dwarves/dutil.h
Domenico Andreoli e714d2eaa1 Adopt SPDX-License-Identifier
Signed-off-by: Domenico Andreoli <domenico.andreoli@linux.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-01-18 15:41:48 -03:00

317 lines
7.8 KiB
C

#ifndef _DUTIL_H_
#define _DUTIL_H_ 1
/*
SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2007..2009 Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Some functions came from the Linux Kernel sources, copyrighted by a
* cast of dozens, please see the Linux Kernel git history for details.
*/
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <elf.h>
#include <gelf.h>
#include <asm/bitsperlong.h>
#include "rbtree.h"
#define BITS_PER_LONG __BITS_PER_LONG
#ifndef __unused
#define __unused __attribute__ ((unused))
#endif
#ifndef __pure
#define __pure __attribute__ ((pure))
#endif
#define roundup(x,y) ((((x) + ((y) - 1)) / (y)) * (y))
static inline __attribute__((const)) bool is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/**
* fls - find last (most-significant) bit set
* @x: the word to search
*
* This is defined the same way as ffs.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
static __always_inline int fls(int x)
{
return x ? sizeof(x) * 8 - __builtin_clz(x) : 0;
}
/**
* fls64 - find last set bit in a 64-bit word
* @x: the word to search
*
* This is defined in a similar way as the libc and compiler builtin
* ffsll, but returns the position of the most significant set bit.
*
* fls64(value) returns 0 if value is 0 or the position of the last
* set bit if value is nonzero. The last (most significant) bit is
* at position 64.
*/
#if BITS_PER_LONG == 32
static __always_inline int fls64(uint64_t x)
{
uint32_t h = x >> 32;
if (h)
return fls(h) + 32;
return fls(x);
}
#elif BITS_PER_LONG == 64
/**
* __fls - find last (most-significant) set bit in a long word
* @word: the word to search
*
* Undefined if no set bit exists, so code should check against 0 first.
*/
static __always_inline unsigned long __fls(unsigned long word)
{
int num = BITS_PER_LONG - 1;
#if BITS_PER_LONG == 64
if (!(word & (~0ul << 32))) {
num -= 32;
word <<= 32;
}
#endif
if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
num -= 16;
word <<= 16;
}
if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
num -= 8;
word <<= 8;
}
if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
num -= 4;
word <<= 4;
}
if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
num -= 2;
word <<= 2;
}
if (!(word & (~0ul << (BITS_PER_LONG-1))))
num -= 1;
return num;
}
static __always_inline int fls64(uint64_t x)
{
if (x == 0)
return 0;
return __fls(x) + 1;
}
#else
#error BITS_PER_LONG not 32 or 64
#endif
static inline unsigned fls_long(unsigned long l)
{
if (sizeof(l) == 4)
return fls(l);
return fls64(l);
}
/*
* round up to nearest power of two
*/
static inline __attribute__((const))
unsigned long __roundup_pow_of_two(unsigned long n)
{
return 1UL << fls_long(n - 1);
}
/*
* non-constant log of base 2 calculators
* - the arch may override these in asm/bitops.h if they can be implemented
* more efficiently than using fls() and fls64()
* - the arch is not required to handle n==0 if implementing the fallback
*/
static inline __attribute__((const))
int __ilog2_u32(uint32_t n)
{
return fls(n) - 1;
}
static inline __attribute__((const))
int __ilog2_u64(uint64_t n)
{
return fls64(n) - 1;
}
/*
* deal with unrepresentable constant logarithms
*/
extern __attribute__((const))
int ____ilog2_NaN(void);
/**
* ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
* @n - parameter
*
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
( \
__builtin_constant_p(n) ? ( \
(n) < 1 ? ____ilog2_NaN() : \
(n) & (1ULL << 63) ? 63 : \
(n) & (1ULL << 62) ? 62 : \
(n) & (1ULL << 61) ? 61 : \
(n) & (1ULL << 60) ? 60 : \
(n) & (1ULL << 59) ? 59 : \
(n) & (1ULL << 58) ? 58 : \
(n) & (1ULL << 57) ? 57 : \
(n) & (1ULL << 56) ? 56 : \
(n) & (1ULL << 55) ? 55 : \
(n) & (1ULL << 54) ? 54 : \
(n) & (1ULL << 53) ? 53 : \
(n) & (1ULL << 52) ? 52 : \
(n) & (1ULL << 51) ? 51 : \
(n) & (1ULL << 50) ? 50 : \
(n) & (1ULL << 49) ? 49 : \
(n) & (1ULL << 48) ? 48 : \
(n) & (1ULL << 47) ? 47 : \
(n) & (1ULL << 46) ? 46 : \
(n) & (1ULL << 45) ? 45 : \
(n) & (1ULL << 44) ? 44 : \
(n) & (1ULL << 43) ? 43 : \
(n) & (1ULL << 42) ? 42 : \
(n) & (1ULL << 41) ? 41 : \
(n) & (1ULL << 40) ? 40 : \
(n) & (1ULL << 39) ? 39 : \
(n) & (1ULL << 38) ? 38 : \
(n) & (1ULL << 37) ? 37 : \
(n) & (1ULL << 36) ? 36 : \
(n) & (1ULL << 35) ? 35 : \
(n) & (1ULL << 34) ? 34 : \
(n) & (1ULL << 33) ? 33 : \
(n) & (1ULL << 32) ? 32 : \
(n) & (1ULL << 31) ? 31 : \
(n) & (1ULL << 30) ? 30 : \
(n) & (1ULL << 29) ? 29 : \
(n) & (1ULL << 28) ? 28 : \
(n) & (1ULL << 27) ? 27 : \
(n) & (1ULL << 26) ? 26 : \
(n) & (1ULL << 25) ? 25 : \
(n) & (1ULL << 24) ? 24 : \
(n) & (1ULL << 23) ? 23 : \
(n) & (1ULL << 22) ? 22 : \
(n) & (1ULL << 21) ? 21 : \
(n) & (1ULL << 20) ? 20 : \
(n) & (1ULL << 19) ? 19 : \
(n) & (1ULL << 18) ? 18 : \
(n) & (1ULL << 17) ? 17 : \
(n) & (1ULL << 16) ? 16 : \
(n) & (1ULL << 15) ? 15 : \
(n) & (1ULL << 14) ? 14 : \
(n) & (1ULL << 13) ? 13 : \
(n) & (1ULL << 12) ? 12 : \
(n) & (1ULL << 11) ? 11 : \
(n) & (1ULL << 10) ? 10 : \
(n) & (1ULL << 9) ? 9 : \
(n) & (1ULL << 8) ? 8 : \
(n) & (1ULL << 7) ? 7 : \
(n) & (1ULL << 6) ? 6 : \
(n) & (1ULL << 5) ? 5 : \
(n) & (1ULL << 4) ? 4 : \
(n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : \
(n) & (1ULL << 1) ? 1 : \
(n) & (1ULL << 0) ? 0 : \
____ilog2_NaN() \
) : \
(sizeof(n) <= 4) ? \
__ilog2_u32(n) : \
__ilog2_u64(n) \
)
/**
* roundup_pow_of_two - round the given value up to nearest power of two
* @n - parameter
*
* round the given value up to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define roundup_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
(n == 1) ? 1 : \
(1UL << (ilog2((n) - 1) + 1)) \
) : \
__roundup_pow_of_two(n) \
)
/* We need define two variables, argp_program_version_hook and
argp_program_bug_address, in all programs. argp.h declares these
variables as non-const (which is correct in general). But we can
do better, it is not going to change. So we want to move them into
the .rodata section. Define macros to do the trick. */
#define ARGP_PROGRAM_VERSION_HOOK_DEF \
void (*const apvh) (FILE *, struct argp_state *) \
__asm ("argp_program_version_hook")
#define ARGP_PROGRAM_BUG_ADDRESS_DEF \
const char *const apba__ __asm ("argp_program_bug_address")
struct str_node {
struct rb_node rb_node;
const char *s;
};
struct strlist {
struct rb_root entries;
bool dupstr;
};
struct strlist *strlist__new(bool dupstr);
void strlist__delete(struct strlist *slist);
void strlist__remove(struct strlist *slist, struct str_node *sn);
int strlist__load(struct strlist *slist, const char *filename);
int strlist__add(struct strlist *slist, const char *str);
bool strlist__has_entry(struct strlist *slist, const char *entry);
static inline bool strlist__empty(const struct strlist *slist)
{
return rb_first(&slist->entries) == NULL;
}
/**
* strstarts - does @str start with @prefix?
* @str: string to examine
* @prefix: prefix to look for.
*/
static inline bool strstarts(const char *str, const char *prefix)
{
return strncmp(str, prefix, strlen(prefix)) == 0;
}
void *zalloc(const size_t size);
Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
GElf_Shdr *shp, const char *name, size_t *index);
#ifndef SHT_GNU_ATTRIBUTES
/* Just a way to check if we're using an old elfutils version */
static inline int elf_getshdrstrndx(Elf *elf, size_t *dst)
{
return elf_getshstrndx(elf, dst);
}
#endif
#endif /* _DUTIL_H_ */