2010-12-03 05:34:57 +01:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package math
|
|
|
|
|
2015-10-31 01:59:47 +01:00
|
|
|
// The go code is a modified version of the original C code from
|
|
|
|
// http://www.netlib.org/fdlibm/s_cbrt.c and came with this notice.
|
|
|
|
//
|
|
|
|
// ====================================================
|
|
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
//
|
|
|
|
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
|
|
|
// Permission to use, copy, modify, and distribute this
|
|
|
|
// software is freely granted, provided that this notice
|
|
|
|
// is preserved.
|
|
|
|
// ====================================================
|
2010-12-03 05:34:57 +01:00
|
|
|
|
2012-10-23 06:31:11 +02:00
|
|
|
// Cbrt returns the cube root of x.
|
2010-12-03 05:34:57 +01:00
|
|
|
//
|
|
|
|
// Special cases are:
|
|
|
|
// Cbrt(±0) = ±0
|
|
|
|
// Cbrt(±Inf) = ±Inf
|
|
|
|
// Cbrt(NaN) = NaN
|
|
|
|
func Cbrt(x float64) float64 {
|
2017-09-14 19:11:35 +02:00
|
|
|
return libc_cbrt(x)
|
|
|
|
}
|
|
|
|
|
|
|
|
//extern cbrt
|
|
|
|
func libc_cbrt(float64) float64
|
|
|
|
|
|
|
|
func cbrt(x float64) float64 {
|
2010-12-03 05:34:57 +01:00
|
|
|
const (
|
2015-10-31 01:59:47 +01:00
|
|
|
B1 = 715094163 // (682-0.03306235651)*2**20
|
|
|
|
B2 = 696219795 // (664-0.03306235651)*2**20
|
|
|
|
C = 5.42857142857142815906e-01 // 19/35 = 0x3FE15F15F15F15F1
|
|
|
|
D = -7.05306122448979611050e-01 // -864/1225 = 0xBFE691DE2532C834
|
|
|
|
E = 1.41428571428571436819e+00 // 99/70 = 0x3FF6A0EA0EA0EA0F
|
|
|
|
F = 1.60714285714285720630e+00 // 45/28 = 0x3FF9B6DB6DB6DB6E
|
|
|
|
G = 3.57142857142857150787e-01 // 5/14 = 0x3FD6DB6DB6DB6DB7
|
|
|
|
SmallestNormal = 2.22507385850720138309e-308 // 2**-1022 = 0x0010000000000000
|
2010-12-03 05:34:57 +01:00
|
|
|
)
|
|
|
|
// special cases
|
|
|
|
switch {
|
2012-02-09 09:19:58 +01:00
|
|
|
case x == 0 || IsNaN(x) || IsInf(x, 0):
|
2010-12-03 05:34:57 +01:00
|
|
|
return x
|
|
|
|
}
|
2015-10-31 01:59:47 +01:00
|
|
|
|
2010-12-03 05:34:57 +01:00
|
|
|
sign := false
|
|
|
|
if x < 0 {
|
|
|
|
x = -x
|
|
|
|
sign = true
|
|
|
|
}
|
2015-10-31 01:59:47 +01:00
|
|
|
|
|
|
|
// rough cbrt to 5 bits
|
|
|
|
t := Float64frombits(Float64bits(x)/3 + B1<<32)
|
|
|
|
if x < SmallestNormal {
|
|
|
|
// subnormal number
|
|
|
|
t = float64(1 << 54) // set t= 2**54
|
|
|
|
t *= x
|
|
|
|
t = Float64frombits(Float64bits(t)/3 + B2<<32)
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
|
|
|
|
2015-10-31 01:59:47 +01:00
|
|
|
// new cbrt to 23 bits
|
|
|
|
r := t * t / x
|
|
|
|
s := C + r*t
|
|
|
|
t *= G + F/(s+E+D/s)
|
|
|
|
|
|
|
|
// chop to 22 bits, make larger than cbrt(x)
|
|
|
|
t = Float64frombits(Float64bits(t)&(0xFFFFFFFFC<<28) + 1<<30)
|
|
|
|
|
|
|
|
// one step newton iteration to 53 bits with error less than 0.667ulps
|
|
|
|
s = t * t // t*t is exact
|
|
|
|
r = x / s
|
|
|
|
w := t + t
|
|
|
|
r = (r - t) / (w + r) // r-s is exact
|
|
|
|
t = t + t*r
|
|
|
|
|
|
|
|
// restore the sign bit
|
2010-12-03 05:34:57 +01:00
|
|
|
if sign {
|
2015-10-31 01:59:47 +01:00
|
|
|
t = -t
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|
2015-10-31 01:59:47 +01:00
|
|
|
return t
|
2010-12-03 05:34:57 +01:00
|
|
|
}
|