230 lines
5.8 KiB
C
230 lines
5.8 KiB
C
|
/* Implementation of the MINLOC intrinsic
|
||
|
Copyright 2002 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran 95 runtime library (libgfor).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with libgfor; see the file COPYING.LIB. If not,
|
||
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
Boston, MA 02111-1307, USA. */
|
||
|
|
||
|
#include "config.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include <float.h>
|
||
|
#include <limits.h>
|
||
|
#include "libgfortran.h"
|
||
|
|
||
|
|
||
|
void
|
||
|
__minloc0_4_r8 (gfc_array_i4 * retarray, gfc_array_r8 *array)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride;
|
||
|
GFC_REAL_8 *base;
|
||
|
GFC_INTEGER_4 *dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
|
||
|
rank = GFC_DESCRIPTOR_RANK (array);
|
||
|
assert (rank > 0);
|
||
|
assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
|
||
|
assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
|
||
|
if (array->dim[0].stride == 0)
|
||
|
array->dim[0].stride = 1;
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
|
||
|
dstride = retarray->dim[0].stride;
|
||
|
dest = retarray->data;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n].stride;
|
||
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||
|
count[n] = 0;
|
||
|
if (extent[n] <= 0)
|
||
|
{
|
||
|
/* Set the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 0;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
base = array->data;
|
||
|
|
||
|
/* Initialize the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 1;
|
||
|
{
|
||
|
|
||
|
GFC_REAL_8 minval;
|
||
|
|
||
|
minval = GFC_REAL_8_HUGE;
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
{
|
||
|
/* Implementation start. */
|
||
|
|
||
|
if (*base < minval)
|
||
|
{
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
}
|
||
|
/* Implementation end. */
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
__mminloc0_4_r8 (gfc_array_i4 * retarray, gfc_array_r8 *array, gfc_array_l4 * mask)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type dstride;
|
||
|
GFC_INTEGER_4 *dest;
|
||
|
GFC_REAL_8 *base;
|
||
|
GFC_LOGICAL_4 *mbase;
|
||
|
int rank;
|
||
|
index_type n;
|
||
|
|
||
|
rank = GFC_DESCRIPTOR_RANK (array);
|
||
|
assert (rank > 0);
|
||
|
assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
|
||
|
assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
|
||
|
assert (GFC_DESCRIPTOR_RANK (mask) == rank);
|
||
|
|
||
|
if (array->dim[0].stride == 0)
|
||
|
array->dim[0].stride = 1;
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
|
||
|
dstride = retarray->dim[0].stride;
|
||
|
dest = retarray->data;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n].stride;
|
||
|
mstride[n] = mask->dim[n].stride;
|
||
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||
|
count[n] = 0;
|
||
|
if (extent[n] <= 0)
|
||
|
{
|
||
|
/* Set the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 0;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
base = array->data;
|
||
|
mbase = mask->data;
|
||
|
|
||
|
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
|
||
|
{
|
||
|
/* This allows the same loop to be used for all logical types. */
|
||
|
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
|
||
|
for (n = 0; n < rank; n++)
|
||
|
mstride[n] <<= 1;
|
||
|
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Initialize the return value. */
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = 1;
|
||
|
{
|
||
|
|
||
|
GFC_REAL_8 minval;
|
||
|
|
||
|
minval = GFC_REAL_8_HUGE;
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
{
|
||
|
/* Implementation start. */
|
||
|
|
||
|
if (*mbase && *base < minval)
|
||
|
{
|
||
|
minval = *base;
|
||
|
for (n = 0; n < rank; n++)
|
||
|
dest[n * dstride] = count[n] + 1;
|
||
|
}
|
||
|
/* Implementation end. */
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
mbase -= mstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
mbase += mstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|