gcc/libjava/prims.cc

675 lines
16 KiB
C++
Raw Normal View History

1999-04-07 14:42:40 +00:00
// prims.cc - Code for core of runtime environment.
/* Copyright (C) 1998, 1999 Cygnus Solutions
This file is part of libgcj.
This software is copyrighted work licensed under the terms of the
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
details. */
#include <config.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#pragma implementation "java-array.h"
#include <cni.h>
#include <jvm.h>
#include <java-signal.h>
1999-04-07 14:42:40 +00:00
#include <java/lang/Class.h>
#include <java/lang/Runtime.h>
#include <java/lang/String.h>
#include <java/lang/Thread.h>
#include <java/lang/ThreadGroup.h>
#include <java/lang/FirstThread.h>
#include <java/lang/ArrayIndexOutOfBoundsException.h>
#include <java/lang/ArithmeticException.h>
1999-04-07 14:42:40 +00:00
#include <java/lang/ClassFormatError.h>
#include <java/lang/ClassCastException.h>
#include <java/lang/NegativeArraySizeException.h>
#include <java/lang/NullPointerException.h>
#include <java/lang/OutOfMemoryError.h>
#include <java/lang/ArrayStoreException.h>
#include <java/lang/System.h>
#include <java/lang/reflect/Modifier.h>
#include <java/io/PrintStream.h>
#ifdef USE_LTDL
#include <ltdl.h>
#endif
1999-04-07 14:42:40 +00:00
#define ObjectClass _CL_Q34java4lang6Object
extern java::lang::Class ObjectClass;
// We allocate a single OutOfMemoryError exception which we keep
// around for use if we run out of memory.
static java::lang::OutOfMemoryError *no_memory;
// Largest representable size_t.
#define SIZE_T_MAX ((size_t) (~ (size_t) 0))
#ifdef HANDLE_SEGV
static java::lang::NullPointerException *nullp;
SIGNAL_HANDLER (catch_segv)
{
MAKE_THROW_FRAME;
_Jv_Throw (nullp);
}
#endif
static java::lang::ArithmeticException *arithexception;
#ifdef HANDLE_FPE
SIGNAL_HANDLER (catch_fpe)
{
#ifdef HANDLE_DIVIDE_OVERFLOW
HANDLE_DIVIDE_OVERFLOW;
#else
MAKE_THROW_FRAME;
#endif
_Jv_Throw (arithexception);
}
#endif
1999-04-07 14:42:40 +00:00
jboolean
_Jv_equalUtf8Consts (Utf8Const* a, Utf8Const *b)
{
register int len;
register _Jv_ushort *aptr, *bptr;
if (a == b)
return true;
if (a->hash != b->hash)
return false;
len = a->length;
if (b->length != len)
return false;
aptr = (_Jv_ushort *)a->data;
bptr = (_Jv_ushort *)b->data;
len = (len + 1) >> 1;
while (--len >= 0)
if (*aptr++ != *bptr++)
return false;
return true;
}
/* True iff A is equal to STR.
HASH is STR->hashCode().
1999-04-07 14:42:40 +00:00
*/
jboolean
_Jv_equal (Utf8Const* a, jstring str, jint hash)
{
if (a->hash != (_Jv_ushort) hash)
return false;
jint len = str->length();
jint i = 0;
jchar *sptr = _Jv_GetStringChars (str);
register unsigned char* ptr = (unsigned char*) a->data;
register unsigned char* limit = ptr + a->length;
for (;; i++, sptr++)
{
int ch = UTF8_GET (ptr, limit);
if (i == len)
return ch < 0;
if (ch != *sptr)
return false;
}
return true;
}
/* Count the number of Unicode chars encoded in a given Ut8 string. */
int
_Jv_strLengthUtf8(char* str, int len)
{
register unsigned char* ptr;
register unsigned char* limit;
int str_length;
ptr = (unsigned char*) str;
limit = ptr + len;
str_length = 0;
for (; ptr < limit; str_length++) {
if (UTF8_GET (ptr, limit) < 0) {
return (-1);
}
}
return (str_length);
}
/* Calculate a hash value for a string encoded in Utf8 format.
* This returns the same hash value as specified or java.lang.String.hashCode.
*/
static jint
hashUtf8String (char* str, int len)
{
register unsigned char* ptr = (unsigned char*) str;
register unsigned char* limit = ptr + len;
jint hash = 0;
for (; ptr < limit;)
{
int ch = UTF8_GET (ptr, limit);
/* Updated specification from
http://www.javasoft.com/docs/books/jls/clarify.html. */
hash = (31 * hash) + ch;
}
return hash;
}
_Jv_Utf8Const *
_Jv_makeUtf8Const (char* s, int len)
{
if (len < 0)
len = strlen (s);
Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
if (! m)
JvThrow (no_memory);
memcpy (m->data, s, len);
m->data[len] = 0;
m->length = len;
m->hash = hashUtf8String (s, len) & 0xFFFF;
return (m);
}
#ifdef DEBUG
void
_Jv_Abort (const char *function, const char *file, int line,
const char *message)
#else
void
_Jv_Abort (const char *, const char *, int, const char *message)
#endif
{
#ifdef DEBUG
fprintf (stderr,
"libgcj failure: %s\n in function %s, file %s, line %d\n",
message, function, file, line);
#else
java::io::PrintStream *err = java::lang::System::err;
err->print(JvNewStringLatin1 ("libgcj failure: "));
err->println(JvNewStringLatin1 (message));
err->flush();
#endif
abort ();
}
static void
fail_on_finalization (jobject)
{
JvFail ("object was finalized");
}
void
_Jv_GCWatch (jobject obj)
{
_Jv_RegisterFinalizer (obj, fail_on_finalization);
}
void
_Jv_ThrowBadArrayIndex(jint bad_index)
{
JvThrow (new java::lang::ArrayIndexOutOfBoundsException
(java::lang::String::valueOf(bad_index)));
}
void*
_Jv_CheckCast (jclass c, jobject obj)
{
if (obj != NULL && ! c->isAssignableFrom(obj->getClass()))
JvThrow (new java::lang::ClassCastException);
return obj;
}
void
_Jv_CheckArrayStore (jobject arr, jobject obj)
{
if (obj)
{
JvAssert (arr != NULL);
jclass arr_class = arr->getClass();
JvAssert (arr_class->isArray());
jclass elt_class = arr_class->getComponentType();
jclass obj_class = obj->getClass();
if (! elt_class->isAssignableFrom(obj_class))
JvThrow (new java::lang::ArrayStoreException);
}
}
// Allocate some unscanned memory and throw an exception if no memory.
void *
_Jv_AllocBytesChecked (jsize size)
{
void *r = _Jv_AllocBytes (size);
if (! r)
_Jv_Throw (no_memory);
return r;
}
// Allocate a new object of class C. SIZE is the size of the object
// to allocate. You might think this is redundant, but it isn't; some
// classes, such as String, aren't of fixed size.
jobject
_Jv_AllocObject (jclass c, jint size)
{
_Jv_InitClass (c);
jobject obj = (jobject) _Jv_AllocObj (size);
if (! obj)
JvThrow (no_memory);
*((_Jv_VTable **) obj) = c->vtable;
// If this class has inherited finalize from Object, then don't
// bother registering a finalizer. We know that finalize() is the
// very first method after the dummy entry. If this turns out to be
// unreliable, a more robust implementation can be written. Such an
// implementation would look for Object.finalize in Object's method
// table at startup, and then use that information to find the
// appropriate index in the method vector.
if (c->vtable->method[1] != ObjectClass.vtable->method[1])
_Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
return obj;
}
// Allocate a new array of Java objects. Each object is of type
// `elementClass'. `init' is used to initialize each slot in the
// array.
jobjectArray
_Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
{
if (count < 0)
JvThrow (new java::lang::NegativeArraySizeException);
// Check for overflow.
if ((size_t) count > (SIZE_T_MAX - sizeof (__JArray)) / sizeof (jobject))
JvThrow (no_memory);
size_t size = count * sizeof (jobject) + sizeof (__JArray);
jclass clas = _Jv_FindArrayClass (elementClass);
jobjectArray obj = (jobjectArray) _Jv_AllocArray (size);
if (! obj)
JvThrow (no_memory);
obj->length = count;
jobject* ptr = elements(obj);
// We know the allocator returns zeroed memory. So don't bother
// zeroing it again.
if (init)
{
while (--count >= 0)
*ptr++ = init;
}
// Set the vtbl last to avoid problems if the GC happens during the
// window in this function between the allocation and this
// assignment.
*((_Jv_VTable **) obj) = clas->vtable;
return obj;
}
// Allocate a new array of primitives. ELTYPE is the type of the
// element, COUNT is the size of the array.
jobject
_Jv_NewPrimArray (jclass eltype, jint count)
{
int elsize = eltype->size();
if (count < 0)
JvThrow (new java::lang::NegativeArraySizeException ());
// Check for overflow.
if ((size_t) count > (SIZE_T_MAX - sizeof (__JArray)) / elsize)
JvThrow (no_memory);
__JArray *arr = (__JArray*) _Jv_AllocObj (sizeof (__JArray)
+ elsize * count);
if (! arr)
JvThrow (no_memory);
arr->length = count;
// Note that we assume we are given zeroed memory by the allocator.
jclass klass = _Jv_FindArrayClass (eltype);
// Set the vtbl last to avoid problems if the GC happens during the
// window in this function between the allocation and this
// assignment.
*((_Jv_VTable **) arr) = klass->vtable;
return arr;
}
jcharArray
JvNewCharArray (jint length)
{
return (jcharArray) _Jv_NewPrimArray (JvPrimClass (char), length);
}
jbooleanArray
JvNewBooleanArray (jint length)
{
return (jbooleanArray) _Jv_NewPrimArray (JvPrimClass (boolean), length);
}
jbyteArray
JvNewByteArray (jint length)
{
return (jbyteArray) _Jv_NewPrimArray (JvPrimClass (byte), length);
}
jshortArray
JvNewShortArray (jint length)
{
return (jshortArray) _Jv_NewPrimArray (JvPrimClass (short), length);
}
jintArray
JvNewIntArray (jint length)
{
return (jintArray) _Jv_NewPrimArray (JvPrimClass (int), length);
}
jlongArray
JvNewLongArray (jint length)
{
return (jlongArray) _Jv_NewPrimArray (JvPrimClass (long), length);
}
jfloatArray
JvNewFloatArray (jint length)
{
return (jfloatArray) _Jv_NewPrimArray (JvPrimClass (float), length);
}
jdoubleArray
JvNewDoubleArray (jint length)
{
return (jdoubleArray) _Jv_NewPrimArray (JvPrimClass (double), length);
}
jobject
_Jv_NewArray (jint type, jint size)
{
switch (type)
{
case 4: return JvNewBooleanArray (size);
case 5: return JvNewCharArray (size);
case 6: return JvNewFloatArray (size);
case 7: return JvNewDoubleArray (size);
case 8: return JvNewByteArray (size);
case 9: return JvNewShortArray (size);
case 10: return JvNewIntArray (size);
case 11: return JvNewLongArray (size);
}
JvFail ("newarray - bad type code");
return NULL; // Placate compiler.
}
jobject
_Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
{
JvAssert (type->isArray());
jclass element_type = type->getComponentType();
jobject result;
if (element_type->isPrimitive())
result = _Jv_NewPrimArray (element_type, sizes[0]);
else
result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
if (dimensions > 1)
{
JvAssert (! element_type->isPrimitive());
JvAssert (element_type->isArray());
jobject *contents = elements ((jobjectArray) result);
for (int i = 0; i < sizes[0]; ++i)
contents[i] = _Jv_NewMultiArray (element_type, dimensions - 1,
sizes + 1);
}
return result;
}
jobject
_Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
{
va_list args;
jint sizes[dimensions];
va_start (args, dimensions);
for (int i = 0; i < dimensions; ++i)
{
jint size = va_arg (args, jint);
sizes[i] = size;
}
va_end (args);
return _Jv_NewMultiArray (array_type, dimensions, sizes);
}
class _Jv_PrimClass : public java::lang::Class
{
public:
// FIXME: calling convention is weird. If we use the natural types
// then the compiler will complain because they aren't Java types.
_Jv_PrimClass (jobject cname, jbyte sig, jint len)
{
using namespace java::lang::reflect;
// We must initialize every field of the class. We do this in
// the same order they are declared in Class.h.
next = NULL;
name = _Jv_makeUtf8Const ((char *) cname, -1);
accflags = Modifier::PUBLIC | Modifier::FINAL;
superclass = NULL;
constants.size = 0;
constants.tags = NULL;
constants.data = NULL;
methods = NULL;
method_count = sig;
vtable_method_count = 0;
fields = NULL;
size_in_bytes = len;
field_count = 0;
static_field_count = 0;
vtable = JV_PRIMITIVE_VTABLE;
interfaces = NULL;
loader = NULL;
interface_count = 0;
state = 0; // FIXME.
thread = NULL;
}
};
#define DECLARE_PRIM_TYPE(NAME, SIG, LEN) \
_Jv_PrimClass _Jv_##NAME##Class((jobject) #NAME, (jbyte) SIG, (jint) LEN)
DECLARE_PRIM_TYPE(byte, 'B', 1);
DECLARE_PRIM_TYPE(short, 'S', 2);
DECLARE_PRIM_TYPE(int, 'I', 4);
DECLARE_PRIM_TYPE(long, 'J', 8);
DECLARE_PRIM_TYPE(boolean, 'Z', 1);
DECLARE_PRIM_TYPE(char, 'C', 2);
DECLARE_PRIM_TYPE(float, 'F', 4);
DECLARE_PRIM_TYPE(double, 'D', 8);
DECLARE_PRIM_TYPE(void, 'V', 0);
jclass
_Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
{
switch (*sig)
{
case 'B':
return JvPrimClass (byte);
case 'S':
return JvPrimClass (short);
case 'I':
return JvPrimClass (int);
case 'J':
return JvPrimClass (long);
case 'Z':
return JvPrimClass (boolean);
case 'C':
return JvPrimClass (char);
case 'F':
return JvPrimClass (float);
case 'D':
return JvPrimClass (double);
case 'V':
return JvPrimClass (void);
case 'L':
{
int i;
for (i = 1; sig[i] && sig[i] != ';'; ++i)
;
_Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
return _Jv_FindClass (name, loader);
}
case '[':
return _Jv_FindArrayClass (_Jv_FindClassFromSignature (&sig[1], loader));
}
JvFail ("couldn't understand class signature");
return NULL; // Placate compiler.
}
JArray<jstring> *
JvConvertArgv (int argc, const char **argv)
{
if (argc < 0)
argc = 0;
jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
jobject* ptr = elements(ar);
for (int i = 0; i < argc; i++)
{
const char *arg = argv[i];
// FIXME - should probably use JvNewStringUTF.
*ptr++ = JvNewStringLatin1(arg, strlen(arg));
}
return (JArray<jstring>*) ar;
}
// FIXME: These variables are static so that they will be
// automatically scanned by the Boehm collector. This is needed
// because with qthreads the collector won't scan the initial stack --
// it will only scan the qthreads stacks.
// Command line arguments.
static jobject arg_vec;
// The primary threadgroup.
static java::lang::ThreadGroup *main_group;
// The primary thread.
static java::lang::Thread *main_thread;
void
JvRunMain (jclass klass, int argc, const char **argv)
{
INIT_SEGV;
#ifdef HANDLE_FPE
INIT_FPE;
#else
arithexception = new java::lang::ArithmeticException
(JvNewStringLatin1 ("/ by zero"));
#endif
1999-04-07 14:42:40 +00:00
no_memory = new java::lang::OutOfMemoryError;
#ifdef USE_LTDL
LTDL_SET_PRELOADED_SYMBOLS ();
#endif
1999-04-07 14:42:40 +00:00
arg_vec = JvConvertArgv (argc - 1, argv + 1);
main_group = new java::lang::ThreadGroup (23);
main_thread = new java::lang::FirstThread (main_group, klass, arg_vec);
main_thread->start();
_Jv_ThreadWait ();
java::lang::Runtime::getRuntime ()->exit (0);
}
void *
_Jv_Malloc (jsize size)
{
if (size == 0)
size = 1;
void *ptr = malloc ((size_t) size);
if (ptr == NULL)
JvThrow (no_memory);
return ptr;
}
void
_Jv_Free (void* ptr)
{
return free (ptr);
}
// In theory, these routines can be #ifdef'd away on machines which
// support divide overflow signals. However, we never know if some
// code might have been compiled with "-fuse-divide-subroutine", so we
// always include them in libgcj.
jint
_Jv_divI (jint dividend, jint divisor)
{
if (divisor == 0)
_Jv_Throw (arithexception);
if (dividend == 0x80000000L && divisor == -1)
return dividend;
return dividend / divisor;
}
jint
_Jv_remI (jint dividend, jint divisor)
{
if (divisor == 0)
_Jv_Throw (arithexception);
if (dividend == 0x80000000L && divisor == -1)
return 0;
return dividend % divisor;
}
jlong
_Jv_divJ (jlong dividend, jlong divisor)
{
if (divisor == 0)
_Jv_Throw (arithexception);
if (dividend == 0x8000000000000000LL && divisor == -1)
return dividend;
return dividend / divisor;
}
jlong
_Jv_remJ (jlong dividend, jlong divisor)
{
if (divisor == 0)
_Jv_Throw (arithexception);
if (dividend == 0x8000000000000000LL && divisor == -1)
return 0;
return dividend % divisor;
}