart_intr, 0, UART_FLUSH_TIME);
}
static void
uart_irq_start()
{
#ifdef FAST_UART
event(uart_intr, 0, UART_FLUSH_TIME);
#else
#ifndef _WIN32
event(uart_rx, 0, UART_RX_TIME);
#endif
#endif
}
/* Watch-dog */
static void
wdog_intr(arg)
caddr_t arg;
{
if (wdog_status == disabled) {
wdog_status = stopped;
} else {
if (wdog_counter) {
wdog_counter--;
event(wdog_intr, 0, wdog_scaler + 1);
} else {
if (wdog_rston) {
printf("Watchdog reset!\n");
sys_reset();
mec_ersr = 0xC000;
} else {
mec_irq(15);
wdog_rston = 1;
wdog_counter = wdog_rst_delay;
event(wdog_intr, 0, wdog_scaler + 1);
}
}
}
}
static void
wdog_start()
{
event(wdog_intr, 0, wdog_scaler + 1);
if (sis_verbose)
printf("Watchdog started, scaler = %d, counter = %d\n",
wdog_scaler, wdog_counter);
}
/* MEC timers */
static void
rtc_intr(arg)
caddr_t arg;
{
if (rtc_counter == 0) {
mec_irq(13);
if (rtc_cr)
rtc_counter = rtc_reload;
else
rtc_se = 0;
} else
rtc_counter -= 1;
if (rtc_se) {
event(rtc_intr, 0, rtc_scaler + 1);
rtc_scaler_start = now();
rtc_enabled = 1;
} else {
if (sis_verbose)
printf("RTC stopped\n\r");
rtc_enabled = 0;
}
}
static void
rtc_start()
{
if (sis_verbose)
printf("RTC started (period %d)\n\r", rtc_scaler + 1);
event(rtc_intr, 0, rtc_scaler + 1);
rtc_scaler_start = now();
rtc_enabled = 1;
}
static uint32
rtc_counter_read()
{
return (rtc_counter);
}
static void
rtc_scaler_set(val)
uint32 val;
{
rtc_scaler = val & 0x0ff; /* eight-bit scaler only */
}
static void
rtc_reload_set(val)
uint32 val;
{
rtc_reload = val;
}
static void
gpt_intr(arg)
caddr_t arg;
{
if (gpt_counter == 0) {
mec_irq(12);
if (gpt_cr)
gpt_counter = gpt_reload;
else
gpt_se = 0;
} else
gpt_counter -= 1;
if (gpt_se) {
event(gpt_intr, 0, gpt_scaler + 1);
gpt_scaler_start = now();
gpt_enabled = 1;
} else {
if (sis_verbose)
printf("GPT stopped\n\r");
gpt_enabled = 0;
}
}
static void
gpt_start()
{
if (sis_verbose)
printf("GPT started (period %d)\n\r", gpt_scaler + 1);
event(gpt_intr, 0, gpt_scaler + 1);
gpt_scaler_start = now();
gpt_enabled = 1;
}
static uint32
gpt_counter_read()
{
return (gpt_counter);
}
static void
gpt_scaler_set(val)
uint32 val;
{
gpt_scaler = val & 0x0ffff; /* 16-bit scaler */
}
static void
gpt_reload_set(val)
uint32 val;
{
gpt_reload = val;
}
static void
timer_ctrl(val)
uint32 val;
{
rtc_cr = ((val & TCR_TCRCR) != 0);
if (val & TCR_TCRCL) {
rtc_counter = rtc_reload;
}
if (val & TCR_TCRSL) {
}
rtc_se = ((val & TCR_TCRSE) != 0);
if (rtc_se && (rtc_enabled == 0))
rtc_start();
gpt_cr = (val & TCR_GACR);
if (val & TCR_GACL) {
gpt_counter = gpt_reload;
}
if (val & TCR_GACL) {
}
gpt_se = (val & TCR_GASE) >> 2;
if (gpt_se && (gpt_enabled == 0))
gpt_start();
}
/* Retrieve data from target memory. MEM points to location from which
to read the data; DATA points to words where retrieved data will be
stored in host byte order. SZ contains log(2) of the number of bytes
to retrieve, and can be 0 (1 byte), 1 (one half-word), 2 (one word),
or 3 (two words). */
static void
fetch_bytes (asi, mem, data, sz)
int asi;
unsigned char *mem;
uint32 *data;
int sz;
{
if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN
|| asi == 8 || asi == 9) {
switch (sz) {
case 3:
data[1] = (((uint32) mem[7]) & 0xff) |
((((uint32) mem[6]) & 0xff) << 8) |
((((uint32) mem[5]) & 0xff) << 16) |
((((uint32) mem[4]) & 0xff) << 24);
/* Fall through to 2 */
case 2:
data[0] = (((uint32) mem[3]) & 0xff) |
((((uint32) mem[2]) & 0xff) << 8) |
((((uint32) mem[1]) & 0xff) << 16) |
((((uint32) mem[0]) & 0xff) << 24);
break;
case 1:
data[0] = (((uint32) mem[1]) & 0xff) |
((((uint32) mem[0]) & 0xff) << 8);
break;
case 0:
data[0] = mem[0] & 0xff;
break;
}
} else {
switch (sz) {
case 3:
data[1] = ((((uint32) mem[7]) & 0xff) << 24) |
((((uint32) mem[6]) & 0xff) << 16) |
((((uint32) mem[5]) & 0xff) << 8) |
(((uint32) mem[4]) & 0xff);
/* Fall through to 4 */
case 2:
data[0] = ((((uint32) mem[3]) & 0xff) << 24) |
((((uint32) mem[2]) & 0xff) << 16) |
((((uint32) mem[1]) & 0xff) << 8) |
(((uint32) mem[0]) & 0xff);
break;
case 1:
data[0] = ((((uint32) mem[1]) & 0xff) << 8) |
(((uint32) mem[0]) & 0xff);
break;
case 0:
data[0] = mem[0] & 0xff;
break;
}
}
}
/* Store data in target byte order. MEM points to location to store data;
DATA points to words in host byte order to be stored. SZ contains log(2)
of the number of bytes to retrieve, and can be 0 (1 byte), 1 (one half-word),
2 (one word), or 3 (two words). */
static void
store_bytes (mem, data, sz)
unsigned char *mem;
uint32 *data;
int sz;
{
if (CURRENT_TARGET_BYTE_ORDER == LITTLE_ENDIAN) {
switch (sz) {
case 3:
mem[7] = (data[1] >> 24) & 0xff;
mem[6] = (data[1] >> 16) & 0xff;
mem[5] = (data[1] >> 8) & 0xff;
mem[4] = data[1] & 0xff;
/* Fall through to 2 */
case 2:
mem[3] = (data[0] >> 24) & 0xff;
mem[2] = (data[0] >> 16) & 0xff;
/* Fall through to 1 */
case 1:
mem[1] = (data[0] >> 8) & 0xff;
/* Fall through to 0 */
case 0:
mem[0] = data[0] & 0xff;
break;
}
} else {
switch (sz) {
case 3:
mem[7] = data[1] & 0xff;
mem[6] = (data[1] >> 8) & 0xff;
mem[5] = (data[1] >> 16) & 0xff;
mem[4] = (data[1] >> 24) & 0xff;
/* Fall through to 2 */
case 2:
mem[3] = data[0] & 0xff;
mem[2] = (data[0] >> 8) & 0xff;
mem[1] = (data[0] >> 16) & 0xff;
mem[0] = (data[0] >> 24) & 0xff;
break;
case 1:
mem[1] = data[0] & 0xff;
mem[0] = (data[0] >> 8) & 0xff;
break;
case 0:
mem[0] = data[0] & 0xff;
break;
}
}
}
/* Memory emulation */
int
memory_read(asi, addr, data, sz, ws)
int32 asi;
uint32 addr;
uint32 *data;
int32 sz;
int32 *ws;
{
int32 mexc;
#ifdef ERRINJ
if (errmec) {
if (sis_verbose)
printf("Inserted MEC error %d\n",errmec);
set_sfsr(errmec, addr, asi, 1);
if (errmec == 5) mecparerror();
if (errmec == 6) iucomperr();
errmec = 0;
return(1);
}
#endif
if ((addr >= mem_ramstart) && (addr < (mem_ramstart + mem_ramsz))) {
fetch_bytes (asi, &ramb[addr & mem_rammask], data, sz);
*ws = mem_ramr_ws;
return (0);
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
mexc = mec_read(addr, asi, data);
if (mexc) {
set_sfsr(MEC_ACC, addr, asi, 1);
*ws = MEM_EX_WS;
} else {
*ws = 0;
}
return (mexc);
#ifdef ERA
} else if (era) {
if ((addr < 0x100000) ||
((addr>= 0x80000000) && (addr < 0x80100000))) {
fetch_bytes (asi, &romb[addr & ROM_MASK], data, sz);
*ws = 4;
return (0);
} else if ((addr >= 0x10000000) &&
(addr < (0x10000000 + (512 << (mec_iocr & 0x0f)))) &&
(mec_iocr & 0x10)) {
*data = erareg;
return (0);
}
} else if (addr < mem_romsz) {
fetch_bytes (asi, &romb[addr], data, sz);
*ws = mem_romr_ws;
return (0);
#else
} else if (addr < mem_romsz) {
fetch_bytes (asi, &romb[addr], data, sz);
*ws = mem_romr_ws;
return (0);
#endif
}
printf("Memory exception at %x (illegal address)\n", addr);
set_sfsr(UIMP_ACC, addr, asi, 1);
*ws = MEM_EX_WS;
return (1);
}
int
memory_write(asi, addr, data, sz, ws)
int32 asi;
uint32 addr;
uint32 *data;
int32 sz;
int32 *ws;
{
uint32 byte_addr;
uint32 byte_mask;
uint32 waddr;
uint32 *ram;
int32 mexc;
int i;
int wphit[2];
#ifdef ERRINJ
if (errmec) {
if (sis_verbose)
printf("Inserted MEC error %d\n",errmec);
set_sfsr(errmec, addr, asi, 0);
if (errmec == 5) mecparerror();
if (errmec == 6) iucomperr();
errmec = 0;
return(1);
}
#endif
if ((addr >= mem_ramstart) && (addr < (mem_ramstart + mem_ramsz))) {
if (mem_accprot) {
waddr = (addr & 0x7fffff) >> 2;
for (i = 0; i < 2; i++)
wphit[i] =
(((asi == 0xa) && (mec_wpr[i] & 1)) ||
((asi == 0xb) && (mec_wpr[i] & 2))) &&
((waddr >= mec_ssa[i]) && ((waddr | (sz == 3)) < mec_sea[i]));
if (((mem_blockprot) && (wphit[0] || wphit[1])) ||
((!mem_blockprot) &&
!((mec_wpr[0] && wphit[0]) || (mec_wpr[1] && wphit[1]))
)) {
if (sis_verbose)
printf("Memory access protection error at 0x%08x\n", addr);
set_sfsr(PROT_EXC, addr, asi, 0);
*ws = MEM_EX_WS;
return (1);
}
}
store_bytes (&ramb[addr & mem_rammask], data, sz);
switch (sz) {
case 0:
case 1:
*ws = mem_ramw_ws + 3;
break;
case 2:
*ws = mem_ramw_ws;
break;
case 3:
*ws = 2 * mem_ramw_ws + STD_WS;
break;
}
return (0);
} else if ((addr >= MEC_START) && (addr < MEC_END)) {
if ((sz != 2) || (asi != 0xb)) {
set_sfsr(MEC_ACC, addr, asi, 0);
*ws = MEM_EX_WS;
return (1);
}
mexc = mec_write(addr, *data);
if (mexc) {
set_sfsr(MEC_ACC, addr, asi, 0);
*ws = MEM_EX_WS;
} else {
*ws = 0;
}
return (mexc);
#ifdef ERA
} else if (era) {
if ((erareg & 2) &&
((addr < 0x100000) || ((addr >= 0x80000000) && (addr < 0x80100000)))) {
addr &= ROM_MASK;
*ws = sz == 3 ? 8 : 4;
store_bytes (&romb[addr], data, sz);
return (0);
} else if ((addr >= 0x10000000) &&
(addr < (0x10000000 + (512 << (mec_iocr & 0x0f)))) &&
(mec_iocr & 0x10)) {
erareg = *data & 0x0e;
return (0);
}
} else if ((addr < mem_romsz) && (mec_memcfg & 0x10000) && (wrp) &&
(((mec_memcfg & 0x20000) && (sz > 1)) ||
(!(mec_memcfg & 0x20000) && (sz == 0)))) {
*ws = mem_romw_ws + 1;
if (sz == 3)
*ws += mem_romw_ws + STD_WS;
store_bytes (&romb[addr], data, sz);
return (0);
#else
} else if ((addr < mem_romsz) && (mec_memcfg & 0x10000) && (wrp) &&
(((mec_memcfg & 0x20000) && (sz > 1)) ||
(!(mec_memcfg & 0x20000) && (sz == 0)))) {
*ws = mem_romw_ws + 1;
if (sz == 3)
*ws += mem_romw_ws + STD_WS;
store_bytes (&romb[addr], data, sz);
return (0);
#endif
}
*ws = MEM_EX_WS;
set_sfsr(UIMP_ACC, addr, asi, 0);
return (1);
}
static unsigned char *
get_mem_ptr(addr, size)
uint32 addr;
uint32 size;
{
if ((addr + size) < ROM_SZ) {
return (&romb[addr]);
} else if ((addr >= mem_ramstart) && ((addr + size) < mem_ramend)) {
return (&ramb[addr & mem_rammask]);
}
#ifdef ERA
else if ((era) && ((addr <0x100000) ||
((addr >= (unsigned) 0x80000000) && ((addr + size) < (unsigned) 0x80100000)))) {
return (&romb[addr & ROM_MASK]);
}
#endif
return ((char *) -1);
}
int
sis_memory_write(addr, data, length)
uint32 addr;
const unsigned char *data;
uint32 length;
{
char *mem;
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
return (0);
memcpy(mem, data, length);
return (length);
}
int
sis_memory_read(addr, data, length)
uint32 addr;
char *data;
uint32 length;
{
char *mem;
if ((mem = get_mem_ptr(addr, length)) == ((char *) -1))
return (0);
memcpy(data, mem, length);
return (length);
}