gcc/libsanitizer/sanitizer_common/sanitizer_coverage_libcdep.cc

471 lines
16 KiB
C++
Raw Normal View History

//===-- sanitizer_coverage.cc ---------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Sanitizer Coverage.
// This file implements run-time support for a poor man's coverage tool.
//
// Compiler instrumentation:
// For every interesting basic block the compiler injects the following code:
// if (*Guard) {
// __sanitizer_cov();
// *Guard = 1;
// }
// It's fine to call __sanitizer_cov more than once for a given block.
//
// Run-time:
// - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC).
// - __sanitizer_cov_dump: dump the coverage data to disk.
// For every module of the current process that has coverage data
// this will create a file module_name.PID.sancov. The file format is simple:
// it's just a sorted sequence of 4-byte offsets in the module.
//
// Eventually, this coverage implementation should be obsoleted by a more
// powerful general purpose Clang/LLVM coverage instrumentation.
// Consider this implementation as prototype.
//
// FIXME: support (or at least test with) dlclose.
//===----------------------------------------------------------------------===//
#include "sanitizer_allocator_internal.h"
#include "sanitizer_common.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include "sanitizer_symbolizer.h"
#include "sanitizer_flags.h"
atomic_uint32_t dump_once_guard; // Ensure that CovDump runs only once.
// pc_array is the array containing the covered PCs.
// To make the pc_array thread- and async-signal-safe it has to be large enough.
// 128M counters "ought to be enough for anybody" (4M on 32-bit).
// With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file.
// In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping()
// dump current memory layout to another file.
static bool cov_sandboxed = false;
static int cov_fd = kInvalidFd;
static unsigned int cov_max_block_size = 0;
namespace __sanitizer {
class CoverageData {
public:
void Init();
void BeforeFork();
void AfterFork(int child_pid);
void Extend(uptr npcs);
void Add(uptr pc);
void IndirCall(uptr caller, uptr callee, uptr callee_cache[],
uptr cache_size);
void DumpCallerCalleePairs();
uptr *data();
uptr size();
private:
// Maximal size pc array may ever grow.
// We MmapNoReserve this space to ensure that the array is contiguous.
static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 27);
// The amount file mapping for the pc array is grown by.
static const uptr kPcArrayMmapSize = 64 * 1024;
// pc_array is allocated with MmapNoReserveOrDie and so it uses only as
// much RAM as it really needs.
uptr *pc_array;
// Index of the first available pc_array slot.
atomic_uintptr_t pc_array_index;
// Array size.
atomic_uintptr_t pc_array_size;
// Current file mapped size of the pc array.
uptr pc_array_mapped_size;
// Descriptor of the file mapped pc array.
int pc_fd;
// Caller-Callee (cc) array, size and current index.
static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24);
uptr **cc_array;
atomic_uintptr_t cc_array_index;
atomic_uintptr_t cc_array_size;
StaticSpinMutex mu;
void DirectOpen();
void ReInit();
};
static CoverageData coverage_data;
void CoverageData::DirectOpen() {
InternalScopedString path(1024);
internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw",
common_flags()->coverage_dir, internal_getpid());
pc_fd = OpenFile(path.data(), true);
if (internal_iserror(pc_fd)) {
Report(" Coverage: failed to open %s for writing\n", path.data());
Die();
}
pc_array_mapped_size = 0;
CovUpdateMapping();
}
void CoverageData::Init() {
pc_array = reinterpret_cast<uptr *>(
MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit"));
pc_fd = kInvalidFd;
if (common_flags()->coverage_direct) {
atomic_store(&pc_array_size, 0, memory_order_relaxed);
atomic_store(&pc_array_index, 0, memory_order_relaxed);
} else {
atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed);
atomic_store(&pc_array_index, 0, memory_order_relaxed);
}
cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie(
sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array"));
atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed);
atomic_store(&cc_array_index, 0, memory_order_relaxed);
}
void CoverageData::ReInit() {
internal_munmap(pc_array, sizeof(uptr) * kPcArrayMaxSize);
if (pc_fd != kInvalidFd) internal_close(pc_fd);
if (common_flags()->coverage_direct) {
// In memory-mapped mode we must extend the new file to the known array
// size.
uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
Init();
if (size) Extend(size);
} else {
Init();
}
}
void CoverageData::BeforeFork() {
mu.Lock();
}
void CoverageData::AfterFork(int child_pid) {
// We are single-threaded so it's OK to release the lock early.
mu.Unlock();
if (child_pid == 0) ReInit();
}
// Extend coverage PC array to fit additional npcs elements.
void CoverageData::Extend(uptr npcs) {
if (!common_flags()->coverage_direct) return;
SpinMutexLock l(&mu);
if (pc_fd == kInvalidFd) DirectOpen();
CHECK_NE(pc_fd, kInvalidFd);
uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
size += npcs * sizeof(uptr);
if (size > pc_array_mapped_size) {
uptr new_mapped_size = pc_array_mapped_size;
while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize;
// Extend the file and map the new space at the end of pc_array.
uptr res = internal_ftruncate(pc_fd, new_mapped_size);
int err;
if (internal_iserror(res, &err)) {
Printf("failed to extend raw coverage file: %d\n", err);
Die();
}
void *p = MapWritableFileToMemory(pc_array + pc_array_mapped_size,
new_mapped_size - pc_array_mapped_size,
pc_fd, pc_array_mapped_size);
CHECK_EQ(p, pc_array + pc_array_mapped_size);
pc_array_mapped_size = new_mapped_size;
}
atomic_store(&pc_array_size, size, memory_order_release);
}
// Simply add the pc into the vector under lock. If the function is called more
// than once for a given PC it will be inserted multiple times, which is fine.
void CoverageData::Add(uptr pc) {
if (!pc_array) return;
uptr idx = atomic_fetch_add(&pc_array_index, 1, memory_order_relaxed);
CHECK_LT(idx * sizeof(uptr),
atomic_load(&pc_array_size, memory_order_acquire));
pc_array[idx] = pc;
}
// Registers a pair caller=>callee.
// When a given caller is seen for the first time, the callee_cache is added
// to the global array cc_array, callee_cache[0] is set to caller and
// callee_cache[1] is set to cache_size.
// Then we are trying to add callee to callee_cache [2,cache_size) if it is
// not there yet.
// If the cache is full we drop the callee (may want to fix this later).
void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[],
uptr cache_size) {
if (!cc_array) return;
atomic_uintptr_t *atomic_callee_cache =
reinterpret_cast<atomic_uintptr_t *>(callee_cache);
uptr zero = 0;
if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller,
memory_order_seq_cst)) {
uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed);
CHECK_LT(idx * sizeof(uptr),
atomic_load(&cc_array_size, memory_order_acquire));
callee_cache[1] = cache_size;
cc_array[idx] = callee_cache;
}
CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller);
for (uptr i = 2; i < cache_size; i++) {
uptr was = 0;
if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee,
memory_order_seq_cst))
return;
if (was == callee) // Already have this callee.
return;
}
}
uptr *CoverageData::data() {
return pc_array;
}
uptr CoverageData::size() {
return atomic_load(&pc_array_index, memory_order_relaxed);
}
// Block layout for packed file format: header, followed by module name (no
// trailing zero), followed by data blob.
struct CovHeader {
int pid;
unsigned int module_name_length;
unsigned int data_length;
};
static void CovWritePacked(int pid, const char *module, const void *blob,
unsigned int blob_size) {
if (cov_fd < 0) return;
unsigned module_name_length = internal_strlen(module);
CovHeader header = {pid, module_name_length, blob_size};
if (cov_max_block_size == 0) {
// Writing to a file. Just go ahead.
internal_write(cov_fd, &header, sizeof(header));
internal_write(cov_fd, module, module_name_length);
internal_write(cov_fd, blob, blob_size);
} else {
// Writing to a socket. We want to split the data into appropriately sized
// blocks.
InternalScopedBuffer<char> block(cov_max_block_size);
CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data());
uptr header_size_with_module = sizeof(header) + module_name_length;
CHECK_LT(header_size_with_module, cov_max_block_size);
unsigned int max_payload_size =
cov_max_block_size - header_size_with_module;
char *block_pos = block.data();
internal_memcpy(block_pos, &header, sizeof(header));
block_pos += sizeof(header);
internal_memcpy(block_pos, module, module_name_length);
block_pos += module_name_length;
char *block_data_begin = block_pos;
char *blob_pos = (char *)blob;
while (blob_size > 0) {
unsigned int payload_size = Min(blob_size, max_payload_size);
blob_size -= payload_size;
internal_memcpy(block_data_begin, blob_pos, payload_size);
blob_pos += payload_size;
((CovHeader *)block.data())->data_length = payload_size;
internal_write(cov_fd, block.data(),
header_size_with_module + payload_size);
}
}
}
// If packed = false: <name>.<pid>.<sancov> (name = module name).
// If packed = true and name == 0: <pid>.<sancov>.<packed>.
// If packed = true and name != 0: <name>.<sancov>.<packed> (name is
// user-supplied).
static int CovOpenFile(bool packed, const char* name) {
InternalScopedBuffer<char> path(1024);
if (!packed) {
CHECK(name);
internal_snprintf((char *)path.data(), path.size(), "%s/%s.%zd.sancov",
common_flags()->coverage_dir, name, internal_getpid());
} else {
if (!name)
internal_snprintf((char *)path.data(), path.size(),
"%s/%zd.sancov.packed", common_flags()->coverage_dir,
internal_getpid());
else
internal_snprintf((char *)path.data(), path.size(), "%s/%s.sancov.packed",
common_flags()->coverage_dir, name);
}
uptr fd = OpenFile(path.data(), true);
if (internal_iserror(fd)) {
Report(" SanitizerCoverage: failed to open %s for writing\n", path.data());
return -1;
}
return fd;
}
// This function dumps the caller=>callee pairs into a file as a sequence of
// lines like "module_name offset".
void CoverageData::DumpCallerCalleePairs() {
uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed);
if (!max_idx) return;
auto sym = Symbolizer::GetOrInit();
if (!sym)
return;
InternalScopedString out(32 << 20);
uptr total = 0;
for (uptr i = 0; i < max_idx; i++) {
uptr *cc_cache = cc_array[i];
CHECK(cc_cache);
uptr caller = cc_cache[0];
uptr n_callees = cc_cache[1];
const char *caller_module_name = "<unknown>";
uptr caller_module_address = 0;
sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name,
&caller_module_address);
for (uptr j = 2; j < n_callees; j++) {
uptr callee = cc_cache[j];
if (!callee) break;
total++;
const char *callee_module_name = "<unknown>";
uptr callee_module_address = 0;
sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name,
&callee_module_address);
out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name,
caller_module_address, callee_module_name,
callee_module_address);
}
}
int fd = CovOpenFile(false, "caller-callee");
if (fd < 0) return;
internal_write(fd, out.data(), out.length());
internal_close(fd);
VReport(1, " CovDump: %zd caller-callee pairs written\n", total);
}
// Dump the coverage on disk.
static void CovDump() {
if (!common_flags()->coverage || common_flags()->coverage_direct) return;
#if !SANITIZER_WINDOWS
if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed))
return;
uptr size = coverage_data.size();
InternalMmapVector<u32> offsets(size);
uptr *vb = coverage_data.data();
uptr *ve = vb + size;
SortArray(vb, size);
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
uptr mb, me, off, prot;
InternalScopedBuffer<char> module(4096);
InternalScopedBuffer<char> path(4096 * 2);
for (int i = 0;
proc_maps.Next(&mb, &me, &off, module.data(), module.size(), &prot);
i++) {
if ((prot & MemoryMappingLayout::kProtectionExecute) == 0)
continue;
while (vb < ve && *vb < mb) vb++;
if (vb >= ve) break;
if (*vb < me) {
offsets.clear();
const uptr *old_vb = vb;
CHECK_LE(off, *vb);
for (; vb < ve && *vb < me; vb++) {
uptr diff = *vb - (i ? mb : 0) + off;
CHECK_LE(diff, 0xffffffffU);
offsets.push_back(static_cast<u32>(diff));
}
const char *module_name = StripModuleName(module.data());
if (cov_sandboxed) {
if (cov_fd >= 0) {
CovWritePacked(internal_getpid(), module_name, offsets.data(),
offsets.size() * sizeof(u32));
VReport(1, " CovDump: %zd PCs written to packed file\n", vb - old_vb);
}
} else {
// One file per module per process.
internal_snprintf((char *)path.data(), path.size(), "%s/%s.%zd.sancov",
common_flags()->coverage_dir, module_name,
internal_getpid());
int fd = CovOpenFile(false /* packed */, module_name);
if (fd > 0) {
internal_write(fd, offsets.data(), offsets.size() * sizeof(u32));
internal_close(fd);
VReport(1, " CovDump: %s: %zd PCs written\n", path.data(),
vb - old_vb);
}
}
}
}
if (cov_fd >= 0)
internal_close(cov_fd);
coverage_data.DumpCallerCalleePairs();
#endif // !SANITIZER_WINDOWS
}
void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
if (!args) return;
if (!common_flags()->coverage) return;
cov_sandboxed = args->coverage_sandboxed;
if (!cov_sandboxed) return;
cov_fd = args->coverage_fd;
cov_max_block_size = args->coverage_max_block_size;
if (cov_fd < 0)
// Pre-open the file now. The sandbox won't allow us to do it later.
cov_fd = CovOpenFile(true /* packed */, 0);
}
int MaybeOpenCovFile(const char *name) {
CHECK(name);
if (!common_flags()->coverage) return -1;
return CovOpenFile(true /* packed */, name);
}
void CovBeforeFork() {
coverage_data.BeforeFork();
}
void CovAfterFork(int child_pid) {
coverage_data.AfterFork(child_pid);
}
} // namespace __sanitizer
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov() {
coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()));
}
SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) {
coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
callee, callee_cache16, 16);
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { CovDump(); }
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() {
coverage_data.Init();
}
SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_module_init(uptr npcs) {
if (!common_flags()->coverage || !common_flags()->coverage_direct) return;
if (SANITIZER_ANDROID) {
// dlopen/dlclose interceptors do not work on Android, so we rely on
// Extend() calls to update .sancov.map.
CovUpdateMapping(GET_CALLER_PC());
}
coverage_data.Extend(npcs);
}
SANITIZER_INTERFACE_ATTRIBUTE
sptr __sanitizer_maybe_open_cov_file(const char *name) {
return MaybeOpenCovFile(name);
}
} // extern "C"