263 lines
7.4 KiB
C
263 lines
7.4 KiB
C
|
/* Implementation of the RESHAPE
|
||
|
Copyright 2002 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2 of the License, or (at your option) any later version.
|
||
|
|
||
|
In addition to the permissions in the GNU General Public License, the
|
||
|
Free Software Foundation gives you unlimited permission to link the
|
||
|
compiled version of this file into combinations with other programs,
|
||
|
and to distribute those combinations without any restriction coming
|
||
|
from the use of this file. (The General Public License restrictions
|
||
|
do apply in other respects; for example, they cover modification of
|
||
|
the file, and distribution when not linked into a combine
|
||
|
executable.)
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public
|
||
|
License along with libgfortran; see the file COPYING. If not,
|
||
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
|
Boston, MA 02110-1301, USA. */
|
||
|
|
||
|
#include "config.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include "libgfortran.h"
|
||
|
|
||
|
#if defined (HAVE_GFC_COMPLEX_16)
|
||
|
|
||
|
typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
|
||
|
|
||
|
/* The shape parameter is ignored. We can currently deduce the shape from the
|
||
|
return array. */
|
||
|
|
||
|
extern void reshape_c16 (gfc_array_c16 *, gfc_array_c16 *, shape_type *,
|
||
|
gfc_array_c16 *, shape_type *);
|
||
|
export_proto(reshape_c16);
|
||
|
|
||
|
void
|
||
|
reshape_c16 (gfc_array_c16 * ret, gfc_array_c16 * source, shape_type * shape,
|
||
|
gfc_array_c16 * pad, shape_type * order)
|
||
|
{
|
||
|
/* r.* indicates the return array. */
|
||
|
index_type rcount[GFC_MAX_DIMENSIONS];
|
||
|
index_type rextent[GFC_MAX_DIMENSIONS];
|
||
|
index_type rstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type rstride0;
|
||
|
index_type rdim;
|
||
|
index_type rsize;
|
||
|
index_type rs;
|
||
|
index_type rex;
|
||
|
GFC_COMPLEX_16 *rptr;
|
||
|
/* s.* indicates the source array. */
|
||
|
index_type scount[GFC_MAX_DIMENSIONS];
|
||
|
index_type sextent[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type sstride0;
|
||
|
index_type sdim;
|
||
|
index_type ssize;
|
||
|
const GFC_COMPLEX_16 *sptr;
|
||
|
/* p.* indicates the pad array. */
|
||
|
index_type pcount[GFC_MAX_DIMENSIONS];
|
||
|
index_type pextent[GFC_MAX_DIMENSIONS];
|
||
|
index_type pstride[GFC_MAX_DIMENSIONS];
|
||
|
index_type pdim;
|
||
|
index_type psize;
|
||
|
const GFC_COMPLEX_16 *pptr;
|
||
|
|
||
|
const GFC_COMPLEX_16 *src;
|
||
|
int n;
|
||
|
int dim;
|
||
|
|
||
|
if (source->dim[0].stride == 0)
|
||
|
source->dim[0].stride = 1;
|
||
|
if (shape->dim[0].stride == 0)
|
||
|
shape->dim[0].stride = 1;
|
||
|
if (pad && pad->dim[0].stride == 0)
|
||
|
pad->dim[0].stride = 1;
|
||
|
if (order && order->dim[0].stride == 0)
|
||
|
order->dim[0].stride = 1;
|
||
|
|
||
|
if (ret->data == NULL)
|
||
|
{
|
||
|
rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
|
||
|
rs = 1;
|
||
|
for (n=0; n < rdim; n++)
|
||
|
{
|
||
|
ret->dim[n].lbound = 0;
|
||
|
rex = shape->data[n * shape->dim[0].stride];
|
||
|
ret->dim[n].ubound = rex - 1;
|
||
|
ret->dim[n].stride = rs;
|
||
|
rs *= rex;
|
||
|
}
|
||
|
ret->offset = 0;
|
||
|
ret->data = internal_malloc_size ( rs * sizeof (GFC_COMPLEX_16));
|
||
|
ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rdim = GFC_DESCRIPTOR_RANK (ret);
|
||
|
if (ret->dim[0].stride == 0)
|
||
|
ret->dim[0].stride = 1;
|
||
|
}
|
||
|
|
||
|
rsize = 1;
|
||
|
for (n = 0; n < rdim; n++)
|
||
|
{
|
||
|
if (order)
|
||
|
dim = order->data[n * order->dim[0].stride] - 1;
|
||
|
else
|
||
|
dim = n;
|
||
|
|
||
|
rcount[n] = 0;
|
||
|
rstride[n] = ret->dim[dim].stride;
|
||
|
rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
|
||
|
|
||
|
if (rextent[n] != shape->data[dim * shape->dim[0].stride])
|
||
|
runtime_error ("shape and target do not conform");
|
||
|
|
||
|
if (rsize == rstride[n])
|
||
|
rsize *= rextent[n];
|
||
|
else
|
||
|
rsize = 0;
|
||
|
if (rextent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
sdim = GFC_DESCRIPTOR_RANK (source);
|
||
|
ssize = 1;
|
||
|
for (n = 0; n < sdim; n++)
|
||
|
{
|
||
|
scount[n] = 0;
|
||
|
sstride[n] = source->dim[n].stride;
|
||
|
sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
|
||
|
if (sextent[n] <= 0)
|
||
|
abort ();
|
||
|
|
||
|
if (ssize == sstride[n])
|
||
|
ssize *= sextent[n];
|
||
|
else
|
||
|
ssize = 0;
|
||
|
}
|
||
|
|
||
|
if (pad)
|
||
|
{
|
||
|
pdim = GFC_DESCRIPTOR_RANK (pad);
|
||
|
psize = 1;
|
||
|
for (n = 0; n < pdim; n++)
|
||
|
{
|
||
|
pcount[n] = 0;
|
||
|
pstride[n] = pad->dim[n].stride;
|
||
|
pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
|
||
|
if (pextent[n] <= 0)
|
||
|
abort ();
|
||
|
if (psize == pstride[n])
|
||
|
psize *= pextent[n];
|
||
|
else
|
||
|
psize = 0;
|
||
|
}
|
||
|
pptr = pad->data;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pdim = 0;
|
||
|
psize = 1;
|
||
|
pptr = NULL;
|
||
|
}
|
||
|
|
||
|
if (rsize != 0 && ssize != 0 && psize != 0)
|
||
|
{
|
||
|
rsize *= sizeof (GFC_COMPLEX_16);
|
||
|
ssize *= sizeof (GFC_COMPLEX_16);
|
||
|
psize *= sizeof (GFC_COMPLEX_16);
|
||
|
reshape_packed ((char *)ret->data, rsize, (char *)source->data,
|
||
|
ssize, pad ? (char *)pad->data : NULL, psize);
|
||
|
return;
|
||
|
}
|
||
|
rptr = ret->data;
|
||
|
src = sptr = source->data;
|
||
|
rstride0 = rstride[0];
|
||
|
sstride0 = sstride[0];
|
||
|
|
||
|
while (rptr)
|
||
|
{
|
||
|
/* Select between the source and pad arrays. */
|
||
|
*rptr = *src;
|
||
|
/* Advance to the next element. */
|
||
|
rptr += rstride0;
|
||
|
src += sstride0;
|
||
|
rcount[0]++;
|
||
|
scount[0]++;
|
||
|
/* Advance to the next destination element. */
|
||
|
n = 0;
|
||
|
while (rcount[n] == rextent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
rcount[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
rptr -= rstride[n] * rextent[n];
|
||
|
n++;
|
||
|
if (n == rdim)
|
||
|
{
|
||
|
/* Break out of the loop. */
|
||
|
rptr = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rcount[n]++;
|
||
|
rptr += rstride[n];
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next source element. */
|
||
|
n = 0;
|
||
|
while (scount[n] == sextent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
scount[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
src -= sstride[n] * sextent[n];
|
||
|
n++;
|
||
|
if (n == sdim)
|
||
|
{
|
||
|
if (sptr && pad)
|
||
|
{
|
||
|
/* Switch to the pad array. */
|
||
|
sptr = NULL;
|
||
|
sdim = pdim;
|
||
|
for (dim = 0; dim < pdim; dim++)
|
||
|
{
|
||
|
scount[dim] = pcount[dim];
|
||
|
sextent[dim] = pextent[dim];
|
||
|
sstride[dim] = pstride[dim];
|
||
|
sstride0 = sstride[0];
|
||
|
}
|
||
|
}
|
||
|
/* We now start again from the beginning of the pad array. */
|
||
|
src = pptr;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
scount[n]++;
|
||
|
src += sstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|