gcc/libstdc++-v3/include/tr1/array

202 lines
5.6 KiB
Plaintext
Raw Normal View History

// class template array -*- C++ -*-
// Copyright (C) 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
#ifndef _ARRAY
#define _ARRAY 1
#include <new>
#include <iterator>
#include <algorithm>
#include <bits/functexcept.h>
//namespace std::tr1
namespace std
{
namespace tr1
{
/// @brief [6.2.2] Class template array template
// Requires complete type _Tp.
template<typename _Tp, size_t _Nm = 1>
struct array
{
typedef _Tp value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// Compile time constant without other dependencies.
enum { _S_index = _Nm };
// Support for zero-sized arrays mandatory.
value_type _M_instance[_Nm ? _Nm : 1];
// No explicit construct/copy/destroy for aggregate type.
void
assign(const value_type& u);
void
swap(array&);
// Iterators.
iterator
begin()
{ return reinterpret_cast<iterator>(&_M_instance[0]); }
const_iterator
begin() const
{ return reinterpret_cast<const_iterator>(&_M_instance[0]); }
iterator
end()
{ return reinterpret_cast<iterator>(&_M_instance[_Nm]); }
const_iterator
end() const
{ return reinterpret_cast<const_iterator>(&_M_instance[_Nm]); }
reverse_iterator
rbegin()
{ return reverse_iterator(this->end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(this->end()); }
reverse_iterator
rend()
{ return reverse_iterator(this->begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(this->begin()); }
// Capacity.
size_type
size() const { return _Nm; }
size_type
max_size() const { return _Nm; }
bool
empty() const { return size() == 0; }
// Element access.
reference
operator[](size_type __n)
{ return reinterpret_cast<reference>(_M_instance[__n]); }
const_reference
operator[](size_type __n) const
{ return reinterpret_cast<const_reference>(_M_instance[__n]); }
const_reference
at(size_type __n) const
{
if (__builtin_expect(__n > _Nm, false))
std::__throw_out_of_range("array::at");
return reinterpret_cast<const_reference>(_M_instance[__n]);
}
reference
at(size_type __n)
{
if (__builtin_expect(__n > _Nm, false))
std::__throw_out_of_range("array::at");
return reinterpret_cast<reference>(_M_instance[__n]);
}
reference
front();
const_reference
front() const;
reference
back();
const_reference
back() const;
_Tp*
data();
const _Tp*
data() const;
};
// Array comparisons.
template<typename _Tp, size_t _Nm>
bool
operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return std::equal(__one.begin(), __one.end(), __two.begin()); }
template<typename _Tp, size_t _Nm>
bool
operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one == __two); }
template<typename _Tp, size_t _Nm>
bool
operator<(const array<_Tp, _Nm>& a, const array<_Tp, _Nm>& b)
{
return std::lexicographical_compare(a.begin(), a.end(),
b.begin(), b.end());
}
template<typename _Tp, size_t _Nm>
bool
operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return __two < __one; }
template<typename _Tp, size_t _Nm>
bool
operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one > __two); }
template<typename _Tp, size_t _Nm>
bool
operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one < __two); }
// [6.2.2.2] Specialized algorithms.
template<typename _Tp, size_t _Nm>
void
swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
{ swap_ranges(__one.begin(), __one.end(), __two.begin()); }
} // namespace std::tr1
}
#endif