gcc/libstdc++-v3/bits/basic_string.h

1037 lines
32 KiB
C
Raw Normal View History

// Components for manipulating sequences of characters -*- C++ -*-
// Copyright (C) 1997-1999 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
//
// ISO C++ 14882: 21 Strings library
//
#ifndef _CPP_BITS_STRING_H
#define _CPP_BITS_STRING_H 1
#include <bits/exception_support.h>
#include <bits/atomicity.h>
namespace std {
// Documentation? What's that?
// Nathan Myers <ncm@cantrip.org>.
//
// A string looks like this:
//
// [_Rep]
// _M_length
// [basic_string<char_type>] _M_capacity
// _M_dataplus _M_state
// _M_p ----------------> unnamed array of char_type
// Where the _M_p points to the first character in the string, and
// you cast it to a pointer-to-_Rep and subtract 1 to get a
// pointer to the header.
// This approach has the enormous advantage that a string object
// requires only one allocation. All the ugliness is confined
// within a single pair of inline functions, which each compile to
// a single "add" instruction: _Rep::_M_data(), and
// string::_M_rep(); and the allocation function which gets a
// block of raw bytes and with room enough and constructs a _Rep
// object at the front.
// The reason you want _M_data pointing to the character array and
// not the _Rep is so that the debugger can see the string
// contents. (Probably we should add a non-inline member to get
// the _Rep for the debugger to use, so users can check the actual
// string length.)
// Note that the _Rep object is a POD so that you can have a
// static "empty string" _Rep object already "constructed" before
// static constructors have run. The reference-count encoding is
// chosen so that a 0 indicates one reference, so you never try to
// destroy the empty-string _Rep object.
// All but the last paragraph is considered pretty conventional
// for a C++ string implementation.
// 21.3 Template class basic_string
template<typename _CharT, typename _Traits, typename _Alloc>
class basic_string
{
// Types:
public:
typedef _Traits traits_type;
typedef typename _Traits::char_type value_type;
typedef _Alloc allocator_type;
typedef typename _Alloc::size_type size_type;
typedef typename _Alloc::difference_type difference_type;
typedef typename _Alloc::reference reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Alloc::pointer pointer;
typedef typename _Alloc::const_pointer const_pointer;
typedef __normal_iterator<pointer, basic_string> iterator;
typedef __normal_iterator<const_pointer, basic_string> const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
// Data Members:
// NB: This is an unsigned type, and thus represents the maximum
// size that the allocator can hold.
static const size_type npos = static_cast<size_type>(-1);
private:
// _Rep: string representation
// Invariants:
// 1. String really contains _M_length + 1 characters; last is set
// to 0 only on call to c_str(). We avoid instantiating
// _CharT() where the interface does not require it.
// 2. _M_capacity >= _M_length
// Allocated memory is always _M_capacity + (1 * sizeof(_CharT)).
// 3. _M_state has three states:
// -1: leaked, one reference, no ref-copies allowed, non-const.
// 0: one reference, non-const.
// n>0: n + 1 references, operations require a lock, const.
// 4. All fields==0 is an empty string, given the extra storage
// beyond-the-end for a null terminator; thus, the shared
// empty string representation needs no constructor.
struct _Rep
{
// Types:
typedef typename _Alloc::rebind<char>::other _Raw_bytes_alloc;
// (Public) Data members:
// The maximum number of individual char_type elements of an
// individual string is determined by _S_max_size. This is the
// value that will be returned by max_size(). (Whereas npos
// is the maximum number of bytes the allocator can allocate.)
// If one was to divvy up the theoretical largest size string,
// with a terminating character and m _CharT elements, it'd
// look like this:
// npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
// Solving for m:
// m = ((npos - sizeof(_Rep))/sizeof(CharT)) - 1
// In addition, this implementation quarters this ammount.
static size_type _S_max_size;
static _CharT _S_terminal;
size_type _M_length;
size_type _M_capacity;
_Atomic_word _M_state;
bool
_M_is_leaked() const
{ return _M_state < 0; }
bool
_M_is_shared() const
{ return _M_state > 0; }
void
_M_set_leaked()
{ _M_state = -1; }
void
_M_set_sharable()
{ _M_state = 0; }
_CharT*
_M_refdata() throw()
{ return reinterpret_cast<_CharT*> (this + 1); }
_CharT&
operator[](size_t __s) throw()
{ return _M_refdata() [__s]; }
_CharT*
_M_grab(const _Alloc& __alloc1, const _Alloc& __alloc2)
{ return (!_M_is_leaked() && __alloc1 == __alloc2) ?
_M_refcopy() : _M_clone(__alloc1); }
// Create & Destroy
static _Rep*
_S_create(size_t, const _Alloc&);
void
_M_dispose(const _Alloc& __a)
{
if (__exchange_and_add(&_M_state, -1) <= 0)
_M_destroy(__a);
} // XXX MT
void
_M_destroy(const _Alloc&) throw();
_CharT*
_M_refcopy() throw()
{
__atomic_add(&_M_state, 1);
return _M_refdata();
} // XXX MT
_CharT*
_M_clone(const _Alloc&, size_type __res = 0);
#if _GLIBCPP_ALLOC_CONTROL
// These function pointers allow you to modify the allocation
// policy used by the string classes. By default they expand by
// powers of two, but this may be excessive for space-critical
// applications.
// Returns true if ALLOCATED is too much larger than LENGTH
static bool (*_S_excess_slop) (size_t __length, size_t __allocated);
inline static bool
__default_excess(size_t, size_t);
#else
inline static bool
_S_excess_slop(size_t, size_t);
#endif
};
// Use empty-base optimization: http://www.cantrip.org/emptyopt.html
struct _Alloc_hider : _Alloc
{
_Alloc_hider(_CharT* __dat, const _Alloc& __a)
: _Alloc(__a), _M_p(__dat) { }
_CharT* _M_p; // The actual data.
};
mutable _Alloc_hider _M_dataplus;
_CharT*
_M_data() const
{ return _M_dataplus._M_p; }
_CharT*
_M_data(_CharT* __p)
{ return (_M_dataplus._M_p = __p); }
_Rep*
_M_rep() const
{ return &((reinterpret_cast<_Rep*> (_M_data()))[-1]); }
// For the internal use we have functions similar to `begin'/`end'
// but they do not call _M_leak.
iterator
_M_ibegin() const { return iterator(_M_data()); }
iterator
_M_iend() const { return iterator(_M_data() + this->size()); }
void
_M_leak() // for use in begin() & non-const op[]
{
if (!_M_rep()->_M_is_leaked())
_M_leak_hard();
}
iterator
_M_check(size_type __pos) const
{
__OUTOFRANGE(__pos > this->size());
return _M_ibegin() + __pos;
}
// NB: _M_fold doesn't check for a bad __pos1 value.
iterator
_M_fold(size_type __pos, size_type __off) const
{
bool __testoff = __off < this->size() - __pos;
size_type __newoff = __testoff ? __off : this->size() - __pos;
return (_M_ibegin() + __pos + __newoff);
}
// _S_copy_chars is a separate template to permit specialization
// to optimize for the common case of pointers as iterators.
template<class _Iterator>
static void
_S_copy_chars(_CharT* __p, _Iterator __j1, _Iterator __j2)
{
for (; __j1 != __j2; ++__j1, ++__p)
traits_type::assign(*__p, *__j1); //these types are off
}
static void
_S_copy_chars(_CharT* __p, iterator __j1, iterator __j2)
{ _S_copy_chars(__p, __j1.base(), __j2.base()); }
static void
_S_copy_chars(_CharT* __p, const_iterator __j1, const_iterator __j2)
{ _S_copy_chars(__p, __j1.base(), __j2.base()); }
static void
_S_copy_chars(_CharT* __p, _CharT* __j1, _CharT* __j2)
{ traits_type::copy(__p, __j1, __j2 - __j1); }
static void
_S_copy_chars(_CharT* __p, const _CharT* __j1, const _CharT* __j2)
{ traits_type::copy(__p, __j1, __j2 - __j1); }
void
_M_mutate(size_type __pos, size_type __len1, size_type __len2);
void
_M_leak_hard();
// The following storage is init'd to 0 by the linker, resulting
// (carefully) in an empty string with one reference.
static size_type _S_empty_rep_storage[
(sizeof(_Rep) + sizeof(_CharT) + sizeof(size_type)-1)/sizeof(size_type)];
static _Rep&
_S_empty_rep()
{ return *reinterpret_cast<_Rep*> (&_S_empty_rep_storage); }
public:
// Construct/copy/destroy:
// NB: We overload ctors in some cases instead of using default
// arguments, per 17.4.4.4 para. 2 item 2.
inline
basic_string();
explicit
basic_string(const _Alloc& __a);
// NB: per LWG issue 42, semantics different from IS:
basic_string(const basic_string& __str);
basic_string(const basic_string& __str, size_type __pos,
size_type __n = npos);
basic_string(const basic_string& __str, size_type __pos,
size_type __n, const _Alloc& __a);
basic_string(const _CharT* __s, size_type __n,
const _Alloc& __a = _Alloc());
basic_string(const _CharT* __s, const _Alloc& __a = _Alloc());
basic_string(size_type __n, _CharT __c, const _Alloc& __a = _Alloc());
template<class _InputIterator>
basic_string(_InputIterator __begin, _InputIterator __end,
const _Alloc& __a = _Alloc());
~basic_string()
{ _M_rep()->_M_dispose(this->get_allocator()); }
basic_string&
operator=(const basic_string& __str) { return this->assign(__str); }
basic_string&
operator=(const _CharT* __s) { return this->assign(__s); }
basic_string&
operator=(_CharT __c) { return this->assign(1, __c); }
// Iterators:
iterator
begin()
{
_M_leak();
return iterator(_M_data());
}
const_iterator
begin() const
{ return const_iterator(_M_data()); }
iterator
end()
{
_M_leak();
return iterator(_M_data() + this->size());
}
const_iterator
end() const
{ return const_iterator(_M_data() + this->size()); }
reverse_iterator
rbegin()
{ return reverse_iterator(this->end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(this->end()); }
reverse_iterator
rend()
{ return reverse_iterator(this->begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(this->begin()); }
public:
// Capacity:
size_type
size() const { return _M_rep()->_M_length; }
size_type
length() const { return _M_rep()->_M_length; }
size_type
max_size() const { return _Rep::_S_max_size; }
void
resize(size_type __n, _CharT __c);
void
resize(size_type __n) { this->resize(__n, _CharT()); }
size_type
capacity() const { return _M_rep()->_M_capacity; }
void
reserve(size_type __res_arg = 0);
void
clear() { _M_mutate(0, this->size(), 0); }
bool
empty() const { return this->size() == 0; }
// Element access:
const_reference
operator[] (size_type __pos) const
{ return _M_data()[__pos]; }
reference
operator[](size_type __pos)
{
_M_leak();
return _M_data()[__pos];
}
const_reference
at(size_type __n) const
{
__OUTOFRANGE(__n >= this->size());
return _M_data()[__n];
}
reference
at(size_type __n)
{
__OUTOFRANGE(__n >= size());
_M_leak();
return _M_data()[__n];
}
// Modifiers:
basic_string&
operator+=(const basic_string& __str) { return this->append(__str); }
basic_string&
operator+=(const _CharT* __s) { return this->append(__s); }
basic_string&
operator+=(_CharT __c) { return this->append(size_type(1), __c); }
basic_string&
append(const basic_string& __str);
basic_string&
append(const basic_string& __str, size_type __pos, size_type __n);
basic_string&
append(const _CharT* __s, size_type __n);
basic_string&
append(const _CharT* __s)
{ return this->append(__s, traits_type::length(__s)); }
basic_string&
append(size_type __n, _CharT __c);
template<class _InputIterator>
basic_string&
append(_InputIterator __first, _InputIterator __last)
{ return this->replace(_M_iend(), _M_iend(), __first, __last); }
void
push_back(_CharT __c)
{ this->replace(_M_iend(), _M_iend(), 1, __c); }
basic_string&
assign(const basic_string& __str);
basic_string&
assign(const basic_string& __str, size_type __pos, size_type __n)
{
return this->assign(__str._M_check(__pos), __str._M_fold(__pos, __n));
}
basic_string&
assign(const _CharT* __s, size_type __n)
{ return this->assign(__s, __s + __n); }
basic_string&
assign(const _CharT* __s)
{ return this->assign(__s, __s + traits_type::length(__s)); }
basic_string&
assign(size_type __n, _CharT __c)
{ return this->replace(_M_ibegin(), _M_iend(), __n, __c); }
template<class _InputIterator>
basic_string&
assign(_InputIterator __first, _InputIterator __last)
{ return this->replace(_M_ibegin(), _M_iend(), __first, __last); }
void
insert(iterator __p, size_type __n, _CharT __c)
{ this->replace(__p, __p, __n, __c); }
template<class _InputIterator>
void insert(iterator __p, _InputIterator __beg, _InputIterator __end)
{ this->replace(__p, __p, __beg, __end); }
basic_string&
insert(size_type __pos1, const basic_string& __str)
{
iterator __p = _M_check(__pos1);
this->replace(__p, __p, __str._M_ibegin(), __str._M_iend());
return *this;
}
basic_string&
insert(size_type __pos1, const basic_string& __str,
size_type __pos2, size_type __n)
{
iterator __p = _M_check(__pos1);
this->replace(__p, __p, __str._M_check(__pos2),
__str._M_fold(__pos2, __n));
return *this;
}
basic_string&
insert(size_type __pos, const _CharT* __s, size_type __n)
{
iterator __p = _M_check(__pos);
this->replace(__p, __p, __s, __s + __n);
return *this;
}
basic_string&
insert(size_type __pos, const _CharT* __s)
{ return this->insert(__pos, __s, traits_type::length(__s)); }
basic_string&
insert(size_type __pos, size_type __n, _CharT __c)
{
this->insert(_M_check(__pos), __n, __c);
return *this;
}
iterator
insert(iterator __p, _CharT __c = _CharT())
{
size_type __pos = __p - _M_ibegin();
this->insert(_M_check(__pos), size_type(1), __c);
_M_rep()->_M_set_leaked();
return this->_M_ibegin() + __pos;
}
basic_string&
erase(size_type __pos = 0, size_type __n = npos)
{
return this->replace(_M_check(__pos), _M_fold(__pos, __n),
_M_data(), _M_data());
}
iterator
erase(iterator __position)
{
size_type __i = __position - _M_ibegin();
this->replace(__position, __position + 1, _M_data(), _M_data());
_M_rep()->_M_set_leaked();
return _M_ibegin() + __i;
}
iterator
erase(iterator __first, iterator __last)
{
size_type __i = __first - _M_ibegin();
this->replace(__first, __last, _M_data(), _M_data());
_M_rep()->_M_set_leaked();
return _M_ibegin() + __i;
}
basic_string&
replace(size_type __pos, size_type __n, const basic_string& __str)
{
return this->replace(_M_check(__pos), _M_fold(__pos, __n),
__str.begin(), __str.end());
}
basic_string&
replace(size_type __pos1, size_type __n1, const basic_string& __str,
size_type __pos2, size_type __n2);
basic_string&
replace(size_type __pos, size_type __n1, const _CharT* __s,
size_type __n2)
{
return this->replace(_M_check(__pos), _M_fold(__pos, __n1),
__s, __s + __n2);
}
basic_string&
replace(size_type __pos, size_type __n1, const _CharT* __s)
{
return this->replace(_M_check(__pos), _M_fold(__pos, __n1),
__s, __s + traits_type::length(__s));
}
basic_string&
replace(size_type __pos, size_type __n1, size_type __n2, _CharT __c)
{
return this->replace(_M_check(__pos), _M_fold(__pos, __n1), __n2, __c);
}
basic_string&
replace(iterator __i1, iterator __i2, const basic_string& __str)
{ return this->replace(__i1, __i2, __str.begin(), __str.end()); }
basic_string&
replace(iterator __i1, iterator __i2,
const _CharT* __s, size_type __n)
{ return this->replace(__i1, __i2, __s, __s + __n); }
basic_string&
replace(iterator __i1, iterator __i2, const _CharT* __s)
{ return this->replace(__i1, __i2, __s,
__s + traits_type::length(__s)); }
basic_string&
replace(iterator __i1, iterator __i2, size_type __n, _CharT __c);
template<class _InputIterator>
basic_string&
replace(iterator __i1, iterator __i2,
_InputIterator __j1, _InputIterator __j2)
{ return _M_replace(__i1, __i2, __j1, __j2,
typename iterator_traits<_InputIterator>::iterator_category()); }
private:
template<class _InputIterator>
basic_string&
_M_replace(iterator __i1, iterator __i2, _InputIterator __j1,
_InputIterator __j2, input_iterator_tag);
template<class _FwdIterator>
basic_string&
_M_replace(iterator __i1, iterator __i2, _FwdIterator __j1,
_FwdIterator __j2, forward_iterator_tag);
// _S_construct_aux is used to implement the 21.3.1 para 15 which
// requires special behaviour if _InIter is an integral type
template<class _InIter>
static _CharT*
_S_construct_aux(_InIter __beg, _InIter __end, const _Alloc& __a,
__false_type)
{
typedef typename iterator_traits<_InIter>::iterator_category _Tag;
return _S_construct(__beg, __end, __a, _Tag());
}
template<class _InIter>
static _CharT*
_S_construct_aux(_InIter __beg, _InIter __end, const _Alloc& __a,
__true_type)
{
return _S_construct(static_cast<size_type>(__beg),
static_cast<value_type>(__end), __a);
}
template<class _InIter>
static _CharT*
_S_construct(_InIter __beg, _InIter __end, const _Alloc& __a)
{
typedef typename _Is_integer<_InIter>::_Integral _Integral;
return _S_construct_aux(__beg, __end, __a, _Integral());
}
// For Input Iterators, used in istreambuf_iterators, etc.
template<class _InIter>
static _CharT*
_S_construct(_InIter __beg, _InIter __end, const _Alloc& __a,
input_iterator_tag);
// For forward_iterators up to random_access_iterators, used for
// string::iterator, _CharT*, etc.
template<class _FwdIter>
static _CharT*
_S_construct(_FwdIter __end, _FwdIter __beg, const _Alloc& __a,
forward_iterator_tag);
static _CharT*
_S_construct(size_type __req, _CharT __c, const _Alloc& __a);
public:
size_type
copy(_CharT* __s, size_type __n, size_type __pos = 0) const;
void
swap(basic_string<_CharT, _Traits, _Alloc>& __s);
// String operations:
const _CharT*
c_str() const
{
// MT: This assumes concurrent writes are OK.
size_type __n = this->size();
traits_type::assign(_M_data()[__n], _Rep::_S_terminal);
return _M_data();
}
const _CharT*
data() const { return _M_data(); }
allocator_type
get_allocator() const { return _M_dataplus; }
size_type
find(const _CharT* __s, size_type __pos, size_type __n) const;
size_type
find(const basic_string& __str, size_type __pos = 0) const
{ return this->find(__str.data(), __pos, __str.size()); }
size_type
find(const _CharT* __s, size_type __pos = 0) const
{ return this->find(__s, __pos, traits_type::length(__s)); }
size_type
find(_CharT __c, size_type __pos = 0) const;
size_type
rfind(const basic_string& __str, size_type __pos = npos) const
{ return this->rfind(__str.data(), __pos, __str.size()); }
size_type
rfind(const _CharT* __s, size_type __pos, size_type __n) const;
size_type
rfind(const _CharT* __s, size_type __pos = npos) const
{ return this->rfind(__s, __pos, traits_type::length(__s)); }
size_type
rfind(_CharT __c, size_type __pos = npos) const;
size_type
find_first_of(const basic_string& __str, size_type __pos = 0) const
{ return this->find_first_of(__str.data(), __pos, __str.size()); }
size_type
find_first_of(const _CharT* __s, size_type __pos, size_type __n) const;
size_type
find_first_of(const _CharT* __s, size_type __pos = 0) const
{ return this->find_first_of(__s, __pos, traits_type::length(__s)); }
size_type
find_first_of(_CharT __c, size_type __pos = 0) const
{ return this->find(__c, __pos); }
size_type
find_last_of(const basic_string& __str, size_type __pos = npos) const
{ return this->find_last_of(__str.data(), __pos, __str.size()); }
size_type
find_last_of(const _CharT* __s, size_type __pos, size_type __n) const;
size_type
find_last_of(const _CharT* __s, size_type __pos = npos) const
{ return this->find_last_of(__s, __pos, traits_type::length(__s)); }
size_type
find_last_of(_CharT __c, size_type __pos = npos) const
{ return this->rfind(__c, __pos); }
size_type
find_first_not_of(const basic_string& __str, size_type __pos = 0) const
{ return this->find_first_not_of(__str.data(), __pos, __str.size()); }
size_type
find_first_not_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type
find_first_not_of(const _CharT* __s, size_type __pos = 0) const
{ return this->find_first_not_of(__s, __pos, traits_type::length(__s)); }
size_type
find_first_not_of(_CharT __c, size_type __pos = 0) const;
size_type
find_last_not_of(const basic_string& __str, size_type __pos = npos) const
{ return this->find_last_not_of(__str.data(), __pos, __str.size()); }
size_type
find_last_not_of(const _CharT* __s, size_type __pos,
size_type __n) const;
size_type
find_last_not_of(const _CharT* __s, size_type __pos = npos) const
{ return this->find_last_not_of(__s, __pos, traits_type::length(__s)); }
size_type
find_last_not_of(_CharT __c, size_type __pos = npos) const;
basic_string
substr(size_type __pos = 0, size_type __n = npos) const
{
__OUTOFRANGE(__pos > this->size());
return basic_string(*this, __pos, __n);
}
int
compare(const basic_string& __str) const
{
size_type __size = this->size();
size_type __osize = __str.size();
size_type __len = min(__size, __osize);
int __r = traits_type::compare(_M_data(), __str.data(), __len);
if (!__r)
__r = __size - __osize;
return __r;
}
int
compare(size_type __pos, size_type __n, const basic_string& __str) const;
int
compare(size_type __pos1, size_type __n1, const basic_string& __str,
size_type __pos2, size_type __n2) const;
int
compare(const _CharT* __s) const;
int
compare(size_type __pos, size_type __n1, const _CharT* __s,
size_type __n2 = npos) const;
private:
static const _CharT*
_S_find (const _CharT* __beg, const _CharT* __end, _CharT __c);
};
template<typename _CharT, typename _Traits, typename _Alloc>
inline basic_string<_CharT, _Traits, _Alloc>::
basic_string()
: _M_dataplus(_S_empty_rep()._M_refcopy(), _Alloc()) { }
// operator+
template<typename _CharT, typename _Traits, typename _Alloc>
basic_string<_CharT, _Traits, _Alloc>
operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{
basic_string<_CharT, _Traits, _Alloc> __str(__lhs);
__str.append(__rhs);
return __str;
}
template<typename _CharT, typename _Traits, typename _Alloc>
basic_string<_CharT,_Traits,_Alloc>
operator+(const _CharT* __lhs,
const basic_string<_CharT,_Traits,_Alloc>& __rhs);
template<typename _CharT, typename _Traits, typename _Alloc>
basic_string<_CharT,_Traits,_Alloc>
operator+(_CharT __lhs, const basic_string<_CharT,_Traits,_Alloc>& __rhs);
template<typename _CharT, typename _Traits, typename _Alloc>
inline basic_string<_CharT, _Traits, _Alloc>
operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{
basic_string<_CharT, _Traits, _Alloc> __str(__lhs);
__str.append(__rhs);
return __str;
}
template<typename _CharT, typename _Traits, typename _Alloc>
inline basic_string<_CharT, _Traits, _Alloc>
operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs, _CharT __rhs)
{
typedef basic_string<_CharT, _Traits, _Alloc> __string_type;
typedef typename __string_type::size_type __size_type;
__string_type __str(__lhs);
__str.append(__size_type(1), __rhs);
return __str;
}
// operator ==
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator==(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __lhs.compare(__rhs) == 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator==(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) == 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator==(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) == 0; }
// operator !=
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator!=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) != 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator!=(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) != 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator!=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) != 0; }
// operator <
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __lhs.compare(__rhs) < 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) < 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) > 0; }
// operator >
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __lhs.compare(__rhs) > 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) > 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) < 0; }
// operator <=
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __lhs.compare(__rhs) <= 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) <= 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator<=(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) >= 0; }
// operator >=
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __lhs.compare(__rhs) >= 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>=(const basic_string<_CharT, _Traits, _Alloc>& __lhs,
const _CharT* __rhs)
{ return __lhs.compare(__rhs) >= 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline bool
operator>=(const _CharT* __lhs,
const basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ return __rhs.compare(__lhs) <= 0; }
template<typename _CharT, typename _Traits, typename _Alloc>
inline void
swap(basic_string<_CharT, _Traits, _Alloc>& __lhs,
basic_string<_CharT, _Traits, _Alloc>& __rhs)
{ __lhs.swap(__rhs); }
template<typename _CharT, typename _Traits, typename _Alloc>
basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is,
basic_string<_CharT, _Traits, _Alloc>& __str);
template<typename _CharT, typename _Traits, typename _Alloc>
basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const basic_string<_CharT, _Traits, _Alloc>& __str);
template<typename _CharT, typename _Traits, typename _Alloc>
basic_istream<_CharT,_Traits>&
getline(basic_istream<_CharT, _Traits>& __is,
basic_string<_CharT, _Traits, _Alloc>& __str, _CharT __delim);
template<typename _CharT, typename _Traits, typename _Alloc>
inline basic_istream<_CharT,_Traits>&
getline(basic_istream<_CharT, _Traits>& __is,
basic_string<_CharT, _Traits, _Alloc>& __str);
} // namespace std
#endif /* _CPP_BITS_STRING_H */