382 lines
9.2 KiB
C
Raw Normal View History

re PR fortran/32049 (Support on x86_64 also kind=16) / 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * Makefile.def: Add libquadmath; build it with language=fortran. * configure.ac: Add libquadmath. * Makefile.tpl: Handle multiple libs in check-[+language+]. * Makefile.in: Regenerate. * configure: Regenerate. libquadmath/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 Initial implementation and checkin. gcc/fortran/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * gfortranspec.c (find_spec_file): New function. (lang_specific_driver): Try to find .spec file and use it. * trans-io.c (iocall): Define * IOCALL_X_REAL128/COMPLEX128(,write). (gfc_build_io_library_fndecls): Build decl for __float128 I/O. (transfer_expr): Call __float128 I/O functions. * trans-types.c (gfc_init_kinds): Allow kind-16 belonging to __float128. gcc/testsuite/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * gfortran.dg/quad_1.f90: New. * lib/gcc-defs.exp (gcc-set-multilib-library-path): Use also compiler arguments. * lib/gfortran.exp (gfortran_link_flags): Add libquadmath to library search path; call gcc-set-multilib-library-path with arguments such that libgfortran.spec is found. (gfortran_init): Add path for libgfortran.spec to GFORTRAN_UNDER_TEST. libgomp/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * configure.ac: * configure: Regenerate. libgfortran/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * Makefile.am: Add missing pow_r16_i4.c, add transfer128.c, link libquadmath, if used. * acinclude.m4 (LIBGFOR_CHECK_FLOAT128): Add. * configure.ac: Use it, touch spec file. * gfortran.map: Add pow_r16_i4 and transfer_(real,complex)128(,write) functions. * intrinsics/cshift0.c (cshift0): Handle __float128 type. * intrinsics/erfc_scaled_inc.c: Ditto. * intrinsics/pack_generic.c (pack): Ditto * intrinsics/spread_generic.c (spread): Ditto. * intrinsics/unpack_generic.c (unpack1): Ditto. * io/read.c (convert_real): Ditto. * io/transfer.c: Update comments. * io/transfer128.c: New file. * io/write_float.def (write_float): Handle __float128 type. * libgfortran.h: #include quadmath_weak.h, define __builtin_infq and nanq. * m4/mtype.m4: Handle __float128 type. * runtime/in_pack_generic.c (internal_pack): Ditto. * runtime/in_unpack_generic.c (internal_unpack): Ditto. * kinds-override.h: New file. * libgfortran.spec.in: Ditto. * generated/pow_r16_i4.c: Generated. * Makefile.in: Regenerate. * configure: Regenerate. * config.h: Regenerate. * bessel_r10.c: Regenerate. * bessel_r16.c: Regenerate. * bessel_r4.c: Regenerate. * bessel_r8.c: Regenerate. * exponent_r16.c: Regenerate. * fraction_r16.c: Regenerate. * nearest_r16.c: Regenerate. * norm2_r10.c: Regenerate. * norm2_r16.c: Regenerate. * norm2_r4.c: Regenerate. * norm2_r8.c: Regenerate. * rrspacing_r16.c: Regenerate. * set_exponent_r16.c: Regenerate. * spacing_r16.c: Regenerate. Co-Authored-By: Tobias Burnus <burnus@net-b.de> From-SVN: r166825
2010-11-16 21:23:19 +00:00
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "quadmath-imp.h"
static const __float128
invsqrtpi = 5.6418958354775628694807945156077258584405E-1Q,
two = 2.0e0Q,
one = 1.0e0Q,
zero = 0.0Q;
__float128
jnq (int n, __float128 x)
{
uint32_t se;
int32_t i, ix, sgn;
__float128 a, b, temp, di;
__float128 z, w;
ieee854_float128 u;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
u.value = x;
se = u.words32.w0;
ix = se & 0x7fffffff;
/* if J(n,NaN) is NaN */
if (ix >= 0x7fff0000)
{
if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
return x + x;
}
if (n < 0)
{
n = -n;
x = -x;
se ^= 0x80000000;
}
if (n == 0)
return (j0q (x));
if (n == 1)
return (j1q (x));
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
x = fabsq (x);
if (x == 0.0Q || ix >= 0x7fff0000) /* if x is 0 or inf */
b = zero;
else if ((__float128) n <= x)
{
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (ix >= 0x412D0000)
{ /* x > 2**302 */
/* ??? Could use an expansion for large x here. */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
__float128 s;
__float128 c;
sincosq (x, &s, &c);
switch (n & 3)
{
case 0:
temp = c + s;
break;
case 1:
temp = -c + s;
break;
case 2:
temp = -c - s;
break;
case 3:
temp = c - s;
break;
}
b = invsqrtpi * temp / sqrtq (x);
}
else
{
a = j0q (x);
b = j1q (x);
for (i = 1; i < n; i++)
{
temp = b;
b = b * ((__float128) (i + i) / x) - a; /* avoid underflow */
a = temp;
}
}
}
else
{
if (ix < 0x3fc60000)
{ /* x < 2**-57 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (n >= 400) /* underflow, result < 10^-4952 */
b = zero;
else
{
temp = x * 0.5;
b = temp;
for (a = one, i = 2; i <= n; i++)
{
a *= (__float128) i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b / a;
}
}
else
{
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
__float128 t, v;
__float128 q0, q1, h, tmp;
int32_t k, m;
w = (n + n) / (__float128) x;
h = 2.0Q / (__float128) x;
q0 = w;
z = w + h;
q1 = w * z - 1.0Q;
k = 1;
while (q1 < 1.0e17Q)
{
k += 1;
z += h;
tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n + n;
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
t = one / (i / x - t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* __float128 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two / x;
tmp = tmp * logq (fabsq (v * tmp));
if (tmp < 1.1356523406294143949491931077970765006170e+04Q)
{
for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
}
}
else
{
for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if (b > 1e100Q)
{
a /= b;
t /= b;
b = one;
}
}
}
b = (t * j0q (x) / b);
}
}
if (sgn == 1)
return -b;
else
return b;
}
__float128
ynq (int n, __float128 x)
{
uint32_t se;
int32_t i, ix;
int32_t sign;
__float128 a, b, temp;
ieee854_float128 u;
u.value = x;
se = u.words32.w0;
ix = se & 0x7fffffff;
/* if Y(n,NaN) is NaN */
if (ix >= 0x7fff0000)
{
if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
return x + x;
}
if (x <= 0.0Q)
{
if (x == 0.0Q)
return -HUGE_VALQ + x;
if (se & 0x80000000)
return zero / (zero * x);
}
sign = 1;
if (n < 0)
{
n = -n;
sign = 1 - ((n & 1) << 1);
}
if (n == 0)
return (y0q (x));
if (n == 1)
return (sign * y1q (x));
if (ix >= 0x7fff0000)
return zero;
if (ix >= 0x412D0000)
{ /* x > 2**302 */
/* ??? See comment above on the possible futility of this. */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
__float128 s;
__float128 c;
sincosq (x, &s, &c);
switch (n & 3)
{
case 0:
temp = s - c;
break;
case 1:
temp = -s - c;
break;
case 2:
temp = -s + c;
break;
case 3:
temp = s + c;
break;
}
b = invsqrtpi * temp / sqrtq (x);
}
else
{
a = y0q (x);
b = y1q (x);
/* quit if b is -inf */
u.value = b;
se = u.words32.w0 & 0xffff0000;
for (i = 1; i < n && se != 0xffff0000; i++)
{
temp = b;
b = ((__float128) (i + i) / x) * b - a;
u.value = b;
se = u.words32.w0 & 0xffff0000;
a = temp;
}
}
if (sign > 0)
return b;
else
return -b;
}