gcc/libsanitizer/sanitizer_common/sanitizer_atomic_clang.h

134 lines
4.2 KiB
C
Raw Normal View History

//===-- sanitizer_atomic_clang.h --------------------------------*- C++ -*-===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
// Not intended for direct inclusion. Include sanitizer_atomic.h.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ATOMIC_CLANG_H
#define SANITIZER_ATOMIC_CLANG_H
namespace __sanitizer {
INLINE void atomic_signal_fence(memory_order) {
__asm__ __volatile__("" ::: "memory");
}
INLINE void atomic_thread_fence(memory_order) {
__sync_synchronize();
}
INLINE void proc_yield(int cnt) {
__asm__ __volatile__("" ::: "memory");
#if defined(__i386__) || defined(__x86_64__)
for (int i = 0; i < cnt; i++)
__asm__ __volatile__("pause");
#endif
__asm__ __volatile__("" ::: "memory");
}
template<typename T>
INLINE typename T::Type atomic_load(
const volatile T *a, memory_order mo) {
DCHECK(mo & (memory_order_relaxed | memory_order_consume
| memory_order_acquire | memory_order_seq_cst));
DCHECK(!((uptr)a % sizeof(*a)));
typename T::Type v;
// FIXME:
// 64-bit atomic operations are not atomic on 32-bit platforms.
// The implementation lacks necessary memory fences on ARM/PPC.
// We would like to use compiler builtin atomic operations,
// but they are mostly broken:
// - they lead to vastly inefficient code generation
// (http://llvm.org/bugs/show_bug.cgi?id=17281)
// - 64-bit atomic operations are not implemented on x86_32
// (http://llvm.org/bugs/show_bug.cgi?id=15034)
// - they are not implemented on ARM
// error: undefined reference to '__atomic_load_4'
if (mo == memory_order_relaxed) {
v = a->val_dont_use;
} else {
atomic_signal_fence(memory_order_seq_cst);
v = a->val_dont_use;
atomic_signal_fence(memory_order_seq_cst);
}
return v;
}
template<typename T>
INLINE void atomic_store(volatile T *a, typename T::Type v, memory_order mo) {
DCHECK(mo & (memory_order_relaxed | memory_order_release
| memory_order_seq_cst));
DCHECK(!((uptr)a % sizeof(*a)));
if (mo == memory_order_relaxed) {
a->val_dont_use = v;
} else {
atomic_signal_fence(memory_order_seq_cst);
a->val_dont_use = v;
atomic_signal_fence(memory_order_seq_cst);
}
if (mo == memory_order_seq_cst)
atomic_thread_fence(memory_order_seq_cst);
}
template<typename T>
INLINE typename T::Type atomic_fetch_add(volatile T *a,
typename T::Type v, memory_order mo) {
(void)mo;
DCHECK(!((uptr)a % sizeof(*a)));
return __sync_fetch_and_add(&a->val_dont_use, v);
}
template<typename T>
INLINE typename T::Type atomic_fetch_sub(volatile T *a,
typename T::Type v, memory_order mo) {
(void)mo;
DCHECK(!((uptr)a % sizeof(*a)));
return __sync_fetch_and_add(&a->val_dont_use, -v);
}
template<typename T>
INLINE typename T::Type atomic_exchange(volatile T *a,
typename T::Type v, memory_order mo) {
DCHECK(!((uptr)a % sizeof(*a)));
if (mo & (memory_order_release | memory_order_acq_rel | memory_order_seq_cst))
__sync_synchronize();
v = __sync_lock_test_and_set(&a->val_dont_use, v);
if (mo == memory_order_seq_cst)
__sync_synchronize();
return v;
}
template<typename T>
INLINE bool atomic_compare_exchange_strong(volatile T *a,
typename T::Type *cmp,
typename T::Type xchg,
memory_order mo) {
typedef typename T::Type Type;
Type cmpv = *cmp;
Type prev = __sync_val_compare_and_swap(&a->val_dont_use, cmpv, xchg);
if (prev == cmpv)
return true;
*cmp = prev;
return false;
}
template<typename T>
INLINE bool atomic_compare_exchange_weak(volatile T *a,
typename T::Type *cmp,
typename T::Type xchg,
memory_order mo) {
return atomic_compare_exchange_strong(a, cmp, xchg, mo);
}
} // namespace __sanitizer
#undef ATOMIC_ORDER
#endif // SANITIZER_ATOMIC_CLANG_H