gcc/libstdc++-v3/include/ext/pool_allocator.h

384 lines
13 KiB
C
Raw Normal View History

// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ext/debug_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _POOL_ALLOCATOR_H
#define _POOL_ALLOCATOR_H 1
#include <bits/functexcept.h>
#include <bits/stl_threads.h>
#include <bits/atomicity.h>
#include <bits/allocator_traits.h>
#include <ext/new_allocator.h>
namespace __gnu_cxx
{
using std::_STL_mutex_lock;
using std::__throw_bad_alloc;
/**
* @if maint
* Default node allocator. "SGI" style. Uses various allocators to
* fulfill underlying requests (and makes as few requests as possible
* when in default high-speed pool mode).
*
* Important implementation properties:
* 0. If globally mandated, then allocate objects from __new_alloc
* 1. If the clients request an object of size > _S_max_bytes, the resulting
* object will be obtained directly from __new_alloc
* 2. In all other cases, we allocate an object of size exactly
* _S_round_up(requested_size). Thus the client has enough size
* information that we can return the object to the proper free list
* without permanently losing part of the object.
*
* The first template parameter specifies whether more than one thread may
* use this allocator. It is safe to allocate an object from one instance
* of a default_alloc and deallocate it with another one. This effectively
* transfers its ownership to the second one. This may have undesirable
* effects on reference locality.
*
* The second parameter is unused and serves only to allow the creation of
* multiple default_alloc instances. Note that containers built on different
* allocator instances have different types, limiting the utility of this
* approach. If you do not wish to share the free lists with the main
* default_alloc instance, instantiate this with a non-zero __inst.
*
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<bool __threads, int __inst>
class __pool_alloc
{
private:
enum {_S_align = 8};
enum {_S_max_bytes = 128};
enum {_S_freelists = _S_max_bytes / _S_align};
union _Obj
{
union _Obj* _M_free_list_link;
char _M_client_data[1]; // The client sees this.
};
static _Obj* volatile _S_free_list[_S_freelists];
// Chunk allocation state.
static char* _S_start_free;
static char* _S_end_free;
static size_t _S_heap_size;
static _STL_mutex_lock _S_lock;
static _Atomic_word _S_force_new;
static size_t
_S_round_up(size_t __bytes)
{ return ((__bytes + (size_t)_S_align - 1) & ~((size_t)_S_align - 1)); }
static size_t
_S_freelist_index(size_t __bytes)
{ return ((__bytes + (size_t)_S_align - 1)/(size_t)_S_align - 1); }
// Returns an object of size __n, and optionally adds to size __n
// free list.
static void*
_S_refill(size_t __n);
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char*
_S_chunk_alloc(size_t __size, int& __nobjs);
// It would be nice to use _STL_auto_lock here. But we need a
// test whether threads are in use.
struct _Lock
{
_Lock() { if (__threads) _S_lock._M_acquire_lock(); }
~_Lock() { if (__threads) _S_lock._M_release_lock(); }
} __attribute__ ((__unused__));
friend struct _Lock;
public:
// __n must be > 0
static void*
allocate(size_t __n)
{
void* __ret = 0;
// If there is a race through here, assume answer from getenv
// will resolve in same direction. Inspired by techniques
// to efficiently support threading found in basic_string.h.
if (_S_force_new == 0)
{
if (getenv("GLIBCPP_FORCE_NEW"))
__atomic_add(&_S_force_new, 1);
else
__atomic_add(&_S_force_new, -1);
}
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__ret = __new_alloc::allocate(__n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
_Obj* __restrict__ __result = *__my_free_list;
if (__builtin_expect(__result == 0, 0))
__ret = _S_refill(_S_round_up(__n));
else
{
*__my_free_list = __result -> _M_free_list_link;
__ret = __result;
}
if (__builtin_expect(__ret == 0, 0))
__throw_bad_alloc();
}
return __ret;
}
// __p may not be 0
static void
deallocate(void* __p, size_t __n)
{
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__new_alloc::deallocate(__p, __n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
_Obj* __q = (_Obj*)__p;
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
__q -> _M_free_list_link = *__my_free_list;
*__my_free_list = __q;
}
}
};
template<bool __threads, int __inst> _Atomic_word
__pool_alloc<__threads, __inst>::_S_force_new = 0;
template<bool __threads, int __inst>
inline bool
operator==(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return true; }
template<bool __threads, int __inst>
inline bool
operator!=(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return false; }
// We allocate memory in large chunks in order to avoid fragmenting the
// heap too much. We assume that __size is properly aligned. We hold
// the allocation lock.
template<bool __threads, int __inst>
char*
__pool_alloc<__threads, __inst>::
_S_chunk_alloc(size_t __size, int& __nobjs)
{
char* __result;
size_t __total_bytes = __size * __nobjs;
size_t __bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes)
{
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result ;
}
else if (__bytes_left >= __size)
{
__nobjs = (int)(__bytes_left/__size);
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result;
}
else
{
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0)
{
_Obj* volatile* __my_free_list =
_S_free_list + _S_freelist_index(__bytes_left);
((_Obj*)(void*)_S_start_free) -> _M_free_list_link = *__my_free_list;
*__my_free_list = (_Obj*)(void*)_S_start_free;
}
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
if (_S_start_free == 0)
{
size_t __i;
_Obj* volatile* __my_free_list;
_Obj* __p;
// Try to make do with what we have. That can't hurt. We
// do not try smaller requests, since that tends to result
// in disaster on multi-process machines.
__i = __size;
for (; __i <= (size_t) _S_max_bytes; __i += (size_t) _S_align)
{
__my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list;
if (__p != 0)
{
*__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p;
_S_end_free = _S_start_free + __i;
return _S_chunk_alloc(__size, __nobjs);
// Any leftover piece will eventually make it to the
// right free list.
}
}
_S_end_free = 0; // In case of exception.
_S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
// This should either throw an exception or remedy the situation.
// Thus we assume it succeeded.
}
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
return _S_chunk_alloc(__size, __nobjs);
}
}
// Returns an object of size __n, and optionally adds to "size
// __n"'s free list. We assume that __n is properly aligned. We
// hold the allocation lock.
template<bool __threads, int __inst>
void*
__pool_alloc<__threads, __inst>::_S_refill(size_t __n)
{
int __nobjs = 20;
char* __chunk = _S_chunk_alloc(__n, __nobjs);
_Obj* volatile* __my_free_list;
_Obj* __result;
_Obj* __current_obj;
_Obj* __next_obj;
int __i;
if (1 == __nobjs)
return __chunk;
__my_free_list = _S_free_list + _S_freelist_index(__n);
// Build free list in chunk.
__result = (_Obj*)(void*)__chunk;
*__my_free_list = __next_obj = (_Obj*)(void*)(__chunk + __n);
for (__i = 1; ; __i++)
{
__current_obj = __next_obj;
__next_obj = (_Obj*)(void*)((char*)__next_obj + __n);
if (__nobjs - 1 == __i)
{
__current_obj -> _M_free_list_link = 0;
break;
}
else
__current_obj -> _M_free_list_link = __next_obj;
}
return __result;
}
template<bool __threads, int __inst>
_STL_mutex_lock
__pool_alloc<__threads, __inst>::_S_lock __STL_MUTEX_INITIALIZER;
template<bool __threads, int __inst>
char* __pool_alloc<__threads, __inst>::_S_start_free = 0;
template<bool __threads, int __inst>
char* __pool_alloc<__threads, __inst>::_S_end_free = 0;
template<bool __threads, int __inst>
size_t __pool_alloc<__threads, __inst>::_S_heap_size = 0;
template<bool __threads, int __inst>
typename __pool_alloc<__threads, __inst>::_Obj* volatile
__pool_alloc<__threads, __inst>::_S_free_list[_S_freelists];
} // namespace __gnu_cxx
namespace std
{
//@{
/// Versions for the predefined "SGI" style allocators.
template<typename _Tp, bool __thr, int __inst>
struct _Alloc_traits<_Tp, __gnu_cxx::__pool_alloc<__thr, __inst> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__pool_alloc<__thr, __inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
//@{
/// Versions for the __allocator adaptor used with the predefined
/// "SGI" style allocators.
template<typename _Tp, typename _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp, __allocator<_Tp1,
__gnu_cxx::__pool_alloc<__thr, __inst> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__pool_alloc<__thr, __inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
} // namespace std
#endif