gcc/libgfortran/generated/matmul_l8.c

182 lines
4.9 KiB
C
Raw Normal View History

/* Implementation of the MATMUL intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfor).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
Either a or b can be rank 1. In this case x or y is 1. */
void
__matmul_l8 (gfc_array_l8 * retarray, gfc_array_l4 * a, gfc_array_l4 * b)
{
GFC_INTEGER_4 *abase;
GFC_INTEGER_4 *bbase;
GFC_LOGICAL_8 *dest;
index_type rxstride;
index_type rystride;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_INTEGER_4 *pa;
GFC_INTEGER_4 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data = internal_malloc (sizeof (GFC_LOGICAL_8) * size0 (retarray));
retarray->base = 0;
}
abase = a->data;
if (GFC_DESCRIPTOR_SIZE (a) != 4)
{
assert (GFC_DESCRIPTOR_SIZE (a) == 8);
abase = GFOR_POINTER_L8_TO_L4 (abase);
astride <<= 1;
}
bbase = b->data;
if (GFC_DESCRIPTOR_SIZE (b) != 4)
{
assert (GFC_DESCRIPTOR_SIZE (b) == 8);
bbase = GFOR_POINTER_L8_TO_L4 (bbase);
bstride <<= 1;
}
dest = retarray->data;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (a->dim[0].stride == 0)
a->dim[0].stride = 1;
if (b->dim[0].stride == 0)
b->dim[0].stride = 1;
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
rxstride = retarray->dim[0].stride;
rystride = rxstride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
astride = a->dim[0].stride;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
xstride = 0;
rxstride = 0;
xcount = 1;
}
else
{
astride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
bstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
ystride = 0;
rystride = 0;
ycount = 1;
}
else
{
bstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
for (y = 0; y < ycount; y++)
{
for (x = 0; x < xcount; x++)
{
/* Do the summation for this element. For real and integer types
this is the same as DOT_PRODUCT. For complex types we use do
a*b, not conjg(a)*b. */
pa = abase;
pb = bbase;
*dest = 0;
for (n = 0; n < count; n++)
{
if (*pa && *pb)
{
*dest = 1;
break;
}
pa += astride;
pb += bstride;
}
dest += rxstride;
abase += xstride;
}
abase -= xstride * xcount;
bbase += ystride;
dest += rystride - (rxstride * xcount);
}
}