2010-12-03 05:34:57 +01:00
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
// Package regexp implements a simple regular expression library.
|
|
|
|
//
|
2011-10-27 01:57:58 +02:00
|
|
|
// The syntax of the regular expressions accepted is the same
|
|
|
|
// general syntax used by Perl, Python, and other languages.
|
|
|
|
// More precisely, it is the syntax accepted by RE2 and described at
|
|
|
|
// http://code.google.com/p/re2/wiki/Syntax, except for \C.
|
2010-12-03 05:34:57 +01:00
|
|
|
//
|
2011-10-27 01:57:58 +02:00
|
|
|
// All characters are UTF-8-encoded code points.
|
2010-12-03 05:34:57 +01:00
|
|
|
//
|
|
|
|
// There are 16 methods of Regexp that match a regular expression and identify
|
|
|
|
// the matched text. Their names are matched by this regular expression:
|
|
|
|
//
|
|
|
|
// Find(All)?(String)?(Submatch)?(Index)?
|
|
|
|
//
|
|
|
|
// If 'All' is present, the routine matches successive non-overlapping
|
|
|
|
// matches of the entire expression. Empty matches abutting a preceding
|
|
|
|
// match are ignored. The return value is a slice containing the successive
|
|
|
|
// return values of the corresponding non-'All' routine. These routines take
|
|
|
|
// an extra integer argument, n; if n >= 0, the function returns at most n
|
|
|
|
// matches/submatches.
|
|
|
|
//
|
|
|
|
// If 'String' is present, the argument is a string; otherwise it is a slice
|
|
|
|
// of bytes; return values are adjusted as appropriate.
|
|
|
|
//
|
|
|
|
// If 'Submatch' is present, the return value is a slice identifying the
|
|
|
|
// successive submatches of the expression. Submatches are matches of
|
|
|
|
// parenthesized subexpressions within the regular expression, numbered from
|
|
|
|
// left to right in order of opening parenthesis. Submatch 0 is the match of
|
|
|
|
// the entire expression, submatch 1 the match of the first parenthesized
|
|
|
|
// subexpression, and so on.
|
|
|
|
//
|
|
|
|
// If 'Index' is present, matches and submatches are identified by byte index
|
|
|
|
// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
|
|
|
|
// the nth submatch. The pair for n==0 identifies the match of the entire
|
|
|
|
// expression. If 'Index' is not present, the match is identified by the
|
|
|
|
// text of the match/submatch. If an index is negative, it means that
|
|
|
|
// subexpression did not match any string in the input.
|
|
|
|
//
|
2011-03-17 00:05:44 +01:00
|
|
|
// There is also a subset of the methods that can be applied to text read
|
|
|
|
// from a RuneReader:
|
|
|
|
//
|
|
|
|
// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
|
|
|
|
//
|
|
|
|
// This set may grow. Note that regular expression matches may need to
|
|
|
|
// examine text beyond the text returned by a match, so the methods that
|
|
|
|
// match text from a RuneReader may read arbitrarily far into the input
|
|
|
|
// before returning.
|
|
|
|
//
|
2010-12-03 05:34:57 +01:00
|
|
|
// (There are a few other methods that do not match this pattern.)
|
|
|
|
//
|
|
|
|
package regexp
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"io"
|
2011-10-27 01:57:58 +02:00
|
|
|
"regexp/syntax"
|
|
|
|
"strconv"
|
2010-12-03 05:34:57 +01:00
|
|
|
"strings"
|
2011-10-27 01:57:58 +02:00
|
|
|
"sync"
|
2010-12-03 05:34:57 +01:00
|
|
|
"utf8"
|
|
|
|
)
|
|
|
|
|
|
|
|
var debug = false
|
|
|
|
|
|
|
|
// Error is the local type for a parsing error.
|
|
|
|
type Error string
|
|
|
|
|
2011-12-03 03:17:34 +01:00
|
|
|
func (e Error) Error() string {
|
2010-12-03 05:34:57 +01:00
|
|
|
return string(e)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Regexp is the representation of a compiled regular expression.
|
|
|
|
// The public interface is entirely through methods.
|
2011-09-16 17:47:21 +02:00
|
|
|
// A Regexp is safe for concurrent use by multiple goroutines.
|
2010-12-03 05:34:57 +01:00
|
|
|
type Regexp struct {
|
2011-10-27 01:57:58 +02:00
|
|
|
// read-only after Compile
|
|
|
|
expr string // as passed to Compile
|
|
|
|
prog *syntax.Prog // compiled program
|
|
|
|
prefix string // required prefix in unanchored matches
|
|
|
|
prefixBytes []byte // prefix, as a []byte
|
|
|
|
prefixComplete bool // prefix is the entire regexp
|
2011-12-02 20:34:41 +01:00
|
|
|
prefixRune rune // first rune in prefix
|
2011-10-27 01:57:58 +02:00
|
|
|
cond syntax.EmptyOp // empty-width conditions required at start of match
|
|
|
|
numSubexp int
|
|
|
|
longest bool
|
|
|
|
|
|
|
|
// cache of machines for running regexp
|
|
|
|
mu sync.Mutex
|
|
|
|
machine []*machine
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2011-01-21 19:19:03 +01:00
|
|
|
// String returns the source text used to compile the regular expression.
|
|
|
|
func (re *Regexp) String() string {
|
|
|
|
return re.expr
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
// Compile parses a regular expression and returns, if successful,
|
|
|
|
// a Regexp object that can be used to match against text.
|
|
|
|
//
|
|
|
|
// When matching against text, the regexp returns a match that
|
|
|
|
// begins as early as possible in the input (leftmost), and among those
|
|
|
|
// it chooses the one that a backtracking search would have found first.
|
|
|
|
// This so-called leftmost-first matching is the same semantics
|
|
|
|
// that Perl, Python, and other implementations use, although this
|
|
|
|
// package implements it without the expense of backtracking.
|
|
|
|
// For POSIX leftmost-longest matching, see CompilePOSIX.
|
2011-12-03 03:17:34 +01:00
|
|
|
func Compile(expr string) (*Regexp, error) {
|
2011-10-27 01:57:58 +02:00
|
|
|
return compile(expr, syntax.Perl, false)
|
|
|
|
}
|
|
|
|
|
|
|
|
// CompilePOSIX is like Compile but restricts the regular expression
|
|
|
|
// to POSIX ERE (egrep) syntax and changes the match semantics to
|
|
|
|
// leftmost-longest.
|
|
|
|
//
|
|
|
|
// That is, when matching against text, the regexp returns a match that
|
|
|
|
// begins as early as possible in the input (leftmost), and among those
|
|
|
|
// it chooses a match that is as long as possible.
|
|
|
|
// This so-called leftmost-longest matching is the same semantics
|
|
|
|
// that early regular expression implementations used and that POSIX
|
|
|
|
// specifies.
|
|
|
|
//
|
|
|
|
// However, there can be multiple leftmost-longest matches, with different
|
|
|
|
// submatch choices, and here this package diverges from POSIX.
|
|
|
|
// Among the possible leftmost-longest matches, this package chooses
|
|
|
|
// the one that a backtracking search would have found first, while POSIX
|
|
|
|
// specifies that the match be chosen to maximize the length of the first
|
|
|
|
// subexpression, then the second, and so on from left to right.
|
|
|
|
// The POSIX rule is computationally prohibitive and not even well-defined.
|
|
|
|
// See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
|
2011-12-03 03:17:34 +01:00
|
|
|
func CompilePOSIX(expr string) (*Regexp, error) {
|
2011-10-27 01:57:58 +02:00
|
|
|
return compile(expr, syntax.POSIX, true)
|
|
|
|
}
|
|
|
|
|
2011-12-03 03:17:34 +01:00
|
|
|
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
|
2011-10-27 01:57:58 +02:00
|
|
|
re, err := syntax.Parse(expr, mode)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
maxCap := re.MaxCap()
|
|
|
|
re = re.Simplify()
|
|
|
|
prog, err := syntax.Compile(re)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
regexp := &Regexp{
|
|
|
|
expr: expr,
|
|
|
|
prog: prog,
|
|
|
|
numSubexp: maxCap,
|
|
|
|
cond: prog.StartCond(),
|
|
|
|
longest: longest,
|
|
|
|
}
|
|
|
|
regexp.prefix, regexp.prefixComplete = prog.Prefix()
|
|
|
|
if regexp.prefix != "" {
|
|
|
|
// TODO(rsc): Remove this allocation by adding
|
|
|
|
// IndexString to package bytes.
|
|
|
|
regexp.prefixBytes = []byte(regexp.prefix)
|
|
|
|
regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
|
|
|
|
}
|
|
|
|
return regexp, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// get returns a machine to use for matching re.
|
|
|
|
// It uses the re's machine cache if possible, to avoid
|
|
|
|
// unnecessary allocation.
|
|
|
|
func (re *Regexp) get() *machine {
|
|
|
|
re.mu.Lock()
|
|
|
|
if n := len(re.machine); n > 0 {
|
|
|
|
z := re.machine[n-1]
|
|
|
|
re.machine = re.machine[:n-1]
|
|
|
|
re.mu.Unlock()
|
|
|
|
return z
|
|
|
|
}
|
|
|
|
re.mu.Unlock()
|
|
|
|
z := progMachine(re.prog)
|
|
|
|
z.re = re
|
|
|
|
return z
|
|
|
|
}
|
|
|
|
|
|
|
|
// put returns a machine to the re's machine cache.
|
|
|
|
// There is no attempt to limit the size of the cache, so it will
|
|
|
|
// grow to the maximum number of simultaneous matches
|
|
|
|
// run using re. (The cache empties when re gets garbage collected.)
|
|
|
|
func (re *Regexp) put(z *machine) {
|
|
|
|
re.mu.Lock()
|
|
|
|
re.machine = append(re.machine, z)
|
|
|
|
re.mu.Unlock()
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// MustCompile is like Compile but panics if the expression cannot be parsed.
|
|
|
|
// It simplifies safe initialization of global variables holding compiled regular
|
|
|
|
// expressions.
|
|
|
|
func MustCompile(str string) *Regexp {
|
|
|
|
regexp, error := Compile(str)
|
|
|
|
if error != nil {
|
2011-12-03 03:17:34 +01:00
|
|
|
panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
return regexp
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
|
|
|
|
// It simplifies safe initialization of global variables holding compiled regular
|
|
|
|
// expressions.
|
|
|
|
func MustCompilePOSIX(str string) *Regexp {
|
|
|
|
regexp, error := CompilePOSIX(str)
|
|
|
|
if error != nil {
|
2011-12-03 03:17:34 +01:00
|
|
|
panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
2011-10-27 01:57:58 +02:00
|
|
|
return regexp
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
func quote(s string) string {
|
|
|
|
if strconv.CanBackquote(s) {
|
|
|
|
return "`" + s + "`"
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
2011-10-27 01:57:58 +02:00
|
|
|
return strconv.Quote(s)
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
|
|
|
|
func (re *Regexp) NumSubexp() int {
|
|
|
|
return re.numSubexp
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2011-12-02 20:34:41 +01:00
|
|
|
const endOfText rune = -1
|
2010-12-03 05:34:57 +01:00
|
|
|
|
2011-03-17 00:05:44 +01:00
|
|
|
// input abstracts different representations of the input text. It provides
|
|
|
|
// one-character lookahead.
|
|
|
|
type input interface {
|
2011-12-02 20:34:41 +01:00
|
|
|
step(pos int) (r rune, width int) // advance one rune
|
|
|
|
canCheckPrefix() bool // can we look ahead without losing info?
|
2011-03-17 00:05:44 +01:00
|
|
|
hasPrefix(re *Regexp) bool
|
|
|
|
index(re *Regexp, pos int) int
|
2011-10-27 01:57:58 +02:00
|
|
|
context(pos int) syntax.EmptyOp
|
2011-03-17 00:05:44 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// inputString scans a string.
|
|
|
|
type inputString struct {
|
|
|
|
str string
|
|
|
|
}
|
|
|
|
|
|
|
|
func newInputString(str string) *inputString {
|
|
|
|
return &inputString{str: str}
|
|
|
|
}
|
|
|
|
|
2011-12-02 20:34:41 +01:00
|
|
|
func (i *inputString) step(pos int) (rune, int) {
|
2011-03-17 00:05:44 +01:00
|
|
|
if pos < len(i.str) {
|
2011-10-27 01:57:58 +02:00
|
|
|
c := i.str[pos]
|
|
|
|
if c < utf8.RuneSelf {
|
2011-12-02 20:34:41 +01:00
|
|
|
return rune(c), 1
|
2011-10-27 01:57:58 +02:00
|
|
|
}
|
|
|
|
return utf8.DecodeRuneInString(i.str[pos:])
|
2011-03-17 00:05:44 +01:00
|
|
|
}
|
|
|
|
return endOfText, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputString) canCheckPrefix() bool {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputString) hasPrefix(re *Regexp) bool {
|
|
|
|
return strings.HasPrefix(i.str, re.prefix)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputString) index(re *Regexp, pos int) int {
|
|
|
|
return strings.Index(i.str[pos:], re.prefix)
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
func (i *inputString) context(pos int) syntax.EmptyOp {
|
2011-12-02 20:34:41 +01:00
|
|
|
r1, r2 := endOfText, endOfText
|
2011-10-27 01:57:58 +02:00
|
|
|
if pos > 0 && pos <= len(i.str) {
|
|
|
|
r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
|
|
|
|
}
|
|
|
|
if pos < len(i.str) {
|
|
|
|
r2, _ = utf8.DecodeRuneInString(i.str[pos:])
|
|
|
|
}
|
|
|
|
return syntax.EmptyOpContext(r1, r2)
|
|
|
|
}
|
|
|
|
|
2011-03-17 00:05:44 +01:00
|
|
|
// inputBytes scans a byte slice.
|
|
|
|
type inputBytes struct {
|
|
|
|
str []byte
|
|
|
|
}
|
|
|
|
|
|
|
|
func newInputBytes(str []byte) *inputBytes {
|
|
|
|
return &inputBytes{str: str}
|
|
|
|
}
|
|
|
|
|
2011-12-02 20:34:41 +01:00
|
|
|
func (i *inputBytes) step(pos int) (rune, int) {
|
2011-03-17 00:05:44 +01:00
|
|
|
if pos < len(i.str) {
|
2011-10-27 01:57:58 +02:00
|
|
|
c := i.str[pos]
|
|
|
|
if c < utf8.RuneSelf {
|
2011-12-02 20:34:41 +01:00
|
|
|
return rune(c), 1
|
2011-10-27 01:57:58 +02:00
|
|
|
}
|
|
|
|
return utf8.DecodeRune(i.str[pos:])
|
2011-03-17 00:05:44 +01:00
|
|
|
}
|
|
|
|
return endOfText, 0
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputBytes) canCheckPrefix() bool {
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputBytes) hasPrefix(re *Regexp) bool {
|
|
|
|
return bytes.HasPrefix(i.str, re.prefixBytes)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputBytes) index(re *Regexp, pos int) int {
|
|
|
|
return bytes.Index(i.str[pos:], re.prefixBytes)
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
func (i *inputBytes) context(pos int) syntax.EmptyOp {
|
2011-12-02 20:34:41 +01:00
|
|
|
r1, r2 := endOfText, endOfText
|
2011-10-27 01:57:58 +02:00
|
|
|
if pos > 0 && pos <= len(i.str) {
|
|
|
|
r1, _ = utf8.DecodeLastRune(i.str[:pos])
|
|
|
|
}
|
|
|
|
if pos < len(i.str) {
|
|
|
|
r2, _ = utf8.DecodeRune(i.str[pos:])
|
|
|
|
}
|
|
|
|
return syntax.EmptyOpContext(r1, r2)
|
|
|
|
}
|
|
|
|
|
2011-03-17 00:05:44 +01:00
|
|
|
// inputReader scans a RuneReader.
|
|
|
|
type inputReader struct {
|
|
|
|
r io.RuneReader
|
|
|
|
atEOT bool
|
|
|
|
pos int
|
|
|
|
}
|
|
|
|
|
|
|
|
func newInputReader(r io.RuneReader) *inputReader {
|
|
|
|
return &inputReader{r: r}
|
|
|
|
}
|
|
|
|
|
2011-12-02 20:34:41 +01:00
|
|
|
func (i *inputReader) step(pos int) (rune, int) {
|
2011-03-17 00:05:44 +01:00
|
|
|
if !i.atEOT && pos != i.pos {
|
|
|
|
return endOfText, 0
|
|
|
|
|
|
|
|
}
|
|
|
|
r, w, err := i.r.ReadRune()
|
|
|
|
if err != nil {
|
|
|
|
i.atEOT = true
|
|
|
|
return endOfText, 0
|
|
|
|
}
|
|
|
|
i.pos += w
|
|
|
|
return r, w
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputReader) canCheckPrefix() bool {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputReader) hasPrefix(re *Regexp) bool {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
|
|
|
|
func (i *inputReader) index(re *Regexp, pos int) int {
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
func (i *inputReader) context(pos int) syntax.EmptyOp {
|
|
|
|
return 0
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2011-01-21 19:19:03 +01:00
|
|
|
// LiteralPrefix returns a literal string that must begin any match
|
|
|
|
// of the regular expression re. It returns the boolean true if the
|
|
|
|
// literal string comprises the entire regular expression.
|
|
|
|
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
|
2011-10-27 01:57:58 +02:00
|
|
|
return re.prefix, re.prefixComplete
|
2011-01-21 19:19:03 +01:00
|
|
|
}
|
|
|
|
|
2011-03-17 00:05:44 +01:00
|
|
|
// MatchReader returns whether the Regexp matches the text read by the
|
|
|
|
// RuneReader. The return value is a boolean: true for match, false for no
|
|
|
|
// match.
|
|
|
|
func (re *Regexp) MatchReader(r io.RuneReader) bool {
|
2011-10-27 01:57:58 +02:00
|
|
|
return re.doExecute(newInputReader(r), 0, 0) != nil
|
2011-03-17 00:05:44 +01:00
|
|
|
}
|
|
|
|
|
2010-12-03 05:34:57 +01:00
|
|
|
// MatchString returns whether the Regexp matches the string s.
|
|
|
|
// The return value is a boolean: true for match, false for no match.
|
2011-10-27 01:57:58 +02:00
|
|
|
func (re *Regexp) MatchString(s string) bool {
|
|
|
|
return re.doExecute(newInputString(s), 0, 0) != nil
|
|
|
|
}
|
2010-12-03 05:34:57 +01:00
|
|
|
|
|
|
|
// Match returns whether the Regexp matches the byte slice b.
|
|
|
|
// The return value is a boolean: true for match, false for no match.
|
2011-10-27 01:57:58 +02:00
|
|
|
func (re *Regexp) Match(b []byte) bool {
|
|
|
|
return re.doExecute(newInputBytes(b), 0, 0) != nil
|
|
|
|
}
|
2010-12-03 05:34:57 +01:00
|
|
|
|
2011-03-17 00:05:44 +01:00
|
|
|
// MatchReader checks whether a textual regular expression matches the text
|
|
|
|
// read by the RuneReader. More complicated queries need to use Compile and
|
|
|
|
// the full Regexp interface.
|
2011-12-03 03:17:34 +01:00
|
|
|
func MatchReader(pattern string, r io.RuneReader) (matched bool, error error) {
|
2011-03-17 00:05:44 +01:00
|
|
|
re, err := Compile(pattern)
|
|
|
|
if err != nil {
|
|
|
|
return false, err
|
|
|
|
}
|
|
|
|
return re.MatchReader(r), nil
|
|
|
|
}
|
2010-12-03 05:34:57 +01:00
|
|
|
|
|
|
|
// MatchString checks whether a textual regular expression
|
|
|
|
// matches a string. More complicated queries need
|
|
|
|
// to use Compile and the full Regexp interface.
|
2011-12-03 03:17:34 +01:00
|
|
|
func MatchString(pattern string, s string) (matched bool, error error) {
|
2010-12-03 05:34:57 +01:00
|
|
|
re, err := Compile(pattern)
|
|
|
|
if err != nil {
|
|
|
|
return false, err
|
|
|
|
}
|
|
|
|
return re.MatchString(s), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Match checks whether a textual regular expression
|
|
|
|
// matches a byte slice. More complicated queries need
|
|
|
|
// to use Compile and the full Regexp interface.
|
2011-12-03 03:17:34 +01:00
|
|
|
func Match(pattern string, b []byte) (matched bool, error error) {
|
2010-12-03 05:34:57 +01:00
|
|
|
re, err := Compile(pattern)
|
|
|
|
if err != nil {
|
|
|
|
return false, err
|
|
|
|
}
|
|
|
|
return re.Match(b), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// ReplaceAllString returns a copy of src in which all matches for the Regexp
|
|
|
|
// have been replaced by repl. No support is provided for expressions
|
|
|
|
// (e.g. \1 or $1) in the replacement string.
|
|
|
|
func (re *Regexp) ReplaceAllString(src, repl string) string {
|
|
|
|
return re.ReplaceAllStringFunc(src, func(string) string { return repl })
|
|
|
|
}
|
|
|
|
|
|
|
|
// ReplaceAllStringFunc returns a copy of src in which all matches for the
|
|
|
|
// Regexp have been replaced by the return value of of function repl (whose
|
|
|
|
// first argument is the matched string). No support is provided for
|
|
|
|
// expressions (e.g. \1 or $1) in the replacement string.
|
|
|
|
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
|
|
|
|
lastMatchEnd := 0 // end position of the most recent match
|
|
|
|
searchPos := 0 // position where we next look for a match
|
|
|
|
buf := new(bytes.Buffer)
|
|
|
|
for searchPos <= len(src) {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputString(src), searchPos, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if len(a) == 0 {
|
|
|
|
break // no more matches
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the unmatched characters before this match.
|
|
|
|
io.WriteString(buf, src[lastMatchEnd:a[0]])
|
|
|
|
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
|
|
// match of the empty string immediately after another match.
|
|
|
|
// (Otherwise, we get double replacement for patterns that
|
|
|
|
// match both empty and nonempty strings.)
|
|
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
|
|
io.WriteString(buf, repl(src[a[0]:a[1]]))
|
|
|
|
}
|
|
|
|
lastMatchEnd = a[1]
|
|
|
|
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
|
|
_, width := utf8.DecodeRuneInString(src[searchPos:])
|
|
|
|
if searchPos+width > a[1] {
|
|
|
|
searchPos += width
|
|
|
|
} else if searchPos+1 > a[1] {
|
|
|
|
// This clause is only needed at the end of the input
|
|
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
|
|
searchPos++
|
|
|
|
} else {
|
|
|
|
searchPos = a[1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
|
|
io.WriteString(buf, src[lastMatchEnd:])
|
|
|
|
|
|
|
|
return buf.String()
|
|
|
|
}
|
|
|
|
|
|
|
|
// ReplaceAll returns a copy of src in which all matches for the Regexp
|
|
|
|
// have been replaced by repl. No support is provided for expressions
|
|
|
|
// (e.g. \1 or $1) in the replacement text.
|
|
|
|
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
|
|
|
|
return re.ReplaceAllFunc(src, func([]byte) []byte { return repl })
|
|
|
|
}
|
|
|
|
|
|
|
|
// ReplaceAllFunc returns a copy of src in which all matches for the
|
|
|
|
// Regexp have been replaced by the return value of of function repl (whose
|
|
|
|
// first argument is the matched []byte). No support is provided for
|
|
|
|
// expressions (e.g. \1 or $1) in the replacement string.
|
|
|
|
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
|
|
|
|
lastMatchEnd := 0 // end position of the most recent match
|
|
|
|
searchPos := 0 // position where we next look for a match
|
|
|
|
buf := new(bytes.Buffer)
|
|
|
|
for searchPos <= len(src) {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputBytes(src), searchPos, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if len(a) == 0 {
|
|
|
|
break // no more matches
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the unmatched characters before this match.
|
|
|
|
buf.Write(src[lastMatchEnd:a[0]])
|
|
|
|
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
|
|
// match of the empty string immediately after another match.
|
|
|
|
// (Otherwise, we get double replacement for patterns that
|
|
|
|
// match both empty and nonempty strings.)
|
|
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
|
|
buf.Write(repl(src[a[0]:a[1]]))
|
|
|
|
}
|
|
|
|
lastMatchEnd = a[1]
|
|
|
|
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
|
|
_, width := utf8.DecodeRune(src[searchPos:])
|
|
|
|
if searchPos+width > a[1] {
|
|
|
|
searchPos += width
|
|
|
|
} else if searchPos+1 > a[1] {
|
|
|
|
// This clause is only needed at the end of the input
|
|
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
|
|
searchPos++
|
|
|
|
} else {
|
|
|
|
searchPos = a[1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
|
|
buf.Write(src[lastMatchEnd:])
|
|
|
|
|
|
|
|
return buf.Bytes()
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
var specialBytes = []byte(`\.+*?()|[]{}^$`)
|
|
|
|
|
|
|
|
func special(b byte) bool {
|
|
|
|
return bytes.IndexByte(specialBytes, b) >= 0
|
|
|
|
}
|
|
|
|
|
2010-12-03 05:34:57 +01:00
|
|
|
// QuoteMeta returns a string that quotes all regular expression metacharacters
|
|
|
|
// inside the argument text; the returned string is a regular expression matching
|
|
|
|
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
|
|
|
|
func QuoteMeta(s string) string {
|
|
|
|
b := make([]byte, 2*len(s))
|
|
|
|
|
|
|
|
// A byte loop is correct because all metacharacters are ASCII.
|
|
|
|
j := 0
|
|
|
|
for i := 0; i < len(s); i++ {
|
2011-10-27 01:57:58 +02:00
|
|
|
if special(s[i]) {
|
2010-12-03 05:34:57 +01:00
|
|
|
b[j] = '\\'
|
|
|
|
j++
|
|
|
|
}
|
|
|
|
b[j] = s[i]
|
|
|
|
j++
|
|
|
|
}
|
|
|
|
return string(b[0:j])
|
|
|
|
}
|
|
|
|
|
2011-10-27 01:57:58 +02:00
|
|
|
// The number of capture values in the program may correspond
|
|
|
|
// to fewer capturing expressions than are in the regexp.
|
|
|
|
// For example, "(a){0}" turns into an empty program, so the
|
|
|
|
// maximum capture in the program is 0 but we need to return
|
|
|
|
// an expression for \1. Pad appends -1s to the slice a as needed.
|
|
|
|
func (re *Regexp) pad(a []int) []int {
|
|
|
|
if a == nil {
|
|
|
|
// No match.
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
n := (1 + re.numSubexp) * 2
|
|
|
|
for len(a) < n {
|
|
|
|
a = append(a, -1)
|
|
|
|
}
|
|
|
|
return a
|
|
|
|
}
|
|
|
|
|
2010-12-03 05:34:57 +01:00
|
|
|
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
|
|
|
|
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
|
|
|
|
var end int
|
|
|
|
if b == nil {
|
|
|
|
end = len(s)
|
|
|
|
} else {
|
|
|
|
end = len(b)
|
|
|
|
}
|
|
|
|
|
|
|
|
for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
|
2011-03-17 00:05:44 +01:00
|
|
|
var in input
|
|
|
|
if b == nil {
|
|
|
|
in = newInputString(s)
|
|
|
|
} else {
|
|
|
|
in = newInputBytes(b)
|
|
|
|
}
|
2011-10-27 01:57:58 +02:00
|
|
|
matches := re.doExecute(in, pos, re.prog.NumCap)
|
2010-12-03 05:34:57 +01:00
|
|
|
if len(matches) == 0 {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
|
|
|
accept := true
|
|
|
|
if matches[1] == pos {
|
|
|
|
// We've found an empty match.
|
|
|
|
if matches[0] == prevMatchEnd {
|
|
|
|
// We don't allow an empty match right
|
|
|
|
// after a previous match, so ignore it.
|
|
|
|
accept = false
|
|
|
|
}
|
|
|
|
var width int
|
2011-03-17 00:05:44 +01:00
|
|
|
// TODO: use step()
|
2010-12-03 05:34:57 +01:00
|
|
|
if b == nil {
|
|
|
|
_, width = utf8.DecodeRuneInString(s[pos:end])
|
|
|
|
} else {
|
|
|
|
_, width = utf8.DecodeRune(b[pos:end])
|
|
|
|
}
|
|
|
|
if width > 0 {
|
|
|
|
pos += width
|
|
|
|
} else {
|
|
|
|
pos = end + 1
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pos = matches[1]
|
|
|
|
}
|
|
|
|
prevMatchEnd = matches[1]
|
|
|
|
|
|
|
|
if accept {
|
2011-10-27 01:57:58 +02:00
|
|
|
deliver(re.pad(matches))
|
2010-12-03 05:34:57 +01:00
|
|
|
i++
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find returns a slice holding the text of the leftmost match in b of the regular expression.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) Find(b []byte) []byte {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputBytes(b), 0, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return b[a[0]:a[1]]
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindIndex returns a two-element slice of integers defining the location of
|
|
|
|
// the leftmost match in b of the regular expression. The match itself is at
|
|
|
|
// b[loc[0]:loc[1]].
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindIndex(b []byte) (loc []int) {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputBytes(b), 0, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return a[0:2]
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindString returns a string holding the text of the leftmost match in s of the regular
|
|
|
|
// expression. If there is no match, the return value is an empty string,
|
|
|
|
// but it will also be empty if the regular expression successfully matches
|
|
|
|
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
|
|
|
|
// necessary to distinguish these cases.
|
|
|
|
func (re *Regexp) FindString(s string) string {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputString(s), 0, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return ""
|
|
|
|
}
|
|
|
|
return s[a[0]:a[1]]
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindStringIndex returns a two-element slice of integers defining the
|
|
|
|
// location of the leftmost match in s of the regular expression. The match
|
|
|
|
// itself is at s[loc[0]:loc[1]].
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindStringIndex(s string) []int {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputString(s), 0, 2)
|
2011-03-17 00:05:44 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return a[0:2]
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindReaderIndex returns a two-element slice of integers defining the
|
|
|
|
// location of the leftmost match of the regular expression in text read from
|
|
|
|
// the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return
|
|
|
|
// value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindReaderIndex(r io.RuneReader) []int {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputReader(r), 0, 2)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return a[0:2]
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindSubmatch returns a slice of slices holding the text of the leftmost
|
|
|
|
// match of the regular expression in b and the matches, if any, of its
|
|
|
|
// subexpressions, as defined by the 'Submatch' descriptions in the package
|
|
|
|
// comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputBytes(b), 0, re.prog.NumCap)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
2011-10-27 01:57:58 +02:00
|
|
|
ret := make([][]byte, 1+re.numSubexp)
|
2010-12-03 05:34:57 +01:00
|
|
|
for i := range ret {
|
2011-10-27 01:57:58 +02:00
|
|
|
if 2*i < len(a) && a[2*i] >= 0 {
|
2010-12-03 05:34:57 +01:00
|
|
|
ret[i] = b[a[2*i]:a[2*i+1]]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindSubmatchIndex returns a slice holding the index pairs identifying the
|
|
|
|
// leftmost match of the regular expression in b and the matches, if any, of
|
|
|
|
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
|
|
|
|
// in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
|
2011-10-27 01:57:58 +02:00
|
|
|
return re.pad(re.doExecute(newInputBytes(b), 0, re.prog.NumCap))
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// FindStringSubmatch returns a slice of strings holding the text of the
|
|
|
|
// leftmost match of the regular expression in s and the matches, if any, of
|
|
|
|
// its subexpressions, as defined by the 'Submatch' description in the
|
|
|
|
// package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindStringSubmatch(s string) []string {
|
2011-10-27 01:57:58 +02:00
|
|
|
a := re.doExecute(newInputString(s), 0, re.prog.NumCap)
|
2010-12-03 05:34:57 +01:00
|
|
|
if a == nil {
|
|
|
|
return nil
|
|
|
|
}
|
2011-10-27 01:57:58 +02:00
|
|
|
ret := make([]string, 1+re.numSubexp)
|
2010-12-03 05:34:57 +01:00
|
|
|
for i := range ret {
|
2011-10-27 01:57:58 +02:00
|
|
|
if 2*i < len(a) && a[2*i] >= 0 {
|
2010-12-03 05:34:57 +01:00
|
|
|
ret[i] = s[a[2*i]:a[2*i+1]]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindStringSubmatchIndex returns a slice holding the index pairs
|
|
|
|
// identifying the leftmost match of the regular expression in s and the
|
|
|
|
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
|
|
|
|
// 'Index' descriptions in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
|
2011-10-27 01:57:58 +02:00
|
|
|
return re.pad(re.doExecute(newInputString(s), 0, re.prog.NumCap))
|
2011-03-17 00:05:44 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// FindReaderSubmatchIndex returns a slice holding the index pairs
|
|
|
|
// identifying the leftmost match of the regular expression of text read by
|
|
|
|
// the RuneReader, and the matches, if any, of its subexpressions, as defined
|
|
|
|
// by the 'Submatch' and 'Index' descriptions in the package comment. A
|
|
|
|
// return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
|
2011-10-27 01:57:58 +02:00
|
|
|
return re.pad(re.doExecute(newInputReader(r), 0, re.prog.NumCap))
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
const startSize = 10 // The size at which to start a slice in the 'All' routines.
|
|
|
|
|
|
|
|
// FindAll is the 'All' version of Find; it returns a slice of all successive
|
|
|
|
// matches of the expression, as defined by the 'All' description in the
|
|
|
|
// package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(b) + 1
|
|
|
|
}
|
|
|
|
result := make([][]byte, 0, startSize)
|
|
|
|
re.allMatches("", b, n, func(match []int) {
|
|
|
|
result = append(result, b[match[0]:match[1]])
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
|
|
|
|
// successive matches of the expression, as defined by the 'All' description
|
|
|
|
// in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(b) + 1
|
|
|
|
}
|
|
|
|
result := make([][]int, 0, startSize)
|
|
|
|
re.allMatches("", b, n, func(match []int) {
|
|
|
|
result = append(result, match[0:2])
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllString is the 'All' version of FindString; it returns a slice of all
|
|
|
|
// successive matches of the expression, as defined by the 'All' description
|
|
|
|
// in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllString(s string, n int) []string {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(s) + 1
|
|
|
|
}
|
|
|
|
result := make([]string, 0, startSize)
|
|
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
|
|
result = append(result, s[match[0]:match[1]])
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
|
|
|
|
// slice of all successive matches of the expression, as defined by the 'All'
|
|
|
|
// description in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(s) + 1
|
|
|
|
}
|
|
|
|
result := make([][]int, 0, startSize)
|
|
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
|
|
result = append(result, match[0:2])
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
|
|
|
|
// of all successive matches of the expression, as defined by the 'All'
|
|
|
|
// description in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(b) + 1
|
|
|
|
}
|
|
|
|
result := make([][][]byte, 0, startSize)
|
|
|
|
re.allMatches("", b, n, func(match []int) {
|
|
|
|
slice := make([][]byte, len(match)/2)
|
|
|
|
for j := range slice {
|
|
|
|
if match[2*j] >= 0 {
|
|
|
|
slice[j] = b[match[2*j]:match[2*j+1]]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result = append(result, slice)
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
|
|
|
|
// a slice of all successive matches of the expression, as defined by the
|
|
|
|
// 'All' description in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(b) + 1
|
|
|
|
}
|
|
|
|
result := make([][]int, 0, startSize)
|
|
|
|
re.allMatches("", b, n, func(match []int) {
|
|
|
|
result = append(result, match)
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
|
|
|
|
// returns a slice of all successive matches of the expression, as defined by
|
|
|
|
// the 'All' description in the package comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(s) + 1
|
|
|
|
}
|
|
|
|
result := make([][]string, 0, startSize)
|
|
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
|
|
slice := make([]string, len(match)/2)
|
|
|
|
for j := range slice {
|
|
|
|
if match[2*j] >= 0 {
|
|
|
|
slice[j] = s[match[2*j]:match[2*j+1]]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result = append(result, slice)
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// FindAllStringSubmatchIndex is the 'All' version of
|
|
|
|
// FindStringSubmatchIndex; it returns a slice of all successive matches of
|
|
|
|
// the expression, as defined by the 'All' description in the package
|
|
|
|
// comment.
|
|
|
|
// A return value of nil indicates no match.
|
|
|
|
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
|
|
|
|
if n < 0 {
|
|
|
|
n = len(s) + 1
|
|
|
|
}
|
|
|
|
result := make([][]int, 0, startSize)
|
|
|
|
re.allMatches(s, nil, n, func(match []int) {
|
|
|
|
result = append(result, match)
|
|
|
|
})
|
|
|
|
if len(result) == 0 {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|