262 lines
6.8 KiB
FortranFixed
262 lines
6.8 KiB
FortranFixed
|
* { dg-do run }
|
||
|
|
||
|
program main
|
||
|
************************************************************
|
||
|
* program to solve a finite difference
|
||
|
* discretization of Helmholtz equation :
|
||
|
* (d2/dx2)u + (d2/dy2)u - alpha u = f
|
||
|
* using Jacobi iterative method.
|
||
|
*
|
||
|
* Modified: Sanjiv Shah, Kuck and Associates, Inc. (KAI), 1998
|
||
|
* Author: Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998
|
||
|
*
|
||
|
* Directives are used in this code to achieve paralleism.
|
||
|
* All do loops are parallized with default 'static' scheduling.
|
||
|
*
|
||
|
* Input : n - grid dimension in x direction
|
||
|
* m - grid dimension in y direction
|
||
|
* alpha - Helmholtz constant (always greater than 0.0)
|
||
|
* tol - error tolerance for iterative solver
|
||
|
* relax - Successice over relaxation parameter
|
||
|
* mits - Maximum iterations for iterative solver
|
||
|
*
|
||
|
* On output
|
||
|
* : u(n,m) - Dependent variable (solutions)
|
||
|
* : f(n,m) - Right hand side function
|
||
|
*************************************************************
|
||
|
implicit none
|
||
|
|
||
|
integer n,m,mits,mtemp
|
||
|
include "omp_lib.h"
|
||
|
double precision tol,relax,alpha
|
||
|
|
||
|
common /idat/ n,m,mits,mtemp
|
||
|
common /fdat/tol,alpha,relax
|
||
|
*
|
||
|
* Read info
|
||
|
*
|
||
|
write(*,*) "Input n,m - grid dimension in x,y direction "
|
||
|
n = 64
|
||
|
m = 64
|
||
|
* read(5,*) n,m
|
||
|
write(*,*) n, m
|
||
|
write(*,*) "Input alpha - Helmholts constant "
|
||
|
alpha = 0.5
|
||
|
* read(5,*) alpha
|
||
|
write(*,*) alpha
|
||
|
write(*,*) "Input relax - Successive over-relaxation parameter"
|
||
|
relax = 0.9
|
||
|
* read(5,*) relax
|
||
|
write(*,*) relax
|
||
|
write(*,*) "Input tol - error tolerance for iterative solver"
|
||
|
tol = 1.0E-12
|
||
|
* read(5,*) tol
|
||
|
write(*,*) tol
|
||
|
write(*,*) "Input mits - Maximum iterations for solver"
|
||
|
mits = 100
|
||
|
* read(5,*) mits
|
||
|
write(*,*) mits
|
||
|
|
||
|
call omp_set_num_threads (2)
|
||
|
|
||
|
*
|
||
|
* Calls a driver routine
|
||
|
*
|
||
|
call driver ()
|
||
|
|
||
|
stop
|
||
|
end
|
||
|
|
||
|
subroutine driver ( )
|
||
|
*************************************************************
|
||
|
* Subroutine driver ()
|
||
|
* This is where the arrays are allocated and initialzed.
|
||
|
*
|
||
|
* Working varaibles/arrays
|
||
|
* dx - grid spacing in x direction
|
||
|
* dy - grid spacing in y direction
|
||
|
*************************************************************
|
||
|
implicit none
|
||
|
|
||
|
integer n,m,mits,mtemp
|
||
|
double precision tol,relax,alpha
|
||
|
|
||
|
common /idat/ n,m,mits,mtemp
|
||
|
common /fdat/tol,alpha,relax
|
||
|
|
||
|
double precision u(n,m),f(n,m),dx,dy
|
||
|
|
||
|
* Initialize data
|
||
|
|
||
|
call initialize (n,m,alpha,dx,dy,u,f)
|
||
|
|
||
|
* Solve Helmholtz equation
|
||
|
|
||
|
call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits)
|
||
|
|
||
|
* Check error between exact solution
|
||
|
|
||
|
call error_check (n,m,alpha,dx,dy,u,f)
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
subroutine initialize (n,m,alpha,dx,dy,u,f)
|
||
|
******************************************************
|
||
|
* Initializes data
|
||
|
* Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)
|
||
|
*
|
||
|
******************************************************
|
||
|
implicit none
|
||
|
|
||
|
integer n,m
|
||
|
double precision u(n,m),f(n,m),dx,dy,alpha
|
||
|
|
||
|
integer i,j, xx,yy
|
||
|
double precision PI
|
||
|
parameter (PI=3.1415926)
|
||
|
|
||
|
dx = 2.0 / (n-1)
|
||
|
dy = 2.0 / (m-1)
|
||
|
|
||
|
* Initilize initial condition and RHS
|
||
|
|
||
|
!$omp parallel do private(xx,yy)
|
||
|
do j = 1,m
|
||
|
do i = 1,n
|
||
|
xx = -1.0 + dx * dble(i-1) ! -1 < x < 1
|
||
|
yy = -1.0 + dy * dble(j-1) ! -1 < y < 1
|
||
|
u(i,j) = 0.0
|
||
|
f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy)
|
||
|
& - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy)
|
||
|
enddo
|
||
|
enddo
|
||
|
!$omp end parallel do
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)
|
||
|
******************************************************************
|
||
|
* Subroutine HelmholtzJ
|
||
|
* Solves poisson equation on rectangular grid assuming :
|
||
|
* (1) Uniform discretization in each direction, and
|
||
|
* (2) Dirichlect boundary conditions
|
||
|
*
|
||
|
* Jacobi method is used in this routine
|
||
|
*
|
||
|
* Input : n,m Number of grid points in the X/Y directions
|
||
|
* dx,dy Grid spacing in the X/Y directions
|
||
|
* alpha Helmholtz eqn. coefficient
|
||
|
* omega Relaxation factor
|
||
|
* f(n,m) Right hand side function
|
||
|
* u(n,m) Dependent variable/Solution
|
||
|
* tol Tolerance for iterative solver
|
||
|
* maxit Maximum number of iterations
|
||
|
*
|
||
|
* Output : u(n,m) - Solution
|
||
|
*****************************************************************
|
||
|
implicit none
|
||
|
integer n,m,maxit
|
||
|
double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
|
||
|
*
|
||
|
* Local variables
|
||
|
*
|
||
|
integer i,j,k,k_local
|
||
|
double precision error,resid,rsum,ax,ay,b
|
||
|
double precision error_local, uold(n,m)
|
||
|
|
||
|
real ta,tb,tc,td,te,ta1,ta2,tb1,tb2,tc1,tc2,td1,td2
|
||
|
real te1,te2
|
||
|
real second
|
||
|
external second
|
||
|
*
|
||
|
* Initialize coefficients
|
||
|
ax = 1.0/(dx*dx) ! X-direction coef
|
||
|
ay = 1.0/(dy*dy) ! Y-direction coef
|
||
|
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff
|
||
|
|
||
|
error = 10.0 * tol
|
||
|
k = 1
|
||
|
|
||
|
do while (k.le.maxit .and. error.gt. tol)
|
||
|
|
||
|
error = 0.0
|
||
|
|
||
|
* Copy new solution into old
|
||
|
!$omp parallel
|
||
|
|
||
|
!$omp do
|
||
|
do j=1,m
|
||
|
do i=1,n
|
||
|
uold(i,j) = u(i,j)
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
* Compute stencil, residual, & update
|
||
|
|
||
|
!$omp do private(resid) reduction(+:error)
|
||
|
do j = 2,m-1
|
||
|
do i = 2,n-1
|
||
|
* Evaluate residual
|
||
|
resid = (ax*(uold(i-1,j) + uold(i+1,j))
|
||
|
& + ay*(uold(i,j-1) + uold(i,j+1))
|
||
|
& + b * uold(i,j) - f(i,j))/b
|
||
|
* Update solution
|
||
|
u(i,j) = uold(i,j) - omega * resid
|
||
|
* Accumulate residual error
|
||
|
error = error + resid*resid
|
||
|
end do
|
||
|
enddo
|
||
|
!$omp enddo nowait
|
||
|
|
||
|
!$omp end parallel
|
||
|
|
||
|
* Error check
|
||
|
|
||
|
k = k + 1
|
||
|
|
||
|
error = sqrt(error)/dble(n*m)
|
||
|
*
|
||
|
enddo ! End iteration loop
|
||
|
*
|
||
|
print *, 'Total Number of Iterations ', k
|
||
|
print *, 'Residual ', error
|
||
|
|
||
|
return
|
||
|
end
|
||
|
|
||
|
subroutine error_check (n,m,alpha,dx,dy,u,f)
|
||
|
implicit none
|
||
|
************************************************************
|
||
|
* Checks error between numerical and exact solution
|
||
|
*
|
||
|
************************************************************
|
||
|
|
||
|
integer n,m
|
||
|
double precision u(n,m),f(n,m),dx,dy,alpha
|
||
|
|
||
|
integer i,j
|
||
|
double precision xx,yy,temp,error
|
||
|
|
||
|
dx = 2.0 / (n-1)
|
||
|
dy = 2.0 / (m-1)
|
||
|
error = 0.0
|
||
|
|
||
|
!$omp parallel do private(xx,yy,temp) reduction(+:error)
|
||
|
do j = 1,m
|
||
|
do i = 1,n
|
||
|
xx = -1.0d0 + dx * dble(i-1)
|
||
|
yy = -1.0d0 + dy * dble(j-1)
|
||
|
temp = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy)
|
||
|
error = error + temp*temp
|
||
|
enddo
|
||
|
enddo
|
||
|
|
||
|
error = sqrt(error)/dble(n*m)
|
||
|
|
||
|
print *, 'Solution Error : ',error
|
||
|
|
||
|
return
|
||
|
end
|