212 lines
5.9 KiB
Plaintext
212 lines
5.9 KiB
Plaintext
|
// Special functions -*- C++ -*-
|
||
|
|
||
|
// Copyright (C) 2006-2007
|
||
|
// Free Software Foundation, Inc.
|
||
|
//
|
||
|
// This file is part of the GNU ISO C++ Library. This library is free
|
||
|
// software; you can redistribute it and/or modify it under the
|
||
|
// terms of the GNU General Public License as published by the
|
||
|
// Free Software Foundation; either version 2, or (at your option)
|
||
|
// any later version.
|
||
|
//
|
||
|
// This library is distributed in the hope that it will be useful,
|
||
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU General Public License along
|
||
|
// with this library; see the file COPYING. If not, write to the Free
|
||
|
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
||
|
// USA.
|
||
|
//
|
||
|
// As a special exception, you may use this file as part of a free software
|
||
|
// library without restriction. Specifically, if other files instantiate
|
||
|
// templates or use macros or inline functions from this file, or you compile
|
||
|
// this file and link it with other files to produce an executable, this
|
||
|
// file does not by itself cause the resulting executable to be covered by
|
||
|
// the GNU General Public License. This exception does not however
|
||
|
// invalidate any other reasons why the executable file might be covered by
|
||
|
// the GNU General Public License.
|
||
|
|
||
|
/** @file tr1/beta_function.tcc
|
||
|
* This is an internal header file, included by other library headers.
|
||
|
* You should not attempt to use it directly.
|
||
|
*/
|
||
|
|
||
|
//
|
||
|
// ISO C++ 14882 TR1: 5.2 Special functions
|
||
|
//
|
||
|
|
||
|
// Written by Edward Smith-Rowland based on:
|
||
|
// (1) Handbook of Mathematical Functions,
|
||
|
// ed. Milton Abramowitz and Irene A. Stegun,
|
||
|
// Dover Publications,
|
||
|
// Section 6, pp. 253-266
|
||
|
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
||
|
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
||
|
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
||
|
// 2nd ed, pp. 213-216
|
||
|
// (4) Gamma, Exploring Euler's Constant, Julian Havil,
|
||
|
// Princeton, 2003.
|
||
|
|
||
|
#ifndef _TR1_BETA_FUNCTION_TCC
|
||
|
#define _TR1_BETA_FUNCTION_TCC 1
|
||
|
|
||
|
namespace std
|
||
|
{
|
||
|
_GLIBCXX_BEGIN_NAMESPACE(_GLIBCXX_TR1)
|
||
|
|
||
|
// [5.2] Special functions
|
||
|
|
||
|
/**
|
||
|
* @ingroup tr1_math_spec_func
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
//
|
||
|
// Implementation-space details.
|
||
|
//
|
||
|
namespace __detail
|
||
|
{
|
||
|
|
||
|
/**
|
||
|
* @brief Return the beta function: \f$B(x,y)\f$.
|
||
|
*
|
||
|
* The beta function is defined by
|
||
|
* @f[
|
||
|
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
||
|
* @f]
|
||
|
*
|
||
|
* @param __x The first argument of the beta function.
|
||
|
* @param __y The second argument of the beta function.
|
||
|
* @return The beta function.
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
_Tp
|
||
|
__beta_gamma(_Tp __x, _Tp __y)
|
||
|
{
|
||
|
|
||
|
_Tp __bet;
|
||
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
||
|
if (__x > __y)
|
||
|
{
|
||
|
__bet = std::_GLIBCXX_TR1::tgamma(__x)
|
||
|
/ std::_GLIBCXX_TR1::tgamma(__x + __y);
|
||
|
__bet *= std::_GLIBCXX_TR1::tgamma(__y);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
__bet = std::_GLIBCXX_TR1::tgamma(__y)
|
||
|
/ std::_GLIBCXX_TR1::tgamma(__x + __y);
|
||
|
__bet *= std::_GLIBCXX_TR1::tgamma(__x);
|
||
|
}
|
||
|
#else
|
||
|
if (__x > __y)
|
||
|
{
|
||
|
__bet = __gamma(__x) / __gamma(__x + __y);
|
||
|
__bet *= __gamma(__y);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
__bet = __gamma(__y) / __gamma(__x + __y);
|
||
|
__bet *= __gamma(__x);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return __bet;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Return the beta function \f$B(x,y)\f$ using
|
||
|
* the log gamma functions.
|
||
|
*
|
||
|
* The beta function is defined by
|
||
|
* @f[
|
||
|
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
||
|
* @f]
|
||
|
*
|
||
|
* @param __x The first argument of the beta function.
|
||
|
* @param __y The second argument of the beta function.
|
||
|
* @return The beta function.
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
_Tp
|
||
|
__beta_lgamma(_Tp __x, _Tp __y)
|
||
|
{
|
||
|
#if _GLIBCXX_USE_C99_MATH_TR1
|
||
|
_Tp __bet = std::_GLIBCXX_TR1::lgamma(__x)
|
||
|
+ std::_GLIBCXX_TR1::lgamma(__y)
|
||
|
- std::_GLIBCXX_TR1::lgamma(__x + __y);
|
||
|
#else
|
||
|
_Tp __bet = __log_gamma(__x)
|
||
|
+ __log_gamma(__y)
|
||
|
- __log_gamma(__x + __y);
|
||
|
#endif
|
||
|
__bet = std::exp(__bet);
|
||
|
return __bet;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Return the beta function \f$B(x,y)\f$ using
|
||
|
* the product form.
|
||
|
*
|
||
|
* The beta function is defined by
|
||
|
* @f[
|
||
|
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
||
|
* @f]
|
||
|
*
|
||
|
* @param __x The first argument of the beta function.
|
||
|
* @param __y The second argument of the beta function.
|
||
|
* @return The beta function.
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
_Tp
|
||
|
__beta_product(_Tp __x, _Tp __y)
|
||
|
{
|
||
|
|
||
|
_Tp __bet = (__x + __y) / (__x * __y);
|
||
|
|
||
|
unsigned int __max_iter = 1000000;
|
||
|
for (unsigned int __k = 1; __k < __max_iter; ++__k)
|
||
|
{
|
||
|
_Tp __term = (_Tp(1) + (__x + __y) / __k)
|
||
|
/ ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
|
||
|
__bet *= __term;
|
||
|
}
|
||
|
|
||
|
return __bet;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Return the beta function \f$ B(x,y) \f$.
|
||
|
*
|
||
|
* The beta function is defined by
|
||
|
* @f[
|
||
|
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
|
||
|
* @f]
|
||
|
*
|
||
|
* @param __x The first argument of the beta function.
|
||
|
* @param __y The second argument of the beta function.
|
||
|
* @return The beta function.
|
||
|
*/
|
||
|
template<typename _Tp>
|
||
|
inline _Tp
|
||
|
__beta(_Tp __x, _Tp __y)
|
||
|
{
|
||
|
if (__isnan(__x) || __isnan(__y))
|
||
|
return std::numeric_limits<_Tp>::quiet_NaN();
|
||
|
else
|
||
|
return __beta_lgamma(__x, __y);
|
||
|
}
|
||
|
|
||
|
} // namespace std::tr1::__detail
|
||
|
|
||
|
/* @} */ // group tr1_math_spec_func
|
||
|
|
||
|
_GLIBCXX_END_NAMESPACE
|
||
|
}
|
||
|
|
||
|
#endif // _TR1_BETA_FUNCTION_TCC
|