2010-12-03 05:34:57 +01:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
// Binary to decimal floating point conversion.
|
|
|
|
// Algorithm:
|
|
|
|
// 1) store mantissa in multiprecision decimal
|
|
|
|
// 2) shift decimal by exponent
|
|
|
|
// 3) read digits out & format
|
|
|
|
|
|
|
|
package strconv
|
|
|
|
|
|
|
|
import "math"
|
|
|
|
|
|
|
|
// TODO: move elsewhere?
|
|
|
|
type floatInfo struct {
|
|
|
|
mantbits uint
|
|
|
|
expbits uint
|
|
|
|
bias int
|
|
|
|
}
|
|
|
|
|
|
|
|
var float32info = floatInfo{23, 8, -127}
|
|
|
|
var float64info = floatInfo{52, 11, -1023}
|
|
|
|
|
|
|
|
// Ftoa32 converts the 32-bit floating-point number f to a string,
|
|
|
|
// according to the format fmt and precision prec.
|
|
|
|
//
|
|
|
|
// The format fmt is one of
|
|
|
|
// 'b' (-ddddp±ddd, a binary exponent),
|
|
|
|
// 'e' (-d.dddde±dd, a decimal exponent),
|
2011-01-21 19:19:03 +01:00
|
|
|
// 'E' (-d.ddddE±dd, a decimal exponent),
|
|
|
|
// 'f' (-ddd.dddd, no exponent),
|
|
|
|
// 'g' ('e' for large exponents, 'f' otherwise), or
|
|
|
|
// 'G' ('E' for large exponents, 'f' otherwise).
|
2010-12-03 05:34:57 +01:00
|
|
|
//
|
|
|
|
// The precision prec controls the number of digits
|
2011-01-21 19:19:03 +01:00
|
|
|
// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats.
|
|
|
|
// For 'e', 'E', and 'f' it is the number of digits after the decimal point.
|
|
|
|
// For 'g' and 'G' it is the total number of digits.
|
2010-12-03 05:34:57 +01:00
|
|
|
// The special precision -1 uses the smallest number of digits
|
|
|
|
// necessary such that Atof32 will return f exactly.
|
|
|
|
//
|
|
|
|
// Ftoa32(f) is not the same as Ftoa64(float32(f)),
|
|
|
|
// because correct rounding and the number of digits
|
|
|
|
// needed to identify f depend on the precision of the representation.
|
|
|
|
func Ftoa32(f float32, fmt byte, prec int) string {
|
|
|
|
return genericFtoa(uint64(math.Float32bits(f)), fmt, prec, &float32info)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Ftoa64 is like Ftoa32 but converts a 64-bit floating-point number.
|
|
|
|
func Ftoa64(f float64, fmt byte, prec int) string {
|
|
|
|
return genericFtoa(math.Float64bits(f), fmt, prec, &float64info)
|
|
|
|
}
|
|
|
|
|
|
|
|
// FtoaN converts the 64-bit floating-point number f to a string,
|
|
|
|
// according to the format fmt and precision prec, but it rounds the
|
|
|
|
// result assuming that it was obtained from a floating-point value
|
|
|
|
// of n bits (32 or 64).
|
|
|
|
func FtoaN(f float64, fmt byte, prec int, n int) string {
|
|
|
|
if n == 32 {
|
|
|
|
return Ftoa32(float32(f), fmt, prec)
|
|
|
|
}
|
|
|
|
return Ftoa64(f, fmt, prec)
|
|
|
|
}
|
|
|
|
|
|
|
|
func genericFtoa(bits uint64, fmt byte, prec int, flt *floatInfo) string {
|
2011-03-17 00:05:44 +01:00
|
|
|
neg := bits>>(flt.expbits+flt.mantbits) != 0
|
2010-12-03 05:34:57 +01:00
|
|
|
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
|
|
|
|
mant := bits & (uint64(1)<<flt.mantbits - 1)
|
|
|
|
|
|
|
|
switch exp {
|
|
|
|
case 1<<flt.expbits - 1:
|
|
|
|
// Inf, NaN
|
|
|
|
if mant != 0 {
|
|
|
|
return "NaN"
|
|
|
|
}
|
|
|
|
if neg {
|
|
|
|
return "-Inf"
|
|
|
|
}
|
|
|
|
return "+Inf"
|
|
|
|
|
|
|
|
case 0:
|
|
|
|
// denormalized
|
|
|
|
exp++
|
|
|
|
|
|
|
|
default:
|
|
|
|
// add implicit top bit
|
|
|
|
mant |= uint64(1) << flt.mantbits
|
|
|
|
}
|
|
|
|
exp += flt.bias
|
|
|
|
|
|
|
|
// Pick off easy binary format.
|
|
|
|
if fmt == 'b' {
|
|
|
|
return fmtB(neg, mant, exp, flt)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create exact decimal representation.
|
|
|
|
// The shift is exp - flt.mantbits because mant is a 1-bit integer
|
|
|
|
// followed by a flt.mantbits fraction, and we are treating it as
|
|
|
|
// a 1+flt.mantbits-bit integer.
|
|
|
|
d := newDecimal(mant).Shift(exp - int(flt.mantbits))
|
|
|
|
|
|
|
|
// Round appropriately.
|
|
|
|
// Negative precision means "only as much as needed to be exact."
|
|
|
|
shortest := false
|
|
|
|
if prec < 0 {
|
|
|
|
shortest = true
|
|
|
|
roundShortest(d, mant, exp, flt)
|
|
|
|
switch fmt {
|
|
|
|
case 'e', 'E':
|
|
|
|
prec = d.nd - 1
|
|
|
|
case 'f':
|
|
|
|
prec = max(d.nd-d.dp, 0)
|
|
|
|
case 'g', 'G':
|
|
|
|
prec = d.nd
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
switch fmt {
|
|
|
|
case 'e', 'E':
|
|
|
|
d.Round(prec + 1)
|
|
|
|
case 'f':
|
|
|
|
d.Round(d.dp + prec)
|
|
|
|
case 'g', 'G':
|
|
|
|
if prec == 0 {
|
|
|
|
prec = 1
|
|
|
|
}
|
|
|
|
d.Round(prec)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
switch fmt {
|
|
|
|
case 'e', 'E':
|
|
|
|
return fmtE(neg, d, prec, fmt)
|
|
|
|
case 'f':
|
|
|
|
return fmtF(neg, d, prec)
|
|
|
|
case 'g', 'G':
|
|
|
|
// trailing fractional zeros in 'e' form will be trimmed.
|
|
|
|
eprec := prec
|
|
|
|
if eprec > d.nd && d.nd >= d.dp {
|
|
|
|
eprec = d.nd
|
|
|
|
}
|
|
|
|
// %e is used if the exponent from the conversion
|
|
|
|
// is less than -4 or greater than or equal to the precision.
|
|
|
|
// if precision was the shortest possible, use precision 6 for this decision.
|
|
|
|
if shortest {
|
|
|
|
eprec = 6
|
|
|
|
}
|
|
|
|
exp := d.dp - 1
|
|
|
|
if exp < -4 || exp >= eprec {
|
|
|
|
if prec > d.nd {
|
|
|
|
prec = d.nd
|
|
|
|
}
|
|
|
|
return fmtE(neg, d, prec-1, fmt+'e'-'g')
|
|
|
|
}
|
|
|
|
if prec > d.dp {
|
|
|
|
prec = d.nd
|
|
|
|
}
|
|
|
|
return fmtF(neg, d, max(prec-d.dp, 0))
|
|
|
|
}
|
|
|
|
|
|
|
|
return "%" + string(fmt)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Round d (= mant * 2^exp) to the shortest number of digits
|
|
|
|
// that will let the original floating point value be precisely
|
|
|
|
// reconstructed. Size is original floating point size (64 or 32).
|
|
|
|
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
|
|
|
|
// If mantissa is zero, the number is zero; stop now.
|
|
|
|
if mant == 0 {
|
|
|
|
d.nd = 0
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(rsc): Unless exp == minexp, if the number of digits in d
|
|
|
|
// is less than 17, it seems likely that it would be
|
|
|
|
// the shortest possible number already. So maybe we can
|
|
|
|
// bail out without doing the extra multiprecision math here.
|
|
|
|
|
|
|
|
// Compute upper and lower such that any decimal number
|
|
|
|
// between upper and lower (possibly inclusive)
|
|
|
|
// will round to the original floating point number.
|
|
|
|
|
|
|
|
// d = mant << (exp - mantbits)
|
|
|
|
// Next highest floating point number is mant+1 << exp-mantbits.
|
|
|
|
// Our upper bound is halfway inbetween, mant*2+1 << exp-mantbits-1.
|
|
|
|
upper := newDecimal(mant*2 + 1).Shift(exp - int(flt.mantbits) - 1)
|
|
|
|
|
|
|
|
// d = mant << (exp - mantbits)
|
|
|
|
// Next lowest floating point number is mant-1 << exp-mantbits,
|
|
|
|
// unless mant-1 drops the significant bit and exp is not the minimum exp,
|
|
|
|
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
|
|
|
|
// Either way, call it mantlo << explo-mantbits.
|
|
|
|
// Our lower bound is halfway inbetween, mantlo*2+1 << explo-mantbits-1.
|
|
|
|
minexp := flt.bias + 1 // minimum possible exponent
|
|
|
|
var mantlo uint64
|
|
|
|
var explo int
|
|
|
|
if mant > 1<<flt.mantbits || exp == minexp {
|
|
|
|
mantlo = mant - 1
|
|
|
|
explo = exp
|
|
|
|
} else {
|
|
|
|
mantlo = mant*2 - 1
|
|
|
|
explo = exp - 1
|
|
|
|
}
|
|
|
|
lower := newDecimal(mantlo*2 + 1).Shift(explo - int(flt.mantbits) - 1)
|
|
|
|
|
|
|
|
// The upper and lower bounds are possible outputs only if
|
|
|
|
// the original mantissa is even, so that IEEE round-to-even
|
|
|
|
// would round to the original mantissa and not the neighbors.
|
|
|
|
inclusive := mant%2 == 0
|
|
|
|
|
|
|
|
// Now we can figure out the minimum number of digits required.
|
|
|
|
// Walk along until d has distinguished itself from upper and lower.
|
|
|
|
for i := 0; i < d.nd; i++ {
|
|
|
|
var l, m, u byte // lower, middle, upper digits
|
|
|
|
if i < lower.nd {
|
|
|
|
l = lower.d[i]
|
|
|
|
} else {
|
|
|
|
l = '0'
|
|
|
|
}
|
|
|
|
m = d.d[i]
|
|
|
|
if i < upper.nd {
|
|
|
|
u = upper.d[i]
|
|
|
|
} else {
|
|
|
|
u = '0'
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay to round down (truncate) if lower has a different digit
|
|
|
|
// or if lower is inclusive and is exactly the result of rounding down.
|
|
|
|
okdown := l != m || (inclusive && l == m && i+1 == lower.nd)
|
|
|
|
|
|
|
|
// Okay to round up if upper has a different digit and
|
|
|
|
// either upper is inclusive or upper is bigger than the result of rounding up.
|
|
|
|
okup := m != u && (inclusive || i+1 < upper.nd)
|
|
|
|
|
|
|
|
// If it's okay to do either, then round to the nearest one.
|
|
|
|
// If it's okay to do only one, do it.
|
|
|
|
switch {
|
|
|
|
case okdown && okup:
|
|
|
|
d.Round(i + 1)
|
|
|
|
return
|
|
|
|
case okdown:
|
|
|
|
d.RoundDown(i + 1)
|
|
|
|
return
|
|
|
|
case okup:
|
|
|
|
d.RoundUp(i + 1)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// %e: -d.ddddde±dd
|
|
|
|
func fmtE(neg bool, d *decimal, prec int, fmt byte) string {
|
|
|
|
buf := make([]byte, 3+max(prec, 0)+30) // "-0." + prec digits + exp
|
|
|
|
w := 0 // write index
|
|
|
|
|
|
|
|
// sign
|
|
|
|
if neg {
|
|
|
|
buf[w] = '-'
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
|
|
|
|
// first digit
|
|
|
|
if d.nd == 0 {
|
|
|
|
buf[w] = '0'
|
|
|
|
} else {
|
|
|
|
buf[w] = d.d[0]
|
|
|
|
}
|
|
|
|
w++
|
|
|
|
|
|
|
|
// .moredigits
|
|
|
|
if prec > 0 {
|
|
|
|
buf[w] = '.'
|
|
|
|
w++
|
|
|
|
for i := 0; i < prec; i++ {
|
|
|
|
if 1+i < d.nd {
|
|
|
|
buf[w] = d.d[1+i]
|
|
|
|
} else {
|
|
|
|
buf[w] = '0'
|
|
|
|
}
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// e±
|
|
|
|
buf[w] = fmt
|
|
|
|
w++
|
|
|
|
exp := d.dp - 1
|
|
|
|
if d.nd == 0 { // special case: 0 has exponent 0
|
|
|
|
exp = 0
|
|
|
|
}
|
|
|
|
if exp < 0 {
|
|
|
|
buf[w] = '-'
|
|
|
|
exp = -exp
|
|
|
|
} else {
|
|
|
|
buf[w] = '+'
|
|
|
|
}
|
|
|
|
w++
|
|
|
|
|
|
|
|
// dddd
|
|
|
|
// count digits
|
|
|
|
n := 0
|
|
|
|
for e := exp; e > 0; e /= 10 {
|
|
|
|
n++
|
|
|
|
}
|
|
|
|
// leading zeros
|
|
|
|
for i := n; i < 2; i++ {
|
|
|
|
buf[w] = '0'
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
// digits
|
|
|
|
w += n
|
|
|
|
n = 0
|
|
|
|
for e := exp; e > 0; e /= 10 {
|
|
|
|
n++
|
|
|
|
buf[w-n] = byte(e%10 + '0')
|
|
|
|
}
|
|
|
|
|
|
|
|
return string(buf[0:w])
|
|
|
|
}
|
|
|
|
|
|
|
|
// %f: -ddddddd.ddddd
|
|
|
|
func fmtF(neg bool, d *decimal, prec int) string {
|
|
|
|
buf := make([]byte, 1+max(d.dp, 1)+1+max(prec, 0))
|
|
|
|
w := 0
|
|
|
|
|
|
|
|
// sign
|
|
|
|
if neg {
|
|
|
|
buf[w] = '-'
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
|
|
|
|
// integer, padded with zeros as needed.
|
|
|
|
if d.dp > 0 {
|
|
|
|
var i int
|
|
|
|
for i = 0; i < d.dp && i < d.nd; i++ {
|
|
|
|
buf[w] = d.d[i]
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
for ; i < d.dp; i++ {
|
|
|
|
buf[w] = '0'
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
buf[w] = '0'
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
|
|
|
|
// fraction
|
|
|
|
if prec > 0 {
|
|
|
|
buf[w] = '.'
|
|
|
|
w++
|
|
|
|
for i := 0; i < prec; i++ {
|
|
|
|
if d.dp+i < 0 || d.dp+i >= d.nd {
|
|
|
|
buf[w] = '0'
|
|
|
|
} else {
|
|
|
|
buf[w] = d.d[d.dp+i]
|
|
|
|
}
|
|
|
|
w++
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return string(buf[0:w])
|
|
|
|
}
|
|
|
|
|
|
|
|
// %b: -ddddddddp+ddd
|
|
|
|
func fmtB(neg bool, mant uint64, exp int, flt *floatInfo) string {
|
|
|
|
var buf [50]byte
|
|
|
|
w := len(buf)
|
|
|
|
exp -= int(flt.mantbits)
|
|
|
|
esign := byte('+')
|
|
|
|
if exp < 0 {
|
|
|
|
esign = '-'
|
|
|
|
exp = -exp
|
|
|
|
}
|
|
|
|
n := 0
|
|
|
|
for exp > 0 || n < 1 {
|
|
|
|
n++
|
|
|
|
w--
|
|
|
|
buf[w] = byte(exp%10 + '0')
|
|
|
|
exp /= 10
|
|
|
|
}
|
|
|
|
w--
|
|
|
|
buf[w] = esign
|
|
|
|
w--
|
|
|
|
buf[w] = 'p'
|
|
|
|
n = 0
|
|
|
|
for mant > 0 || n < 1 {
|
|
|
|
n++
|
|
|
|
w--
|
|
|
|
buf[w] = byte(mant%10 + '0')
|
|
|
|
mant /= 10
|
|
|
|
}
|
|
|
|
if neg {
|
|
|
|
w--
|
|
|
|
buf[w] = '-'
|
|
|
|
}
|
|
|
|
return string(buf[w:])
|
|
|
|
}
|
|
|
|
|
|
|
|
func max(a, b int) int {
|
|
|
|
if a > b {
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
return b
|
|
|
|
}
|