gcc/gcc/simplify-rtx.c

2569 lines
71 KiB
C
Raw Normal View History

/* RTL simplification functions for GNU compiler.
2000-02-26 15:26:24 +01:00
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include <setjmp.h>
#include "rtl.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "output.h"
#include "ggc.h"
/* Simplification and canonicalization of RTL. */
/* Nonzero if X has the form (PLUS frame-pointer integer). We check for
virtual regs here because the simplify_*_operation routines are called
by integrate.c, which is called before virtual register instantiation.
?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
a header file so that their definitions can be shared with the
simplification routines in simplify-rtx.c. Until then, do not
change these macros without also changing the copy in simplify-rtx.c. */
#define FIXED_BASE_PLUS_P(X) \
((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
|| ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
|| (X) == virtual_stack_vars_rtx \
|| (X) == virtual_incoming_args_rtx \
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (XEXP (X, 0) == frame_pointer_rtx \
|| XEXP (X, 0) == hard_frame_pointer_rtx \
|| ((X) == arg_pointer_rtx \
&& fixed_regs[ARG_POINTER_REGNUM]) \
|| XEXP (X, 0) == virtual_stack_vars_rtx \
|| XEXP (X, 0) == virtual_incoming_args_rtx)) \
|| GET_CODE (X) == ADDRESSOF)
/* Similar, but also allows reference to the stack pointer.
This used to include FIXED_BASE_PLUS_P, however, we can't assume that
arg_pointer_rtx by itself is nonzero, because on at least one machine,
the i960, the arg pointer is zero when it is unused. */
#define NONZERO_BASE_PLUS_P(X) \
((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
|| (X) == virtual_stack_vars_rtx \
|| (X) == virtual_incoming_args_rtx \
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (XEXP (X, 0) == frame_pointer_rtx \
|| XEXP (X, 0) == hard_frame_pointer_rtx \
|| ((X) == arg_pointer_rtx \
&& fixed_regs[ARG_POINTER_REGNUM]) \
|| XEXP (X, 0) == virtual_stack_vars_rtx \
|| XEXP (X, 0) == virtual_incoming_args_rtx)) \
|| (X) == stack_pointer_rtx \
|| (X) == virtual_stack_dynamic_rtx \
|| (X) == virtual_outgoing_args_rtx \
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (XEXP (X, 0) == stack_pointer_rtx \
|| XEXP (X, 0) == virtual_stack_dynamic_rtx \
|| XEXP (X, 0) == virtual_outgoing_args_rtx)) \
|| GET_CODE (X) == ADDRESSOF)
/* Much code operates on (low, high) pairs; the low value is an
unsigned wide int, the high value a signed wide int. We
occasionally need to sign extend from low to high as if low were a
signed wide int. */
#define HWI_SIGN_EXTEND(low) \
((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
static rtx simplify_plus_minus PARAMS ((enum rtx_code,
enum machine_mode, rtx, rtx));
static void check_fold_consts PARAMS ((PTR));
/* Make a binary operation by properly ordering the operands and
seeing if the expression folds. */
rtx
simplify_gen_binary (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
rtx tem;
/* Put complex operands first and constants second if commutative. */
if (GET_RTX_CLASS (code) == 'c'
&& swap_commutative_operands_p (op0, op1))
tem = op0, op0 = op1, op1 = tem;
/* If this simplifies, do it. */
tem = simplify_binary_operation (code, mode, op0, op1);
if (tem)
return tem;
/* Handle addition and subtraction of CONST_INT specially. Otherwise,
just form the operation. */
if (code == PLUS && GET_CODE (op1) == CONST_INT
&& GET_MODE (op0) != VOIDmode)
return plus_constant (op0, INTVAL (op1));
else if (code == MINUS && GET_CODE (op1) == CONST_INT
&& GET_MODE (op0) != VOIDmode)
return plus_constant (op0, - INTVAL (op1));
else
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* Make a unary operation by first seeing if it folds and otherwise making
the specified operation. */
rtx
simplify_gen_unary (code, mode, op, op_mode)
enum rtx_code code;
enum machine_mode mode;
rtx op;
enum machine_mode op_mode;
{
rtx tem;
/* If this simplifies, use it. */
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
return tem;
return gen_rtx_fmt_e (code, mode, op);
}
/* Likewise for ternary operations. */
rtx
simplify_gen_ternary (code, mode, op0_mode, op0, op1, op2)
enum rtx_code code;
enum machine_mode mode, op0_mode;
rtx op0, op1, op2;
{
rtx tem;
/* If this simplifies, use it. */
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
op0, op1, op2)))
return tem;
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
}
/* Likewise, for relational operations.
CMP_MODE specifies mode comparison is done in.
*/
rtx
simplify_gen_relational (code, mode, cmp_mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
enum machine_mode cmp_mode;
rtx op0, op1;
{
rtx tem;
if ((tem = simplify_relational_operation (code, cmp_mode, op0, op1)) != 0)
return tem;
/* Put complex operands first and constants second. */
if (swap_commutative_operands_p (op0, op1))
tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* Replace all occurrences of OLD in X with NEW and try to simplify the
resulting RTX. Return a new RTX which is as simplified as possible. */
rtx
simplify_replace_rtx (x, old, new)
rtx x;
rtx old;
rtx new;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
/* If X is OLD, return NEW. Otherwise, if this is an expression, try
to build a new expression substituting recursively. If we can't do
anything, return our input. */
if (x == old)
return new;
switch (GET_RTX_CLASS (code))
{
case '1':
{
enum machine_mode op_mode = GET_MODE (XEXP (x, 0));
rtx op = (XEXP (x, 0) == old
? new : simplify_replace_rtx (XEXP (x, 0), old, new));
return simplify_gen_unary (code, mode, op, op_mode);
}
case '2':
case 'c':
return
simplify_gen_binary (code, mode,
simplify_replace_rtx (XEXP (x, 0), old, new),
simplify_replace_rtx (XEXP (x, 1), old, new));
case '<':
return
simplify_gen_relational (code, mode,
(GET_MODE (XEXP (x, 0)) != VOIDmode
? GET_MODE (XEXP (x, 0))
: GET_MODE (XEXP (x, 1))),
simplify_replace_rtx (XEXP (x, 0), old, new),
simplify_replace_rtx (XEXP (x, 1), old, new));
case '3':
case 'b':
return
simplify_gen_ternary (code, mode, GET_MODE (XEXP (x, 0)),
simplify_replace_rtx (XEXP (x, 0), old, new),
simplify_replace_rtx (XEXP (x, 1), old, new),
simplify_replace_rtx (XEXP (x, 2), old, new));
case 'x':
/* The only case we try to handle is a SUBREG. */
if (code == SUBREG)
{
rtx exp;
exp = simplify_gen_subreg (GET_MODE (x),
simplify_replace_rtx (SUBREG_REG (x),
old, new),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
if (exp)
x = exp;
}
return x;
default:
if (GET_CODE (x) == MEM)
{
/* We can't use change_address here, since it verifies memory address
for corectness. We don't want such check, since we may handle
addresses previously incorect (such as ones in push instructions)
and it is caller's work to verify whether resulting insn match. */
rtx addr = simplify_replace_rtx (XEXP (x, 0), old, new);
rtx mem;
if (XEXP (x, 0) != addr)
{
mem = gen_rtx_MEM (GET_MODE (x), addr);
MEM_COPY_ATTRIBUTES (mem, x);
}
else
mem = x;
return mem;
}
return x;
}
return x;
}
/* Try to simplify a unary operation CODE whose output mode is to be
MODE with input operand OP whose mode was originally OP_MODE.
Return zero if no simplification can be made. */
rtx
simplify_unary_operation (code, mode, op, op_mode)
enum rtx_code code;
enum machine_mode mode;
rtx op;
enum machine_mode op_mode;
{
* Rework fields used to describe positions of bitfields and modify sizes to be unsigned and use HOST_WIDE_INT. * alias.c (reg_known_value_size): Now unsigned. * c-typeck.c (build_unary_op, case ADDR_EXPR): Use byte_position. (really_start_incremental_init): Use bitsize_zero_node. (push_init_level, pop_init_level, output_init_element): Likewise. Use bitsize_unit_node and bitsize_one_node. (output_pending_init_elements, process_init_element): Likewise. * combine.c (combine_max_regno, reg_sign_bit_copies): Now unsigned. (make_extraction): Position and length HOST_WIDE_INT and unsigned HOST_WIDE_INT, respectively. (get_pos_from_mask): Passed in value is unsigned HOST_WIDE_INT. (num_sign_bit_copies): Returns unsigned. BITWIDTH now unsigned; rework arithmetic. Remove recursive call from arg to MAX. (combine_instructions, init_reg_last_arrays): NREGS now unsigned. (setup_incoming_promotions, can_combine_p, try_combine, simplify_set): REGNO now unsigned. (set_nonzero_bit_and_sign_copies): NUM now unsigned. (find_split_point, expand_compound_operation, make_extraction): LEN now unsigned HOST_WIDE_INT, POS now HOST_WIDE_INT. (make_field_assignment): Likewise. (combine_simplify_rtx): Add cast. (expand_compound_operation): MODEWIDTH now unsigned; rework arithmetic. (force_to_mode): WIDTH now unsigned; add cast. (if_then_else_cond): SIZE now unsigned. (nonzero_bits): MODE_WIDTH, RESULT_WIDTH, and WIDTH now unsigned. (extended_count): Now returns unsigned. (simplify_shift_const): COUNT unsigned; arg is now INPUT_COUNT. Add SIGNED_COUNT variable; MODE_WORDS and FIRST_COUNT now unsigned. (simplify_comparison): MODE_WIDTH now unsigned. (update_table_tick): REGNO and ENDREGNO now unsigned; new var R. (mark_used_regs_combine): Likewise; rework arithmetic. (record_value_for_reg): REGNO, ENDREGNO, and I now unsigned. (record_dead_and_set_regs, reg_dead_at_p, distribute_notes): Likewise. (record_promoted_value): REGNO now unsigned. (get_last_value_validate): REGNO, ENDREGNO, and J now unsigned. (get_last_value): REGNO now unsigned. (use_crosses_set_p): REGNO and ENDREGNO now unsigned. (reg_dead_regno, reg_dead_endregno): Now unsigned. (remove_death): Arg REGNO now unsigned. (move_deaths): REGNO, DEADREGNO, DEADEND, OUREND, and I now unsigned. (reg_bitfield_target_p): REGNO, REGNO, ENDREGNO, and ENDTREGNO now unsigned. * convert.c (convert_to_integer): INPREC and OUTPREC now unsigned. * cse.c (struct qty_table_elem): FIRST_REG and LAST_REG now unsigned. (struct cse_reg_info): REGNO now unsigned. (cached_regno): Now unsigned. (REGNO_QTY_VALID_P): Add cast. (make_new_qty, make_regs_eqv, delete_reg_eqiv): Regno args unsigned. (remove_invalid_regs): Likewise. (remove_invalid_subreg_refs): Likewise; arg WORD also unsigned as are variables END and I. (get_cse_reg_info, insert): Likewise. (mention_regs, invalidate_for_call): REGNO, ENDREGNO, and I unsigned. (canon_hash): Likewise. (insert_regs, lookup_for_remove): REGNO now unsigned. (invalidate): REGNO, ENDREGNO, TREGNO, and TENDREGNO now unsigned. New variable RN. * dbxout.c (dbxout_parms, dbxout_reg_parms): Don't check for REGNO < 0. * dwarf2out.c (dwarf2ou_frame_debug_expr): Remove cast. * emit-rtl.c (subreg_realpart_p): Add cast. (operand_subword): Arg I is now unsigned as is var PARTWORDS. (operand_subword_force): Arg I is now unsigned. * except.c (eh_regs): Variable I is now unsigned. * explow.c (hard_function_value): BYTES is unsigned HOST_WIDE_INT. * expmed.c (store_fixed_bit_field): Position is HOST_WIDE_INT; length is unsigned HOST_WIDE_INT; likewise for internal variables. (store_split_bit_field, extract_fixed_bit_field): Likewise. (extract_split_bit_field, store_bit_field, extract_bit_field): Likewise. * expr.c (store_constructor_fields, store_constructor, store_field): Positions are HOST_WIDE_INT and lengths are unsigned HOST_WIDE_INT. (expand_assignment, expand_expr, expand_expr_unaligned): Likewise. (do_jump): Likewise. (move_by_pieces, move_by_pieces_ninsns, clear_by_pieces): MAX_SIZE is now unsigned. (emit_group_load): BYTEPOS is HOST_WIDE_INT; BYTELEN is unsigned. (emit_group_store): Likewise. (emit_move_insn): I now unsigned. (store_constructor): Use host_integerp, tree_low_cst, and bitsize_unit_node. (get_inner_reference): Return bitpos and bitsize as HOST_WIDE_INT. Rework all calculations to use trees and new fields. * expr.h (promoted_input_arg): Regno now unsigned. (store_bit_field, extract_bit_field): Adjust types of pos and size. (mark_seen_cases): Arg is HOST_WIDE_INT. * flow.c (verify_wide_reg_1): REGNO now unsigned. * fold-const.c (decode_field_reference): Size and pos HOST_WIDE_INT; precisions and alignments are unsigned. (optimize_bit_field_compare, fold_truthop): Likewise. (int_const_binop): Adjust threshold for size_int_type_wide call. (fold_convert): Likewise. (size_int_type_wide): Make table larger and fix thinko that only had half of table used. (all_ones_mask_p, fold): Precisions are unsigned. * function.c (put_reg_info_stack): REGNO is unsigned. (instantiate_decl): Size is HOST_WIDE_INT. (instantiate_virtual_regs): I is unsigned. (assign_parms): REGNO, REGNOI, and REGNOR are unsigned. (promoted_input_arg): REGNO is unsigned. * function.h (struct function): x_max_parm_reg is now unsigned. * gcse.c (max_gcse_regno): Now unsigned. (struct null_pointer_info): min_reg and max_reg now unsigned. (lookup_set, next_set): REGNO arg now unsigned. (compute_hash_table): REGNO and I now unsigned. (handle_avail_expr): regnum_for_replacing now unsigned. (cprop_insn): REGNO now unsigned. (delete_null_pointer_checks_1): BLOCK_REG now pointer to unsigned. * ggc-common.c (ggc_mark_tree_children, case FIELD_DECL): New case. * global.c (set_preference): SRC_REGNO, DEST_REGNO, and I now unsigned. * hard-reg-set.h (reg_class_size): Now unsigned. * integrate.c (mark_stores): LAST_REG and I now unsigned; new UREGNO. * jump.c (mark_modified_reg): I now unsigned; add cast. (rtx_equal_for_thread_p): Add cast. * loop.c (max_reg_before_loop): Now unsigned. (struct_movable): REGNO now unsigned. (try_copy_prop): REGNO arg unsigned. (regs_match_p): XN and YN now unsigned. (consec_sets_invariant_p, maybe_eliminate_biv): REGNO now unsigned. (strength_reduce): Likewise; NREGS also unsigned. (first_increment_giv, last_increment_giv unsigned): Now unsigned. * loop.h (struct iv_class): REGNO now unsigned. (max_reg_before_loop, first_increment_giv, last_increment_giv): Now unsigned. * machmode.h (mode_size, mode_unit_size): Now unsigned. (mode_for_size, smallest_mode_for_size): Pass size as unsigned. * optabs.c (expand_binop): I and NWORDS now unsigned. (expand_unop): I now unsigned. * print-tree.c (print_node): Don't print DECL_FIELD_BITPOS, but do print DECL_FIELD_OFFSET and DECL_FIELD_BIT_OFFSET. * real.c (significand_size): Now returns unsigned. * real.h (significand_size): Likewise. * regclass.c (reg_class_size): Now unsigned. (choose_hard_reg_mode): Both operands now unsigned. (record_reg_classes): REGNO and NR now unsigned. (reg_scan): NREGS now unsigned. (reg_scan_update): old_max_regno now unsigned. (reg_scan_mark_refs): Arg MIN_REGNO and var REGNO now unsigned. * reload.c (find_valid_class): BEST_SIZE now unsigned. (find_dummy_reload): REGNO, NWORDS, and I now unsigned. (hard_reg_set_here_p): Args BEG_REGNO and END_REGNO now unsigned. Likewise for variable R. (refers_to_regno_for_reload_p): Args REGNO and END_REGNO now unsigned, as are variables INNER_REGNO and INNER_ENDREGNO; add new variable R. (find_equiv_reg): Add casts. (regno_clobbered_p): Arg REGNO now unsigned. * reload.h (struct reload): NREGS now unsigned. (refers_to_regno_for_reload_p): Regno args are unsigned. (regno_clobbered_p): Likewise. * reload1.c (reg_max_ref_width, spill_stack_slot_width): Now unsigned. (compute_use_by_pseudos): REGNO now unsigned. (find_reg): I and J now unsigned, new variable K, and change loop variables accordingly; THIS_NREGS now unsigned. (alter_reg): INHERENT_SIZE and TOTAL_SIZE now unsigned. (spill_hard_reg): REGNO arg now unsigned; add casts. (forget_old_reloads_1): REGNO, NR, and I now unsigned. (mark_reload_reg_in_use): Arg REGNO and vars NREGS and I now unsigned. (clear_reload_reg_in_use): Arg REGNO and vars NREGS, START_REGNO, END_REGNO, CONFLICT_START, and CONFLICT_END now unsigned. (reload_reg_free_p, reload_reg_reaches_end_p): Arg REGNO now unsigned. (choose_reload_regs): MAX_GROUP_SIZE now unsigned. (emit_reload_insns): REGNO now unsigned. (reload_cse_move2add): Add cast. (move2add_note_store): REGNO and I now unsigned; new variable ENDREGNO and rework loop. * resource.c (mark_referenced_resources, mark_set_resources): New variable R; REGNO and LAST_REGNO now unsigned. (mark_target_live_regs): J and REGNO now unsigned. * rtl.c (mode_size, mode_unit_size): Now unsigned. * rtl.h (union rtunion_def): New field rtuint. (XCUINT): New macro. (ADDRESSOF_REGNO, REGNO, SUBREG_WORD): New XCUINT. (operand_subword, operand_subword_force): Word number is unsigned. (choose_hard_reg_mode): Operands are unsigned. (refers_to-regno_p, dead_or_set_regno_p): Regno arg is unsigned. (find_regno_note, find_regno_fusage, replace_regs): Likewise. (regno_use_in, combine_instructions, remove_death): Likewise. (reg_scan, reg_scan_update): Likewise. (extended_count): Return is unsigned. * rtlanal.c (refers_to_regno_p): Args REGNO and ENDREGNO and vars I, INNER_REGNO, and INNER_ENDREGNO now unsigned; new variable X_REGNO. (reg_overlap_mentioned_p): REGNO and ENDREGNO now unsigned. (reg_set_last_first_regno, reg_set_last_last_regno): Now unsigned. (reg_reg_last_1): FIRS and LAST now unsigned. (dead_or_set_p): REGNO, LAST_REGNO, and I now unsigned. (dead_or_set_regno_p): Arg TEST_REGNO and vars REGNO and ENDREGNO now unsigned. (find_regno_note, regno_use_in): Arg REGNO now unsigned. (find_regno_fusage): Likewise; also var REGNOTE now unsigned. (find_reg_fusage): Variables REGNO, END_REGNO, and I now unsigned. (replace_regs): Arg NREGS now unsigned. * sdbout.c (sdbout_parms, sdbout_reg_parms): Don't check REGNO < 0. * simplify-rtx.c (simplify_unary_operation): WIDTH now unsigned. (simplify_binary_operation): Likewise. (cselib_invalidate_regno): Arg REGNO and variables ENDREGNO, I, and THIS_LAST now unsigned. (cselib_record_set): Add cast. * ssa.c (ssa_max_reg_num): Now unsigned. (rename_block): REGNO now unsigned. * stmt.c (expand_return): Bit positions unsigned HOST_WIDE_INT; sizes now unsigned. (all_cases_count): Just return -1 not -2. COUNT, MINVAL, and LASTVAL now HOST_WIDE_INT. Rework tests to use trees whenever possible. Use host_integerp and tree_low_cst. (mark_seen_cases): COUNT arg now HOST_WIDE_INT; Likewise variable NEXT_NODE_OFFSET; XLO now unsigned. (check_for_full_enumeration_handing): BYTES_NEEDED, I to HOST_WIDE_INT. * stor-layout.c (mode_for_size): SIZE arg now unsigned. (smallest_mode_for_size): Likewise. (layout_decl): Simplify handing of a specified DECL_SIZE_UNIT. KNOWN_ALIGN is now an alignment, so simplify code. Don't turn off DECL_BIT_FIELD if field is BLKmode, but not type. (start_record_layout): Renamed from new_record_layout_info. Update to new fields. (debug_rli, normalize_rli, rli_size_unit_so_far, rli_size_so_far): New functions. (place_union_field): Renamed from layout_union_field. Update to use new fields in rli. (place_field): Renamed from layout_field. Major rewrite to use new fields in rli; pass alignment to layout_decl. (finalize_record_size): Rework to use new fields in rli and handle union. (compute_record_mode): Rework to simplify and to use new DECL fields. (finalize_type_size): Make rounding more consistent. (finish_union_layout): Deleted. (layout_type, case VOID_TYPE): Don't set TYPE_SIZE_UNIT either. (layout_type, case RECORD_TYPE): Call new function names. (initialize_sizetypes): Set TYPE_IS_SIZETYPE. (set_sizetype): Set TYPE_IS_SIZETYPE earlier. (get_best_mode): UNIT is now unsigned; remove casts. * tree.c (bit_position): Compute from new fields. (byte_position, int_byte_position): New functions. (print_type_hash_statistics): Cast to remove warning. (build_range_type): Use host_integerp and tree_low_cst to try to hash. (build_index_type): Likewise; make subtype of sizetype. (build_index_2_type): Pass sizetype to build_range_type. (build_common_tree_nodes): Use size_int and bitsize_int to initialize nodes; add bitsize_{zero,one,unit}_node. * tree.h (DECL_FIELD_CONTEXT): Use FIELD_DECL_CHECK. (DECL_BIT_FIELD_TYPE, DECL_QUALIFIER, DECL_FCONTEXT): Likewise. (DECL_PACKED, DECL_BIT_FIELD): Likewise. (DECL_FIELD_BITPOS): Deleted. (DECL_FIELD_OFFSET, DECL_FIELD_BIT_OFFSET): New fields. (DECL_RESULT, DECL_SAVED_INSNS): Use FUNCTION_DECL_CHECK. (DECL_FRAME_SIZE, DECL_FUNCTION_CODE, DECL_NO_STATIC_CHAIN): Likewise. (DECL_INLINE, DECL_BUILT_IN_NONANSI, DECL_IS_MALLOC): Likewise. (DECL_BUILT_IN_CLASS, DECL_STATIC_CONSTRUCTOR): Likewise. (DECL_STATIC_DESTRUCTOR, DECL_NO_CHECK_MEMORY_USAGE): Likewise. (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT, DECL_NO_LIMIT_STACK) Likewise. (DECL_ORIGINAL_TYPE, TYPE_DECL_SUPPRESS_DEBUG): Use TYPE_DECL_CHECK. (DECL_ARG_TYPE_AS_WRITEN, DECL_ARG_TYPE): Use PARM_DECL_CHECK. (DECL_INCOMING_RTL, DECL_TRANSPARENT_UNION): Likewise. (DECL_ALIGN): Adjust to new field in union. (DECL_OFFSET_ALIGN): New field. (DECL_ERROR_ISSUED, DECL_TOO_LATE): Use LABEL_DECL_CHECK. (DECL_IN_TEXT_SECTION): Use VAR_DECL_CHECK. (union tree_decl): Add struct for both aligns. (enum tree_index): Add TI_BITSIZE_{ZERO,ONE,UNIT}. (bitsize_zero_node, bitsize_one_node, bitsize_unit_node): Added. (struct record_layout_info): Rework fields to have offset alignment and byte and bit position. (start_record_layout, place_field): Renamed from old names. (rli_size_so_far, rli_size_unit_so_far, normalize_rli): New decls. (byte_position, int_byte_position): Likewise. (get_inner_reference): Change types of position and length. * unroll.c (unroll_loop): New variable R; use for some loops. MAX_LOCAL_REGNUM and MAXREGNUM now unsigned. (calculate_giv_inc): Arg REGNO now unsigned. (copy_loop_body): REGNO and SRC_REGNO now unsigned. * varasm.c (assemble_variable): Clean up handling of size using host_integerp and tree_low_cst. (decode_addr_const): Use byte, not bit, position. (output_constructor): bitpos and offsets are HOST_WIDE_INT; use tree_low_cst and int_bit_position. * objc/objc-act.c (build_ivar_list_initializer): Use byte_position. * ch/actions.c (check_missing_cases): BYTES_NEEDED is HOST_WIDE_INT. * ch/typeck.c (expand_constant_to_buffer): Use int_byte_position. (extract_constant_from_buffer): Likewise. * cp/class.c (build_vbase_pointer_fields): layout_field now place_field. (get_vfield_offset): Use byte_position. (set_rtti_entry): Set OFFSET to ssizetype zero. (get_binfo_offset_as_int): Deleted. (dfs_record_base_offsets): Use tree_low_cst. (dfs_search_base_offsets): Likewise. (layout_nonempty_base_or_field): Reflect changes in RLI format and call byte_position. (layout_empty_base): Convert offset to ssizetype. (build_base_field): use rli_size_unit_so_far. (dfs_propagate_binfo_offsets): Do computation in proper type. (layout_virtual_bases): Pass ssizetype to propagate_binfo_offsets. (layout_class_type): Reflect changes in RLI names and fields. (finish_struct_1): Set DECL_FIELD_OFFSET. * cp/dump.c (dequeue_and_dump): Call bit_position. * cp/expr.c (cplus_expand_constant): Use byte_position. * cp/rtti.c (expand_class_desc): Use bitsize_one_node. * cp/typeck.c (build_component_addr): Use byte_position and don't special case for zero offset. * f/com.c (ffecom_tree_canonize_ptr_): Use bitsize_zero_node. (ffecom_tree_canonize_ref_): Likewise. * java/class.c (make_field_value): Use byte_position. * java/expr.c (JAVA_ARRAY_LENGTH_OFFSET): Use byte_position. (java_array_data_offset): Likewise. * java/java-tree.h (MAYBE_CREATE_TYPE_TYPE_LANG_SPECIFIC): Add case to bzero call. From-SVN: r32742
2000-03-25 19:34:13 +01:00
unsigned int width = GET_MODE_BITSIZE (mode);
/* The order of these tests is critical so that, for example, we don't
check the wrong mode (input vs. output) for a conversion operation,
such as FIX. At some point, this should be simplified. */
#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
if (code == FLOAT && GET_MODE (op) == VOIDmode
&& (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
{
HOST_WIDE_INT hv, lv;
REAL_VALUE_TYPE d;
if (GET_CODE (op) == CONST_INT)
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
else
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
#ifdef REAL_ARITHMETIC
REAL_VALUE_FROM_INT (d, lv, hv, mode);
#else
if (hv < 0)
{
d = (double) (~ hv);
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
d += (double) (unsigned HOST_WIDE_INT) (~ lv);
d = (- d - 1.0);
}
else
{
d = (double) hv;
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
d += (double) (unsigned HOST_WIDE_INT) lv;
}
#endif /* REAL_ARITHMETIC */
d = real_value_truncate (mode, d);
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
}
else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
&& (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
{
HOST_WIDE_INT hv, lv;
REAL_VALUE_TYPE d;
if (GET_CODE (op) == CONST_INT)
lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
else
lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
if (op_mode == VOIDmode)
{
/* We don't know how to interpret negative-looking numbers in
this case, so don't try to fold those. */
if (hv < 0)
return 0;
}
else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
;
else
hv = 0, lv &= GET_MODE_MASK (op_mode);
#ifdef REAL_ARITHMETIC
REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
#else
d = (double) (unsigned HOST_WIDE_INT) hv;
d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
d += (double) (unsigned HOST_WIDE_INT) lv;
#endif /* REAL_ARITHMETIC */
d = real_value_truncate (mode, d);
return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
}
#endif
if (GET_CODE (op) == CONST_INT
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
{
register HOST_WIDE_INT arg0 = INTVAL (op);
register HOST_WIDE_INT val;
switch (code)
{
case NOT:
val = ~ arg0;
break;
case NEG:
val = - arg0;
break;
case ABS:
val = (arg0 >= 0 ? arg0 : - arg0);
break;
case FFS:
/* Don't use ffs here. Instead, get low order bit and then its
number. If arg0 is zero, this will return 0, as desired. */
arg0 &= GET_MODE_MASK (mode);
val = exact_log2 (arg0 & (- arg0)) + 1;
break;
case TRUNCATE:
val = arg0;
break;
case ZERO_EXTEND:
if (op_mode == VOIDmode)
op_mode = mode;
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
{
/* If we were really extending the mode,
we would have to distinguish between zero-extension
and sign-extension. */
if (width != GET_MODE_BITSIZE (op_mode))
abort ();
val = arg0;
}
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
else
return 0;
break;
case SIGN_EXTEND:
if (op_mode == VOIDmode)
op_mode = mode;
if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
{
/* If we were really extending the mode,
we would have to distinguish between zero-extension
and sign-extension. */
if (width != GET_MODE_BITSIZE (op_mode))
abort ();
val = arg0;
}
else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
{
val
= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
if (val
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
}
else
return 0;
break;
case SQRT:
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
return 0;
default:
abort ();
}
val = trunc_int_for_mode (val, mode);
return GEN_INT (val);
}
/* We can do some operations on integer CONST_DOUBLEs. Also allow
for a DImode operation on a CONST_INT. */
else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
&& (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
{
unsigned HOST_WIDE_INT l1, lv;
HOST_WIDE_INT h1, hv;
if (GET_CODE (op) == CONST_DOUBLE)
l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
else
l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
switch (code)
{
case NOT:
lv = ~ l1;
hv = ~ h1;
break;
case NEG:
neg_double (l1, h1, &lv, &hv);
break;
case ABS:
if (h1 < 0)
neg_double (l1, h1, &lv, &hv);
else
lv = l1, hv = h1;
break;
case FFS:
hv = 0;
if (l1 == 0)
lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
else
lv = exact_log2 (l1 & (-l1)) + 1;
break;
case TRUNCATE:
/* This is just a change-of-mode, so do nothing. */
lv = l1, hv = h1;
break;
case ZERO_EXTEND:
if (op_mode == VOIDmode
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
return 0;
hv = 0;
lv = l1 & GET_MODE_MASK (op_mode);
break;
case SIGN_EXTEND:
if (op_mode == VOIDmode
|| GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
return 0;
else
{
lv = l1 & GET_MODE_MASK (op_mode);
if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
&& (lv & ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
hv = HWI_SIGN_EXTEND (lv);
}
break;
case SQRT:
return 0;
default:
return 0;
}
return immed_double_const (lv, hv, mode);
}
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE_CLASS (mode) == MODE_FLOAT)
{
REAL_VALUE_TYPE d;
jmp_buf handler;
rtx x;
if (setjmp (handler))
/* There used to be a warning here, but that is inadvisable.
People may want to cause traps, and the natural way
to do it should not get a warning. */
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
switch (code)
{
case NEG:
d = REAL_VALUE_NEGATE (d);
break;
case ABS:
if (REAL_VALUE_NEGATIVE (d))
d = REAL_VALUE_NEGATE (d);
break;
case FLOAT_TRUNCATE:
d = real_value_truncate (mode, d);
break;
case FLOAT_EXTEND:
/* All this does is change the mode. */
break;
case FIX:
d = REAL_VALUE_RNDZINT (d);
break;
case UNSIGNED_FIX:
d = REAL_VALUE_UNSIGNED_RNDZINT (d);
break;
case SQRT:
return 0;
default:
abort ();
}
x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
set_float_handler (NULL);
return x;
}
else if (GET_CODE (op) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
&& GET_MODE_CLASS (mode) == MODE_INT
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)
{
REAL_VALUE_TYPE d;
jmp_buf handler;
HOST_WIDE_INT val;
if (setjmp (handler))
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
switch (code)
{
case FIX:
val = REAL_VALUE_FIX (d);
break;
case UNSIGNED_FIX:
val = REAL_VALUE_UNSIGNED_FIX (d);
break;
default:
abort ();
}
set_float_handler (NULL);
val = trunc_int_for_mode (val, mode);
return GEN_INT (val);
}
#endif
/* This was formerly used only for non-IEEE float.
eggert@twinsun.com says it is safe for IEEE also. */
else
{
enum rtx_code reversed;
/* There are some simplifications we can do even if the operands
aren't constant. */
switch (code)
{
case NOT:
/* (not (not X)) == X. */
if (GET_CODE (op) == NOT)
return XEXP (op, 0);
/* (not (eq X Y)) == (ne X Y), etc. */
if (mode == BImode && GET_RTX_CLASS (GET_CODE (op)) == '<'
&& ((reversed = reversed_comparison_code (op, NULL_RTX))
!= UNKNOWN))
return gen_rtx_fmt_ee (reversed,
op_mode, XEXP (op, 0), XEXP (op, 1));
break;
case NEG:
/* (neg (neg X)) == X. */
if (GET_CODE (op) == NEG)
return XEXP (op, 0);
break;
case SIGN_EXTEND:
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
becomes just the MINUS if its mode is MODE. This allows
folding switch statements on machines using casesi (such as
the Vax). */
if (GET_CODE (op) == TRUNCATE
&& GET_MODE (XEXP (op, 0)) == mode
&& GET_CODE (XEXP (op, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
return XEXP (op, 0);
#ifdef POINTERS_EXTEND_UNSIGNED
if (! POINTERS_EXTEND_UNSIGNED
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == REG
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
return convert_memory_address (Pmode, op);
#endif
break;
#ifdef POINTERS_EXTEND_UNSIGNED
case ZERO_EXTEND:
if (POINTERS_EXTEND_UNSIGNED
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& GET_CODE (SUBREG_REG (op)) == REG
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode)))
return convert_memory_address (Pmode, op);
break;
#endif
default:
break;
}
return 0;
}
}
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
and OP1. Return 0 if no simplification is possible.
Don't use this for relational operations such as EQ or LT.
Use simplify_relational_operation instead. */
rtx
simplify_binary_operation (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
HOST_WIDE_INT val;
* Rework fields used to describe positions of bitfields and modify sizes to be unsigned and use HOST_WIDE_INT. * alias.c (reg_known_value_size): Now unsigned. * c-typeck.c (build_unary_op, case ADDR_EXPR): Use byte_position. (really_start_incremental_init): Use bitsize_zero_node. (push_init_level, pop_init_level, output_init_element): Likewise. Use bitsize_unit_node and bitsize_one_node. (output_pending_init_elements, process_init_element): Likewise. * combine.c (combine_max_regno, reg_sign_bit_copies): Now unsigned. (make_extraction): Position and length HOST_WIDE_INT and unsigned HOST_WIDE_INT, respectively. (get_pos_from_mask): Passed in value is unsigned HOST_WIDE_INT. (num_sign_bit_copies): Returns unsigned. BITWIDTH now unsigned; rework arithmetic. Remove recursive call from arg to MAX. (combine_instructions, init_reg_last_arrays): NREGS now unsigned. (setup_incoming_promotions, can_combine_p, try_combine, simplify_set): REGNO now unsigned. (set_nonzero_bit_and_sign_copies): NUM now unsigned. (find_split_point, expand_compound_operation, make_extraction): LEN now unsigned HOST_WIDE_INT, POS now HOST_WIDE_INT. (make_field_assignment): Likewise. (combine_simplify_rtx): Add cast. (expand_compound_operation): MODEWIDTH now unsigned; rework arithmetic. (force_to_mode): WIDTH now unsigned; add cast. (if_then_else_cond): SIZE now unsigned. (nonzero_bits): MODE_WIDTH, RESULT_WIDTH, and WIDTH now unsigned. (extended_count): Now returns unsigned. (simplify_shift_const): COUNT unsigned; arg is now INPUT_COUNT. Add SIGNED_COUNT variable; MODE_WORDS and FIRST_COUNT now unsigned. (simplify_comparison): MODE_WIDTH now unsigned. (update_table_tick): REGNO and ENDREGNO now unsigned; new var R. (mark_used_regs_combine): Likewise; rework arithmetic. (record_value_for_reg): REGNO, ENDREGNO, and I now unsigned. (record_dead_and_set_regs, reg_dead_at_p, distribute_notes): Likewise. (record_promoted_value): REGNO now unsigned. (get_last_value_validate): REGNO, ENDREGNO, and J now unsigned. (get_last_value): REGNO now unsigned. (use_crosses_set_p): REGNO and ENDREGNO now unsigned. (reg_dead_regno, reg_dead_endregno): Now unsigned. (remove_death): Arg REGNO now unsigned. (move_deaths): REGNO, DEADREGNO, DEADEND, OUREND, and I now unsigned. (reg_bitfield_target_p): REGNO, REGNO, ENDREGNO, and ENDTREGNO now unsigned. * convert.c (convert_to_integer): INPREC and OUTPREC now unsigned. * cse.c (struct qty_table_elem): FIRST_REG and LAST_REG now unsigned. (struct cse_reg_info): REGNO now unsigned. (cached_regno): Now unsigned. (REGNO_QTY_VALID_P): Add cast. (make_new_qty, make_regs_eqv, delete_reg_eqiv): Regno args unsigned. (remove_invalid_regs): Likewise. (remove_invalid_subreg_refs): Likewise; arg WORD also unsigned as are variables END and I. (get_cse_reg_info, insert): Likewise. (mention_regs, invalidate_for_call): REGNO, ENDREGNO, and I unsigned. (canon_hash): Likewise. (insert_regs, lookup_for_remove): REGNO now unsigned. (invalidate): REGNO, ENDREGNO, TREGNO, and TENDREGNO now unsigned. New variable RN. * dbxout.c (dbxout_parms, dbxout_reg_parms): Don't check for REGNO < 0. * dwarf2out.c (dwarf2ou_frame_debug_expr): Remove cast. * emit-rtl.c (subreg_realpart_p): Add cast. (operand_subword): Arg I is now unsigned as is var PARTWORDS. (operand_subword_force): Arg I is now unsigned. * except.c (eh_regs): Variable I is now unsigned. * explow.c (hard_function_value): BYTES is unsigned HOST_WIDE_INT. * expmed.c (store_fixed_bit_field): Position is HOST_WIDE_INT; length is unsigned HOST_WIDE_INT; likewise for internal variables. (store_split_bit_field, extract_fixed_bit_field): Likewise. (extract_split_bit_field, store_bit_field, extract_bit_field): Likewise. * expr.c (store_constructor_fields, store_constructor, store_field): Positions are HOST_WIDE_INT and lengths are unsigned HOST_WIDE_INT. (expand_assignment, expand_expr, expand_expr_unaligned): Likewise. (do_jump): Likewise. (move_by_pieces, move_by_pieces_ninsns, clear_by_pieces): MAX_SIZE is now unsigned. (emit_group_load): BYTEPOS is HOST_WIDE_INT; BYTELEN is unsigned. (emit_group_store): Likewise. (emit_move_insn): I now unsigned. (store_constructor): Use host_integerp, tree_low_cst, and bitsize_unit_node. (get_inner_reference): Return bitpos and bitsize as HOST_WIDE_INT. Rework all calculations to use trees and new fields. * expr.h (promoted_input_arg): Regno now unsigned. (store_bit_field, extract_bit_field): Adjust types of pos and size. (mark_seen_cases): Arg is HOST_WIDE_INT. * flow.c (verify_wide_reg_1): REGNO now unsigned. * fold-const.c (decode_field_reference): Size and pos HOST_WIDE_INT; precisions and alignments are unsigned. (optimize_bit_field_compare, fold_truthop): Likewise. (int_const_binop): Adjust threshold for size_int_type_wide call. (fold_convert): Likewise. (size_int_type_wide): Make table larger and fix thinko that only had half of table used. (all_ones_mask_p, fold): Precisions are unsigned. * function.c (put_reg_info_stack): REGNO is unsigned. (instantiate_decl): Size is HOST_WIDE_INT. (instantiate_virtual_regs): I is unsigned. (assign_parms): REGNO, REGNOI, and REGNOR are unsigned. (promoted_input_arg): REGNO is unsigned. * function.h (struct function): x_max_parm_reg is now unsigned. * gcse.c (max_gcse_regno): Now unsigned. (struct null_pointer_info): min_reg and max_reg now unsigned. (lookup_set, next_set): REGNO arg now unsigned. (compute_hash_table): REGNO and I now unsigned. (handle_avail_expr): regnum_for_replacing now unsigned. (cprop_insn): REGNO now unsigned. (delete_null_pointer_checks_1): BLOCK_REG now pointer to unsigned. * ggc-common.c (ggc_mark_tree_children, case FIELD_DECL): New case. * global.c (set_preference): SRC_REGNO, DEST_REGNO, and I now unsigned. * hard-reg-set.h (reg_class_size): Now unsigned. * integrate.c (mark_stores): LAST_REG and I now unsigned; new UREGNO. * jump.c (mark_modified_reg): I now unsigned; add cast. (rtx_equal_for_thread_p): Add cast. * loop.c (max_reg_before_loop): Now unsigned. (struct_movable): REGNO now unsigned. (try_copy_prop): REGNO arg unsigned. (regs_match_p): XN and YN now unsigned. (consec_sets_invariant_p, maybe_eliminate_biv): REGNO now unsigned. (strength_reduce): Likewise; NREGS also unsigned. (first_increment_giv, last_increment_giv unsigned): Now unsigned. * loop.h (struct iv_class): REGNO now unsigned. (max_reg_before_loop, first_increment_giv, last_increment_giv): Now unsigned. * machmode.h (mode_size, mode_unit_size): Now unsigned. (mode_for_size, smallest_mode_for_size): Pass size as unsigned. * optabs.c (expand_binop): I and NWORDS now unsigned. (expand_unop): I now unsigned. * print-tree.c (print_node): Don't print DECL_FIELD_BITPOS, but do print DECL_FIELD_OFFSET and DECL_FIELD_BIT_OFFSET. * real.c (significand_size): Now returns unsigned. * real.h (significand_size): Likewise. * regclass.c (reg_class_size): Now unsigned. (choose_hard_reg_mode): Both operands now unsigned. (record_reg_classes): REGNO and NR now unsigned. (reg_scan): NREGS now unsigned. (reg_scan_update): old_max_regno now unsigned. (reg_scan_mark_refs): Arg MIN_REGNO and var REGNO now unsigned. * reload.c (find_valid_class): BEST_SIZE now unsigned. (find_dummy_reload): REGNO, NWORDS, and I now unsigned. (hard_reg_set_here_p): Args BEG_REGNO and END_REGNO now unsigned. Likewise for variable R. (refers_to_regno_for_reload_p): Args REGNO and END_REGNO now unsigned, as are variables INNER_REGNO and INNER_ENDREGNO; add new variable R. (find_equiv_reg): Add casts. (regno_clobbered_p): Arg REGNO now unsigned. * reload.h (struct reload): NREGS now unsigned. (refers_to_regno_for_reload_p): Regno args are unsigned. (regno_clobbered_p): Likewise. * reload1.c (reg_max_ref_width, spill_stack_slot_width): Now unsigned. (compute_use_by_pseudos): REGNO now unsigned. (find_reg): I and J now unsigned, new variable K, and change loop variables accordingly; THIS_NREGS now unsigned. (alter_reg): INHERENT_SIZE and TOTAL_SIZE now unsigned. (spill_hard_reg): REGNO arg now unsigned; add casts. (forget_old_reloads_1): REGNO, NR, and I now unsigned. (mark_reload_reg_in_use): Arg REGNO and vars NREGS and I now unsigned. (clear_reload_reg_in_use): Arg REGNO and vars NREGS, START_REGNO, END_REGNO, CONFLICT_START, and CONFLICT_END now unsigned. (reload_reg_free_p, reload_reg_reaches_end_p): Arg REGNO now unsigned. (choose_reload_regs): MAX_GROUP_SIZE now unsigned. (emit_reload_insns): REGNO now unsigned. (reload_cse_move2add): Add cast. (move2add_note_store): REGNO and I now unsigned; new variable ENDREGNO and rework loop. * resource.c (mark_referenced_resources, mark_set_resources): New variable R; REGNO and LAST_REGNO now unsigned. (mark_target_live_regs): J and REGNO now unsigned. * rtl.c (mode_size, mode_unit_size): Now unsigned. * rtl.h (union rtunion_def): New field rtuint. (XCUINT): New macro. (ADDRESSOF_REGNO, REGNO, SUBREG_WORD): New XCUINT. (operand_subword, operand_subword_force): Word number is unsigned. (choose_hard_reg_mode): Operands are unsigned. (refers_to-regno_p, dead_or_set_regno_p): Regno arg is unsigned. (find_regno_note, find_regno_fusage, replace_regs): Likewise. (regno_use_in, combine_instructions, remove_death): Likewise. (reg_scan, reg_scan_update): Likewise. (extended_count): Return is unsigned. * rtlanal.c (refers_to_regno_p): Args REGNO and ENDREGNO and vars I, INNER_REGNO, and INNER_ENDREGNO now unsigned; new variable X_REGNO. (reg_overlap_mentioned_p): REGNO and ENDREGNO now unsigned. (reg_set_last_first_regno, reg_set_last_last_regno): Now unsigned. (reg_reg_last_1): FIRS and LAST now unsigned. (dead_or_set_p): REGNO, LAST_REGNO, and I now unsigned. (dead_or_set_regno_p): Arg TEST_REGNO and vars REGNO and ENDREGNO now unsigned. (find_regno_note, regno_use_in): Arg REGNO now unsigned. (find_regno_fusage): Likewise; also var REGNOTE now unsigned. (find_reg_fusage): Variables REGNO, END_REGNO, and I now unsigned. (replace_regs): Arg NREGS now unsigned. * sdbout.c (sdbout_parms, sdbout_reg_parms): Don't check REGNO < 0. * simplify-rtx.c (simplify_unary_operation): WIDTH now unsigned. (simplify_binary_operation): Likewise. (cselib_invalidate_regno): Arg REGNO and variables ENDREGNO, I, and THIS_LAST now unsigned. (cselib_record_set): Add cast. * ssa.c (ssa_max_reg_num): Now unsigned. (rename_block): REGNO now unsigned. * stmt.c (expand_return): Bit positions unsigned HOST_WIDE_INT; sizes now unsigned. (all_cases_count): Just return -1 not -2. COUNT, MINVAL, and LASTVAL now HOST_WIDE_INT. Rework tests to use trees whenever possible. Use host_integerp and tree_low_cst. (mark_seen_cases): COUNT arg now HOST_WIDE_INT; Likewise variable NEXT_NODE_OFFSET; XLO now unsigned. (check_for_full_enumeration_handing): BYTES_NEEDED, I to HOST_WIDE_INT. * stor-layout.c (mode_for_size): SIZE arg now unsigned. (smallest_mode_for_size): Likewise. (layout_decl): Simplify handing of a specified DECL_SIZE_UNIT. KNOWN_ALIGN is now an alignment, so simplify code. Don't turn off DECL_BIT_FIELD if field is BLKmode, but not type. (start_record_layout): Renamed from new_record_layout_info. Update to new fields. (debug_rli, normalize_rli, rli_size_unit_so_far, rli_size_so_far): New functions. (place_union_field): Renamed from layout_union_field. Update to use new fields in rli. (place_field): Renamed from layout_field. Major rewrite to use new fields in rli; pass alignment to layout_decl. (finalize_record_size): Rework to use new fields in rli and handle union. (compute_record_mode): Rework to simplify and to use new DECL fields. (finalize_type_size): Make rounding more consistent. (finish_union_layout): Deleted. (layout_type, case VOID_TYPE): Don't set TYPE_SIZE_UNIT either. (layout_type, case RECORD_TYPE): Call new function names. (initialize_sizetypes): Set TYPE_IS_SIZETYPE. (set_sizetype): Set TYPE_IS_SIZETYPE earlier. (get_best_mode): UNIT is now unsigned; remove casts. * tree.c (bit_position): Compute from new fields. (byte_position, int_byte_position): New functions. (print_type_hash_statistics): Cast to remove warning. (build_range_type): Use host_integerp and tree_low_cst to try to hash. (build_index_type): Likewise; make subtype of sizetype. (build_index_2_type): Pass sizetype to build_range_type. (build_common_tree_nodes): Use size_int and bitsize_int to initialize nodes; add bitsize_{zero,one,unit}_node. * tree.h (DECL_FIELD_CONTEXT): Use FIELD_DECL_CHECK. (DECL_BIT_FIELD_TYPE, DECL_QUALIFIER, DECL_FCONTEXT): Likewise. (DECL_PACKED, DECL_BIT_FIELD): Likewise. (DECL_FIELD_BITPOS): Deleted. (DECL_FIELD_OFFSET, DECL_FIELD_BIT_OFFSET): New fields. (DECL_RESULT, DECL_SAVED_INSNS): Use FUNCTION_DECL_CHECK. (DECL_FRAME_SIZE, DECL_FUNCTION_CODE, DECL_NO_STATIC_CHAIN): Likewise. (DECL_INLINE, DECL_BUILT_IN_NONANSI, DECL_IS_MALLOC): Likewise. (DECL_BUILT_IN_CLASS, DECL_STATIC_CONSTRUCTOR): Likewise. (DECL_STATIC_DESTRUCTOR, DECL_NO_CHECK_MEMORY_USAGE): Likewise. (DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT, DECL_NO_LIMIT_STACK) Likewise. (DECL_ORIGINAL_TYPE, TYPE_DECL_SUPPRESS_DEBUG): Use TYPE_DECL_CHECK. (DECL_ARG_TYPE_AS_WRITEN, DECL_ARG_TYPE): Use PARM_DECL_CHECK. (DECL_INCOMING_RTL, DECL_TRANSPARENT_UNION): Likewise. (DECL_ALIGN): Adjust to new field in union. (DECL_OFFSET_ALIGN): New field. (DECL_ERROR_ISSUED, DECL_TOO_LATE): Use LABEL_DECL_CHECK. (DECL_IN_TEXT_SECTION): Use VAR_DECL_CHECK. (union tree_decl): Add struct for both aligns. (enum tree_index): Add TI_BITSIZE_{ZERO,ONE,UNIT}. (bitsize_zero_node, bitsize_one_node, bitsize_unit_node): Added. (struct record_layout_info): Rework fields to have offset alignment and byte and bit position. (start_record_layout, place_field): Renamed from old names. (rli_size_so_far, rli_size_unit_so_far, normalize_rli): New decls. (byte_position, int_byte_position): Likewise. (get_inner_reference): Change types of position and length. * unroll.c (unroll_loop): New variable R; use for some loops. MAX_LOCAL_REGNUM and MAXREGNUM now unsigned. (calculate_giv_inc): Arg REGNO now unsigned. (copy_loop_body): REGNO and SRC_REGNO now unsigned. * varasm.c (assemble_variable): Clean up handling of size using host_integerp and tree_low_cst. (decode_addr_const): Use byte, not bit, position. (output_constructor): bitpos and offsets are HOST_WIDE_INT; use tree_low_cst and int_bit_position. * objc/objc-act.c (build_ivar_list_initializer): Use byte_position. * ch/actions.c (check_missing_cases): BYTES_NEEDED is HOST_WIDE_INT. * ch/typeck.c (expand_constant_to_buffer): Use int_byte_position. (extract_constant_from_buffer): Likewise. * cp/class.c (build_vbase_pointer_fields): layout_field now place_field. (get_vfield_offset): Use byte_position. (set_rtti_entry): Set OFFSET to ssizetype zero. (get_binfo_offset_as_int): Deleted. (dfs_record_base_offsets): Use tree_low_cst. (dfs_search_base_offsets): Likewise. (layout_nonempty_base_or_field): Reflect changes in RLI format and call byte_position. (layout_empty_base): Convert offset to ssizetype. (build_base_field): use rli_size_unit_so_far. (dfs_propagate_binfo_offsets): Do computation in proper type. (layout_virtual_bases): Pass ssizetype to propagate_binfo_offsets. (layout_class_type): Reflect changes in RLI names and fields. (finish_struct_1): Set DECL_FIELD_OFFSET. * cp/dump.c (dequeue_and_dump): Call bit_position. * cp/expr.c (cplus_expand_constant): Use byte_position. * cp/rtti.c (expand_class_desc): Use bitsize_one_node. * cp/typeck.c (build_component_addr): Use byte_position and don't special case for zero offset. * f/com.c (ffecom_tree_canonize_ptr_): Use bitsize_zero_node. (ffecom_tree_canonize_ref_): Likewise. * java/class.c (make_field_value): Use byte_position. * java/expr.c (JAVA_ARRAY_LENGTH_OFFSET): Use byte_position. (java_array_data_offset): Likewise. * java/java-tree.h (MAYBE_CREATE_TYPE_TYPE_LANG_SPECIFIC): Add case to bzero call. From-SVN: r32742
2000-03-25 19:34:13 +01:00
unsigned int width = GET_MODE_BITSIZE (mode);
rtx tem;
/* Relational operations don't work here. We must know the mode
of the operands in order to do the comparison correctly.
Assuming a full word can give incorrect results.
Consider comparing 128 with -128 in QImode. */
if (GET_RTX_CLASS (code) == '<')
abort ();
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
&& mode == GET_MODE (op0) && mode == GET_MODE (op1))
{
REAL_VALUE_TYPE f0, f1, value;
jmp_buf handler;
if (setjmp (handler))
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
f0 = real_value_truncate (mode, f0);
f1 = real_value_truncate (mode, f1);
#ifdef REAL_ARITHMETIC
#ifndef REAL_INFINITY
if (code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
return 0;
#endif
REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
#else
switch (code)
{
case PLUS:
value = f0 + f1;
break;
case MINUS:
value = f0 - f1;
break;
case MULT:
value = f0 * f1;
break;
case DIV:
#ifndef REAL_INFINITY
if (f1 == 0)
return 0;
#endif
value = f0 / f1;
break;
case SMIN:
value = MIN (f0, f1);
break;
case SMAX:
value = MAX (f0, f1);
break;
default:
abort ();
}
#endif
value = real_value_truncate (mode, value);
set_float_handler (NULL);
return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
}
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
/* We can fold some multi-word operations. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& width == HOST_BITS_PER_WIDE_INT * 2
&& (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
&& (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
{
unsigned HOST_WIDE_INT l1, l2, lv;
HOST_WIDE_INT h1, h2, hv;
if (GET_CODE (op0) == CONST_DOUBLE)
l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
else
l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
if (GET_CODE (op1) == CONST_DOUBLE)
l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
else
l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
switch (code)
{
case MINUS:
/* A - B == A + (-B). */
neg_double (l2, h2, &lv, &hv);
l2 = lv, h2 = hv;
/* .. fall through ... */
case PLUS:
add_double (l1, h1, l2, h2, &lv, &hv);
break;
case MULT:
mul_double (l1, h1, l2, h2, &lv, &hv);
break;
case DIV: case MOD: case UDIV: case UMOD:
/* We'd need to include tree.h to do this and it doesn't seem worth
it. */
return 0;
case AND:
lv = l1 & l2, hv = h1 & h2;
break;
case IOR:
lv = l1 | l2, hv = h1 | h2;
break;
case XOR:
lv = l1 ^ l2, hv = h1 ^ h2;
break;
case SMIN:
if (h1 < h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
< (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case SMAX:
if (h1 > h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
> (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case UMIN:
if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
< (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case UMAX:
if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
|| (h1 == h2
&& ((unsigned HOST_WIDE_INT) l1
> (unsigned HOST_WIDE_INT) l2)))
lv = l1, hv = h1;
else
lv = l2, hv = h2;
break;
case LSHIFTRT: case ASHIFTRT:
case ASHIFT:
case ROTATE: case ROTATERT:
#ifdef SHIFT_COUNT_TRUNCATED
if (SHIFT_COUNT_TRUNCATED)
l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
#endif
if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
return 0;
if (code == LSHIFTRT || code == ASHIFTRT)
rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
code == ASHIFTRT);
else if (code == ASHIFT)
lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
else if (code == ROTATE)
lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
else /* code == ROTATERT */
rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
break;
default:
return 0;
}
return immed_double_const (lv, hv, mode);
}
if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
|| width > HOST_BITS_PER_WIDE_INT || width == 0)
{
/* Even if we can't compute a constant result,
there are some cases worth simplifying. */
switch (code)
{
case PLUS:
/* In IEEE floating point, x+0 is not the same as x. Similarly
for the other optimizations below. */
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
&& FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
break;
if (op1 == CONST0_RTX (mode))
return op0;
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
if (GET_CODE (op0) == NEG)
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
else if (GET_CODE (op1) == NEG)
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
/* (~a) + 1 -> -a */
if (INTEGRAL_MODE_P (mode)
&& GET_CODE (op0) == NOT
&& GET_CODE (op1) == CONST_INT
&& INTVAL (op1) == 1)
return gen_rtx_NEG (mode, XEXP (op0, 0));
/* Handle both-operands-constant cases. We can only add
CONST_INTs to constants since the sum of relocatable symbols
can't be handled by most assemblers. Don't add CONST_INT
to CONST_INT since overflow won't be computed properly if wider
than HOST_BITS_PER_WIDE_INT. */
if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
&& GET_CODE (op1) == CONST_INT)
return plus_constant (op0, INTVAL (op1));
else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
&& GET_CODE (op0) == CONST_INT)
return plus_constant (op1, INTVAL (op0));
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
real multiply if we didn't have one before. */
if (! FLOAT_MODE_P (mode))
{
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
rtx lhs = op0, rhs = op1;
int had_mult = 0;
if (GET_CODE (lhs) == NEG)
coeff0 = -1, lhs = XEXP (lhs, 0);
else if (GET_CODE (lhs) == MULT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
{
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
had_mult = 1;
}
else if (GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
coeff1 = -1, rhs = XEXP (rhs, 0);
else if (GET_CODE (rhs) == MULT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
{
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
had_mult = 1;
}
else if (GET_CODE (rhs) == ASHIFT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
tem = simplify_gen_binary (MULT, mode, lhs,
GEN_INT (coeff0 + coeff1));
return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
}
}
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law.
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
return tem;
break;
case COMPARE:
#ifdef HAVE_cc0
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
using cc0, in which case we want to leave it as a COMPARE
so we can distinguish it from a register-register-copy.
In IEEE floating point, x-0 is not the same as x. */
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& op1 == CONST0_RTX (mode))
return op0;
#endif
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
{
rtx xop00 = XEXP (op0, 0);
rtx xop10 = XEXP (op1, 0);
#ifdef HAVE_cc0
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
#else
if (GET_CODE (xop00) == REG && GET_CODE (xop10) == REG
&& GET_MODE (xop00) == GET_MODE (xop10)
&& REGNO (xop00) == REGNO (xop10)
&& GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
&& GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
#endif
return xop00;
}
break;
case MINUS:
/* None of these optimizations can be done for IEEE
floating point. */
if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
&& FLOAT_MODE_P (mode) && ! flag_unsafe_math_optimizations)
break;
/* We can't assume x-x is 0 even with non-IEEE floating point,
but since it is zero except in very strange circumstances, we
will treat it as zero with -funsafe-math-optimizations. */
if (rtx_equal_p (op0, op1)
&& ! side_effects_p (op0)
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
return CONST0_RTX (mode);
/* Change subtraction from zero into negation. */
if (op0 == CONST0_RTX (mode))
return gen_rtx_NEG (mode, op1);
/* (-1 - a) is ~a. */
if (op0 == constm1_rtx)
return gen_rtx_NOT (mode, op1);
/* Subtracting 0 has no effect. */
if (op1 == CONST0_RTX (mode))
return op0;
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
real multiply if we didn't have one before. */
if (! FLOAT_MODE_P (mode))
{
HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
rtx lhs = op0, rhs = op1;
int had_mult = 0;
if (GET_CODE (lhs) == NEG)
coeff0 = -1, lhs = XEXP (lhs, 0);
else if (GET_CODE (lhs) == MULT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT)
{
coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
had_mult = 1;
}
else if (GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
coeff1 = - 1, rhs = XEXP (rhs, 0);
else if (GET_CODE (rhs) == MULT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT)
{
coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
had_mult = 1;
}
else if (GET_CODE (rhs) == ASHIFT
&& GET_CODE (XEXP (rhs, 1)) == CONST_INT
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
{
coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
tem = simplify_gen_binary (MULT, mode, lhs,
GEN_INT (coeff0 - coeff1));
return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
}
}
/* (a - (-b)) -> (a + b). */
if (GET_CODE (op1) == NEG)
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law.
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
|| GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
return tem;
/* Don't let a relocatable value get a negative coeff. */
if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
return plus_constant (op0, - INTVAL (op1));
/* (x - (x & y)) -> (x & ~y) */
if (GET_CODE (op1) == AND)
{
if (rtx_equal_p (op0, XEXP (op1, 0)))
return simplify_gen_binary (AND, mode, op0,
gen_rtx_NOT (mode, XEXP (op1, 1)));
if (rtx_equal_p (op0, XEXP (op1, 1)))
return simplify_gen_binary (AND, mode, op0,
gen_rtx_NOT (mode, XEXP (op1, 0)));
}
break;
case MULT:
if (op1 == constm1_rtx)
{
tem = simplify_unary_operation (NEG, mode, op0, mode);
return tem ? tem : gen_rtx_NEG (mode, op0);
}
/* In IEEE floating point, x*0 is not always 0. */
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& op1 == CONST0_RTX (mode)
&& ! side_effects_p (op0))
return op1;
/* In IEEE floating point, x*1 is not equivalent to x for nans.
However, ANSI says we can drop signals,
so we can do this anyway. */
if (op1 == CONST1_RTX (mode))
return op0;
/* Convert multiply by constant power of two into shift unless
we are still generating RTL. This test is a kludge. */
if (GET_CODE (op1) == CONST_INT
&& (val = exact_log2 (INTVAL (op1))) >= 0
/* If the mode is larger than the host word size, and the
uppermost bit is set, then this isn't a power of two due
to implicit sign extension. */
&& (width <= HOST_BITS_PER_WIDE_INT
|| val != HOST_BITS_PER_WIDE_INT - 1)
&& ! rtx_equal_function_value_matters)
return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
if (GET_CODE (op1) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
{
REAL_VALUE_TYPE d;
jmp_buf handler;
int op1is2, op1ism1;
if (setjmp (handler))
return 0;
set_float_handler (handler);
REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
op1is2 = REAL_VALUES_EQUAL (d, dconst2);
op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
set_float_handler (NULL);
/* x*2 is x+x and x*(-1) is -x */
if (op1is2 && GET_MODE (op0) == mode)
return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
else if (op1ism1 && GET_MODE (op0) == mode)
return gen_rtx_NEG (mode, op0);
}
break;
case IOR:
if (op1 == const0_rtx)
return op0;
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
return op1;
if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
return op0;
/* A | (~A) -> -1 */
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return constm1_rtx;
break;
case XOR:
if (op1 == const0_rtx)
return op0;
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
return gen_rtx_NOT (mode, op0);
if (op0 == op1 && ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return const0_rtx;
break;
case AND:
if (op1 == const0_rtx && ! side_effects_p (op0))
return const0_rtx;
if (GET_CODE (op1) == CONST_INT
&& (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
return op0;
if (op0 == op1 && ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return op0;
/* A & (~A) -> 0 */
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return const0_rtx;
break;
case UDIV:
/* Convert divide by power of two into shift (divide by 1 handled
below). */
if (GET_CODE (op1) == CONST_INT
&& (arg1 = exact_log2 (INTVAL (op1))) > 0)
return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
/* ... fall through ... */
case DIV:
if (op1 == CONST1_RTX (mode))
return op0;
/* In IEEE floating point, 0/x is not always 0. */
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& op0 == CONST0_RTX (mode)
&& ! side_effects_p (op1))
return op0;
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
/* Change division by a constant into multiplication. Only do
this with -funsafe-math-optimizations. */
else if (GET_CODE (op1) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
&& op1 != CONST0_RTX (mode)
&& flag_unsafe_math_optimizations)
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
if (! REAL_VALUES_EQUAL (d, dconst0))
{
#if defined (REAL_ARITHMETIC)
REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
return gen_rtx_MULT (mode, op0,
CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
#else
return
gen_rtx_MULT (mode, op0,
CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
#endif
}
}
#endif
break;
case UMOD:
/* Handle modulus by power of two (mod with 1 handled below). */
if (GET_CODE (op1) == CONST_INT
&& exact_log2 (INTVAL (op1)) > 0)
return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
/* ... fall through ... */
case MOD:
if ((op0 == const0_rtx || op1 == const1_rtx)
&& ! side_effects_p (op0) && ! side_effects_p (op1))
return const0_rtx;
break;
case ROTATERT:
case ROTATE:
/* Rotating ~0 always results in ~0. */
if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op0) == GET_MODE_MASK (mode)
&& ! side_effects_p (op1))
return op0;
/* ... fall through ... */
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (op1 == const0_rtx)
return op0;
if (op0 == const0_rtx && ! side_effects_p (op1))
return op0;
break;
case SMIN:
if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
&& INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
&& ! side_effects_p (op0))
return op1;
else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
return op0;
break;
case SMAX:
if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
&& ((unsigned HOST_WIDE_INT) INTVAL (op1)
== (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
&& ! side_effects_p (op0))
return op1;
else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
return op0;
break;
case UMIN:
if (op1 == const0_rtx && ! side_effects_p (op0))
return op1;
else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
return op0;
break;
case UMAX:
if (op1 == constm1_rtx && ! side_effects_p (op0))
return op1;
else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
return op0;
break;
default:
abort ();
}
return 0;
}
/* Get the integer argument values in two forms:
zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
arg0 = INTVAL (op0);
arg1 = INTVAL (op1);
if (width < HOST_BITS_PER_WIDE_INT)
{
arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
arg0s = arg0;
if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
arg0s |= ((HOST_WIDE_INT) (-1) << width);
arg1s = arg1;
if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
arg1s |= ((HOST_WIDE_INT) (-1) << width);
}
else
{
arg0s = arg0;
arg1s = arg1;
}
/* Compute the value of the arithmetic. */
switch (code)
{
case PLUS:
val = arg0s + arg1s;
break;
case MINUS:
val = arg0s - arg1s;
break;
case MULT:
val = arg0s * arg1s;
break;
case DIV:
if (arg1s == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = arg0s / arg1s;
break;
case MOD:
if (arg1s == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = arg0s % arg1s;
break;
case UDIV:
if (arg1 == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = (unsigned HOST_WIDE_INT) arg0 / arg1;
break;
case UMOD:
if (arg1 == 0
|| (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
&& arg1s == -1))
return 0;
val = (unsigned HOST_WIDE_INT) arg0 % arg1;
break;
case AND:
val = arg0 & arg1;
break;
case IOR:
val = arg0 | arg1;
break;
case XOR:
val = arg0 ^ arg1;
break;
case LSHIFTRT:
/* If shift count is undefined, don't fold it; let the machine do
what it wants. But truncate it if the machine will do that. */
if (arg1 < 0)
return 0;
#ifdef SHIFT_COUNT_TRUNCATED
if (SHIFT_COUNT_TRUNCATED)
arg1 %= width;
#endif
val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
break;
case ASHIFT:
if (arg1 < 0)
return 0;
#ifdef SHIFT_COUNT_TRUNCATED
if (SHIFT_COUNT_TRUNCATED)
arg1 %= width;
#endif
val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
break;
case ASHIFTRT:
if (arg1 < 0)
return 0;
#ifdef SHIFT_COUNT_TRUNCATED
if (SHIFT_COUNT_TRUNCATED)
arg1 %= width;
#endif
val = arg0s >> arg1;
/* Bootstrap compiler may not have sign extended the right shift.
Manually extend the sign to insure bootstrap cc matches gcc. */
if (arg0s < 0 && arg1 > 0)
val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
break;
case ROTATERT:
if (arg1 < 0)
return 0;
arg1 %= width;
val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
| (((unsigned HOST_WIDE_INT) arg0) >> arg1));
break;
case ROTATE:
if (arg1 < 0)
return 0;
arg1 %= width;
val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
| (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
break;
case COMPARE:
/* Do nothing here. */
return 0;
case SMIN:
val = arg0s <= arg1s ? arg0s : arg1s;
break;
case UMIN:
val = ((unsigned HOST_WIDE_INT) arg0
<= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
break;
case SMAX:
val = arg0s > arg1s ? arg0s : arg1s;
break;
case UMAX:
val = ((unsigned HOST_WIDE_INT) arg0
> (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
break;
default:
abort ();
}
val = trunc_int_for_mode (val, mode);
return GEN_INT (val);
}
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
PLUS or MINUS.
Rather than test for specific case, we do this by a brute-force method
and do all possible simplifications until no more changes occur. Then
we rebuild the operation. */
static rtx
simplify_plus_minus (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
rtx ops[8];
int negs[8];
rtx result, tem;
int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
int first = 1, negate = 0, changed;
int i, j;
alias.c [...] (init_alias_analysis, [...]): Use memset () instead of bzero (). * alias.c (init_alias_analysis), calls.c (expand_call, emit_library_call_value_1), combine.c (init_reg_last_arrays), cse.c (new_basic_block), dbxout.c (dbxout_type), diagnostic.c (init_output_buffer, set_diagnostic_context), dwarf2out.c (equate_decl_number_to_die, build_abbrev_table), emit-rtl.c (init_emit_once), fold-const.c (mul_double, div_and_round_double), function.c (assign_parms), gcse.c (compute_can_copy, alloc_gcse_mem, alloc_reg_set_mem, record_one_set, compute_hash_table, compute_set_hash_table, compute_expr_hash_table), genattrtab.c (optimize_attrs), global.c (global_alloc, global_conflicts), haifa-sched.c (compute_trg_info, clear_units, schedule_block), integrate.c (initialize_for_inline, expand_inline_function), jump.c (thread_jumps), local-alloc.c (local_alloc), loop.c (combine_movables, count_loop_regs_set, load_mems_and_recount_loop_regs_set), print-tree.c (debug_tree), regclass.c (init_reg_sets, init_reg_sets_1, regclass, record_reg_classes, allocate_reg_info), reload.c (get_secondary_mem, remove_address_replacements, find_reloads), reload1.c (reload, set_initial_label_offsets, finish_spills, reload_as_needed, choose_reload_regs_init, reload_cse_simplify_operands), reorg.c (dbr_schedule), sbitmap.c (sbitmap_zero), simplify-rtx.c (simplify_plus_minus), ssa.c (rename_registers), stmt.c (expand_end_case), unroll.c (unroll_loop), varray.c (varray_grow), objc/objc-act.c: Use memset () instead of bzero (). ch: * actions.c (check_missing_cases), typeck.c (build_chill_slice, build_chill_cast): Use memset () instead of bzero (). cp: * class.c (duplicate_tag_error, build_vtbl_initializer), decl.c (push_binding_level), error.c (cp_tree_printer), pt.c (process_partial_specialization, tsubst_template_arg_vector), search.c (lookup_member): Use memset () instead of bzero (). java: * expr.c (note_instructions), jcf-io.c (find_class), jcf-parse.c (init_outgoing_cpool), lex.c (java_init_lex): Use memset () instead of bzero (). From-SVN: r37303
2000-11-07 23:50:06 +01:00
memset ((char *) ops, 0, sizeof ops);
/* Set up the two operands and then expand them until nothing has been
changed. If we run out of room in our array, give up; this should
almost never happen. */
ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);
changed = 1;
while (changed)
{
changed = 0;
for (i = 0; i < n_ops; i++)
switch (GET_CODE (ops[i]))
{
case PLUS:
case MINUS:
if (n_ops == 7)
return 0;
ops[n_ops] = XEXP (ops[i], 1);
negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
ops[i] = XEXP (ops[i], 0);
input_ops++;
changed = 1;
break;
case NEG:
ops[i] = XEXP (ops[i], 0);
negs[i] = ! negs[i];
changed = 1;
break;
case CONST:
ops[i] = XEXP (ops[i], 0);
input_consts++;
changed = 1;
break;
case NOT:
/* ~a -> (-a - 1) */
if (n_ops != 7)
{
ops[n_ops] = constm1_rtx;
negs[n_ops++] = negs[i];
ops[i] = XEXP (ops[i], 0);
negs[i] = ! negs[i];
changed = 1;
}
break;
case CONST_INT:
if (negs[i])
ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
break;
default:
break;
}
}
/* If we only have two operands, we can't do anything. */
if (n_ops <= 2)
return 0;
/* Now simplify each pair of operands until nothing changes. The first
time through just simplify constants against each other. */
changed = 1;
while (changed)
{
changed = first;
for (i = 0; i < n_ops - 1; i++)
for (j = i + 1; j < n_ops; j++)
if (ops[i] != 0 && ops[j] != 0
&& (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
{
rtx lhs = ops[i], rhs = ops[j];
enum rtx_code ncode = PLUS;
if (negs[i] && ! negs[j])
lhs = ops[j], rhs = ops[i], ncode = MINUS;
else if (! negs[i] && negs[j])
ncode = MINUS;
tem = simplify_binary_operation (ncode, mode, lhs, rhs);
if (tem)
{
ops[i] = tem, ops[j] = 0;
negs[i] = negs[i] && negs[j];
if (GET_CODE (tem) == NEG)
ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];
if (GET_CODE (ops[i]) == CONST_INT && negs[i])
ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
changed = 1;
}
}
first = 0;
}
/* Pack all the operands to the lower-numbered entries and give up if
we didn't reduce the number of operands we had. Make sure we
count a CONST as two operands. If we have the same number of
operands, but have made more CONSTs than we had, this is also
an improvement, so accept it. */
for (i = 0, j = 0; j < n_ops; j++)
if (ops[j] != 0)
{
ops[i] = ops[j], negs[i++] = negs[j];
if (GET_CODE (ops[j]) == CONST)
n_consts++;
}
if (i + n_consts > input_ops
|| (i + n_consts == input_ops && n_consts <= input_consts))
return 0;
n_ops = i;
/* If we have a CONST_INT, put it last. */
for (i = 0; i < n_ops - 1; i++)
if (GET_CODE (ops[i]) == CONST_INT)
{
tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
}
/* Put a non-negated operand first. If there aren't any, make all
operands positive and negate the whole thing later. */
for (i = 0; i < n_ops && negs[i]; i++)
;
if (i == n_ops)
{
for (i = 0; i < n_ops; i++)
negs[i] = 0;
negate = 1;
}
else if (i != 0)
{
tem = ops[0], ops[0] = ops[i], ops[i] = tem;
j = negs[0], negs[0] = negs[i], negs[i] = j;
}
/* Now make the result by performing the requested operations. */
result = ops[0];
for (i = 1; i < n_ops; i++)
result = simplify_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);
return negate ? gen_rtx_NEG (mode, result) : result;
}
struct cfc_args
{
[multiple changes] Fri Oct 29 15:25:07 1999 Arnaud Charlet <charlet@ACT-Europe.FR> * gcov.c (DIR_SEPARATOR): Provide default. (output_data): Add test for MS-DOS format absolute filename. (fancy_abort): Correct program name. (open_files): Open all files in binary mode. * libgcc2.c (__bb_exit_func): Likewise. * profile.c (init_branch_prob): Specify binary when opening files. * flags.h (flag_unwind_tables): New decl. * toplev.c (flag_unwind_table): New definition. (f_options): Add -funwind-tables. (decode_g_option): Clarify warning when unknown -g option is given. (rest_of_compilation): If inside an inlined external function, pretend we are just being declared. * dwarf2out.c (dwarf2out_do_frame): Check -funwind_tables. (dwarf2out_frame_finish): Likewise. Fri Oct 29 06:32:44 1999 Geoffrey Keating <geoffk@cygnus.com> * flow.c (propagate_block): When the last reference to a label before an ADDR_VEC is deleted because the reference is a dead store, delete the ADDR_VEC. Fri Oct 29 07:44:26 1999 Vasco Pedro <vp@di.fct.unl.pt> * fold-const.c (merge_ranges): In not in0, but in1, handle upper bounds equal like subset case. Thu Oct 28 19:22:24 1999 Douglas Rupp <rupp@gnat.com> * dbxout.c (dbxout_parms): Generate a second stabs line for parameters passed in a register but moved to the stack. Thu Oct 28 19:12:57 1999 Sam Tardieu <tardieu@act-europe.fr> * gcc.c (pass_exit_codes, greatest_status): New variables. (struct option_map): Add entry for "--pass-exit-codes". (execute): Update greatest_status if error. (display_help): Add documentation for -pass-exit-codes. (process_command): Handle -pass-exit-codes. (main): Look at pass_exit_codes and greatest_status on call to exit. Thu Oct 28 18:06:50 1999 Richard Kenner <kenner@vlsi1.ultra.nyu.edu> * reload.c (find_reloads): Refine test for no input reload case to not includes reloads emitted after insn. * function.c (find_temp_slots_from_address): Handle sum involving a register that points to a temp slot. (update_temp_slot_address): Make recursive call if both old and new are PLUS with a common operand. * calls.c (expand_call): Mark temp slot for result as having address taken. * rtlanal.c (reg_referenced_p, case IF_THEN_ELSE): New case. * gcc.c (process_command): Add standard_exec_prefix with "GCC" component as well as "BINUTILS". * integrate.h (copy_rtx_and_substitute): New arg, FOR_LHS. * integrate.c (copy_rtx_and_substitute): Likewise. (expand_inline_function, integrate_parm_decls, integrate_decl_tree): All callers changed. * unroll.c (inital_reg_note_copy, copy_loop_body): Likewise. * dbxout.c (dbxout_type, case INTEGER_TYPE_NODE): If can use gdb extensions, write size of type; also be more consistent in using references when this is a subtype. * pa.md (extv, extzv, insv): Use define_expand to reject constant that is out of range. * loop.c (unknown_constant_address_altered): New variable. (prescan_loop): Initialize it. (note_addr_stored): Set it for RTX_UNCHANGING_P MEM. (invariant_p, case MEM): Remove handling for volatile and readony; check new variable if readonly. (check_dbra_loop): Chdeck unknown_constant_address_altered. * cse.c (canon_hash, case MEM): Do not record if BLKmode. (addr_affects_sp_p): Removed from note_mem_written and only define #ifdef AUTO_INC_DEC. * alpha.c (input_operand, case ADDRESSOF): Treat as REG. * regclass.c (record_reg_classes): Properly handle register move directions. * varasm.c (initializer_constant_valid_p, case MINUS_EXPR): Don't think valid if both operands are invalid. (struct constant_descriptor): New field RTL. (mark_const_hash_entry): Mark it. (record_constant{,_rtx}): Initialize it. (output_constant_def): Allocate RTL in permanent obstack and save in table. ({record,compare}_constant_1): Modes must match for CONSTRUCTOR of ARRAY_TYPE. * c-common.h (initializer_constant_valid_p): Delete decl from here. * output.h (initializer_constant_valid_p): Move decl to here. * c-common.c (initializer_constant_valid_p): Delete function from here. * varasm.c (initializer_constant_valid_p): Move function to here. * tree.h (STRIP_SIGN_NOPS): New macro. * fold-const.c (optimize_minmax_comparison): New function. (invert_truthvalue, case WITH_RECORD_EXPR): New case. (fold): Use STRIP_SIGN_NOPS instead of STRIP_TYPE_NOPS. (fold, case EQ_EXPR): Call optimize_minmax_comparison and add cases with ABS_EXPR, NEGATE_EXPR, PLUS_EXPR, MINUS_EXPR, and widening conversions. (fold, case LE_EXPR): Rework changing unsigned to signed comparisons to look at size of mode, not precision of type; also add missing cases. (optimize_bit_field_compare, decode_field_reference): Don't try to optimize COMPONENT_REF of a PLACEHOLDER_EXPR. * dwarf2out.c (ctype.h): Include. (dwarf2out_set_demangle_name_func): New function. (size_of_line_info): Deleted. (output_line_info): Compute size of line info table from difference of labels. (base_type_die, add_name_attribute): Call demangle function, if any. (field_byte_offset): Use bits per word for variable length fields. (gen_array_type_die): Add array name. (gen_subprogram_die): Ignore DECL_INLINE if -fno-inline. (dwarf2out_add_library_unit_info): New function. * explow.c (set_stack_check_libfunc): New function. (stack_check_libfunc): New static variable. (probe_stack_range): Allow front-end to set up a libfunc to call. * combine.c (simplify_comparison): When making comparison in wider mode, check for having commuted an AND and a SUBREG. (contains_muldiv): New function. (try_combine): Call it when dividing a PARALLEL. (simplify_rtx, case TRUNCATE): Don't remove for umulsi3_highpart. (simplify_comparison, case ASHIFTRT): Recognize sign-extension of a PLUS. (record_value_for_reg): If TEM is a binary operation with two CLOBBERs, use one of the CLOBBERs instead. (if_then_else_cond): If comparing against zero, just return thing being compared. * optabs.c (expand_abs): If machine has MAX, ABS (x) is MAX (x, -x). Don't generate shifts and subtract if have conditional arithmetic. * rtl.h (delete_barrier): New declaration. * jump.c (jump_optimize): Set up to handle conditional call. In conditional arithmetic case, handle CALL_INSN followed by a BARRIER. (delete_barrier): New function. * rtl.c (read_rtx): Call fatal if bad RTL code; check for bad mode. * recog.c (nonmemory_operand): Accept ADDRESSOF. * tree.c (build_type_attribute_variant): Push to obstack of ttype around type_hash_canon call. * expr.c (placeholder_list): Move decl to file scope. (expand_expr): Don't force access to volatile just because its address is taken. If ignoring reference operations, just expand the operands. (expand_expr, case COMPONENT_REF): Propagate EXPAND_CONST_ADDRESS to recursive call when expanding inner. Refine test for using bitfield operations vs pointer punning. (expand_expr, case CONVERT_EXPR): If converting to BLKmode UNION_TYPE from BLKmode, just return inner object. Use proper mode in store_field call. Properly set sizes of object to store and total size in store_field call for convert to union. (expand_expr, case ARRAY_REF): If OP0 is in a register, put it in memory (like for ADDR_EXPR). Also, don't put constant in register if we'll want it in memory. (readonly_fields_p): New function. (expand_expr, case INDIRECT_REF): Call it if LHS. (expand_assignment): Handle a RESULT_DECL where DECL_RTL is a PARALLEL. (do_jump, case WITH_RECORD_EXPR): New case. (get_inner_reference): Always go inside a CONVERT_EXPR and NOP_EXPR if both modes are the same. (store_field): Use bitfield operations if size of bitsize is not same as size of RHS's type. Check for bitpos not a multiple of alignment in BLKmode case. Do block move in largest possible alignment. (store_constructor): Set BITSIZE to -1 for variable size and properly in case of array of BLKmode. (expand_expr_unaligned): New function. (do_compare_and_jump): Call it. * mips/iris5.h (SWITCHES_NEED_SPACES): New macro. * collect2.c (main): Only allow -ofoo if SWITCHES_NEED_SPACES does not include 'o'. * function.c (instantiate_virtual_regs_1, case SET): Handle case where both SET_DEST and SET_SRC reference a virtual register. (gen_mem_addressof): Copy RTX_UNCHANGING_P from new REG to old REG. * integrate.c (expand_inline_function): Handle case of setting virtual stack vars register (from built in setjmp); when parameter lives in memory, expand virtual_{stack_vars,incoming_args}_rtx early. (subst_constant): Add new parm, MEMONLY. (expand_inline_function, integrate_parm_decls): Pass new parm. (integrate_decl_tree): Likewise. (copy_rtx_and_substitute, case MEM): Do copy RTX_UNCHANGING_P. (try_constants): Call subst_constants twice, with MEMONLY 0 and 1. (copy_rtx_and_substitute, case SET): Add explicit calls to copy_rtx_and_substitute for both sides. * stmt.c (expand_asm_operands): Don't use TREE_STRING_LENGTH for constraints. (pushcase{,_range}): Convert to NOMINAL_TYPE after checking for within INDEX_TYPE, instead of before. (fixup_gotos): Use f->target_rtl, not the next insn, since latter may be from a later fixup. (expand_value_return): Correctly convert VAL when promoting function return; support RETURN_REG being a PARALLEL. (expand_return): When checking for result in regs and having cleanup, consider PARALLEL in DECL_RTL as being in regs. From-SVN: r30299
1999-11-01 02:11:22 +01:00
rtx op0, op1; /* Input */
int equal, op0lt, op1lt; /* Output */
int unordered;
};
static void
check_fold_consts (data)
PTR data;
{
[multiple changes] Fri Oct 29 15:25:07 1999 Arnaud Charlet <charlet@ACT-Europe.FR> * gcov.c (DIR_SEPARATOR): Provide default. (output_data): Add test for MS-DOS format absolute filename. (fancy_abort): Correct program name. (open_files): Open all files in binary mode. * libgcc2.c (__bb_exit_func): Likewise. * profile.c (init_branch_prob): Specify binary when opening files. * flags.h (flag_unwind_tables): New decl. * toplev.c (flag_unwind_table): New definition. (f_options): Add -funwind-tables. (decode_g_option): Clarify warning when unknown -g option is given. (rest_of_compilation): If inside an inlined external function, pretend we are just being declared. * dwarf2out.c (dwarf2out_do_frame): Check -funwind_tables. (dwarf2out_frame_finish): Likewise. Fri Oct 29 06:32:44 1999 Geoffrey Keating <geoffk@cygnus.com> * flow.c (propagate_block): When the last reference to a label before an ADDR_VEC is deleted because the reference is a dead store, delete the ADDR_VEC. Fri Oct 29 07:44:26 1999 Vasco Pedro <vp@di.fct.unl.pt> * fold-const.c (merge_ranges): In not in0, but in1, handle upper bounds equal like subset case. Thu Oct 28 19:22:24 1999 Douglas Rupp <rupp@gnat.com> * dbxout.c (dbxout_parms): Generate a second stabs line for parameters passed in a register but moved to the stack. Thu Oct 28 19:12:57 1999 Sam Tardieu <tardieu@act-europe.fr> * gcc.c (pass_exit_codes, greatest_status): New variables. (struct option_map): Add entry for "--pass-exit-codes". (execute): Update greatest_status if error. (display_help): Add documentation for -pass-exit-codes. (process_command): Handle -pass-exit-codes. (main): Look at pass_exit_codes and greatest_status on call to exit. Thu Oct 28 18:06:50 1999 Richard Kenner <kenner@vlsi1.ultra.nyu.edu> * reload.c (find_reloads): Refine test for no input reload case to not includes reloads emitted after insn. * function.c (find_temp_slots_from_address): Handle sum involving a register that points to a temp slot. (update_temp_slot_address): Make recursive call if both old and new are PLUS with a common operand. * calls.c (expand_call): Mark temp slot for result as having address taken. * rtlanal.c (reg_referenced_p, case IF_THEN_ELSE): New case. * gcc.c (process_command): Add standard_exec_prefix with "GCC" component as well as "BINUTILS". * integrate.h (copy_rtx_and_substitute): New arg, FOR_LHS. * integrate.c (copy_rtx_and_substitute): Likewise. (expand_inline_function, integrate_parm_decls, integrate_decl_tree): All callers changed. * unroll.c (inital_reg_note_copy, copy_loop_body): Likewise. * dbxout.c (dbxout_type, case INTEGER_TYPE_NODE): If can use gdb extensions, write size of type; also be more consistent in using references when this is a subtype. * pa.md (extv, extzv, insv): Use define_expand to reject constant that is out of range. * loop.c (unknown_constant_address_altered): New variable. (prescan_loop): Initialize it. (note_addr_stored): Set it for RTX_UNCHANGING_P MEM. (invariant_p, case MEM): Remove handling for volatile and readony; check new variable if readonly. (check_dbra_loop): Chdeck unknown_constant_address_altered. * cse.c (canon_hash, case MEM): Do not record if BLKmode. (addr_affects_sp_p): Removed from note_mem_written and only define #ifdef AUTO_INC_DEC. * alpha.c (input_operand, case ADDRESSOF): Treat as REG. * regclass.c (record_reg_classes): Properly handle register move directions. * varasm.c (initializer_constant_valid_p, case MINUS_EXPR): Don't think valid if both operands are invalid. (struct constant_descriptor): New field RTL. (mark_const_hash_entry): Mark it. (record_constant{,_rtx}): Initialize it. (output_constant_def): Allocate RTL in permanent obstack and save in table. ({record,compare}_constant_1): Modes must match for CONSTRUCTOR of ARRAY_TYPE. * c-common.h (initializer_constant_valid_p): Delete decl from here. * output.h (initializer_constant_valid_p): Move decl to here. * c-common.c (initializer_constant_valid_p): Delete function from here. * varasm.c (initializer_constant_valid_p): Move function to here. * tree.h (STRIP_SIGN_NOPS): New macro. * fold-const.c (optimize_minmax_comparison): New function. (invert_truthvalue, case WITH_RECORD_EXPR): New case. (fold): Use STRIP_SIGN_NOPS instead of STRIP_TYPE_NOPS. (fold, case EQ_EXPR): Call optimize_minmax_comparison and add cases with ABS_EXPR, NEGATE_EXPR, PLUS_EXPR, MINUS_EXPR, and widening conversions. (fold, case LE_EXPR): Rework changing unsigned to signed comparisons to look at size of mode, not precision of type; also add missing cases. (optimize_bit_field_compare, decode_field_reference): Don't try to optimize COMPONENT_REF of a PLACEHOLDER_EXPR. * dwarf2out.c (ctype.h): Include. (dwarf2out_set_demangle_name_func): New function. (size_of_line_info): Deleted. (output_line_info): Compute size of line info table from difference of labels. (base_type_die, add_name_attribute): Call demangle function, if any. (field_byte_offset): Use bits per word for variable length fields. (gen_array_type_die): Add array name. (gen_subprogram_die): Ignore DECL_INLINE if -fno-inline. (dwarf2out_add_library_unit_info): New function. * explow.c (set_stack_check_libfunc): New function. (stack_check_libfunc): New static variable. (probe_stack_range): Allow front-end to set up a libfunc to call. * combine.c (simplify_comparison): When making comparison in wider mode, check for having commuted an AND and a SUBREG. (contains_muldiv): New function. (try_combine): Call it when dividing a PARALLEL. (simplify_rtx, case TRUNCATE): Don't remove for umulsi3_highpart. (simplify_comparison, case ASHIFTRT): Recognize sign-extension of a PLUS. (record_value_for_reg): If TEM is a binary operation with two CLOBBERs, use one of the CLOBBERs instead. (if_then_else_cond): If comparing against zero, just return thing being compared. * optabs.c (expand_abs): If machine has MAX, ABS (x) is MAX (x, -x). Don't generate shifts and subtract if have conditional arithmetic. * rtl.h (delete_barrier): New declaration. * jump.c (jump_optimize): Set up to handle conditional call. In conditional arithmetic case, handle CALL_INSN followed by a BARRIER. (delete_barrier): New function. * rtl.c (read_rtx): Call fatal if bad RTL code; check for bad mode. * recog.c (nonmemory_operand): Accept ADDRESSOF. * tree.c (build_type_attribute_variant): Push to obstack of ttype around type_hash_canon call. * expr.c (placeholder_list): Move decl to file scope. (expand_expr): Don't force access to volatile just because its address is taken. If ignoring reference operations, just expand the operands. (expand_expr, case COMPONENT_REF): Propagate EXPAND_CONST_ADDRESS to recursive call when expanding inner. Refine test for using bitfield operations vs pointer punning. (expand_expr, case CONVERT_EXPR): If converting to BLKmode UNION_TYPE from BLKmode, just return inner object. Use proper mode in store_field call. Properly set sizes of object to store and total size in store_field call for convert to union. (expand_expr, case ARRAY_REF): If OP0 is in a register, put it in memory (like for ADDR_EXPR). Also, don't put constant in register if we'll want it in memory. (readonly_fields_p): New function. (expand_expr, case INDIRECT_REF): Call it if LHS. (expand_assignment): Handle a RESULT_DECL where DECL_RTL is a PARALLEL. (do_jump, case WITH_RECORD_EXPR): New case. (get_inner_reference): Always go inside a CONVERT_EXPR and NOP_EXPR if both modes are the same. (store_field): Use bitfield operations if size of bitsize is not same as size of RHS's type. Check for bitpos not a multiple of alignment in BLKmode case. Do block move in largest possible alignment. (store_constructor): Set BITSIZE to -1 for variable size and properly in case of array of BLKmode. (expand_expr_unaligned): New function. (do_compare_and_jump): Call it. * mips/iris5.h (SWITCHES_NEED_SPACES): New macro. * collect2.c (main): Only allow -ofoo if SWITCHES_NEED_SPACES does not include 'o'. * function.c (instantiate_virtual_regs_1, case SET): Handle case where both SET_DEST and SET_SRC reference a virtual register. (gen_mem_addressof): Copy RTX_UNCHANGING_P from new REG to old REG. * integrate.c (expand_inline_function): Handle case of setting virtual stack vars register (from built in setjmp); when parameter lives in memory, expand virtual_{stack_vars,incoming_args}_rtx early. (subst_constant): Add new parm, MEMONLY. (expand_inline_function, integrate_parm_decls): Pass new parm. (integrate_decl_tree): Likewise. (copy_rtx_and_substitute, case MEM): Do copy RTX_UNCHANGING_P. (try_constants): Call subst_constants twice, with MEMONLY 0 and 1. (copy_rtx_and_substitute, case SET): Add explicit calls to copy_rtx_and_substitute for both sides. * stmt.c (expand_asm_operands): Don't use TREE_STRING_LENGTH for constraints. (pushcase{,_range}): Convert to NOMINAL_TYPE after checking for within INDEX_TYPE, instead of before. (fixup_gotos): Use f->target_rtl, not the next insn, since latter may be from a later fixup. (expand_value_return): Correctly convert VAL when promoting function return; support RETURN_REG being a PARALLEL. (expand_return): When checking for result in regs and having cleanup, consider PARALLEL in DECL_RTL as being in regs. From-SVN: r30299
1999-11-01 02:11:22 +01:00
struct cfc_args *args = (struct cfc_args *) data;
REAL_VALUE_TYPE d0, d1;
/* We may possibly raise an exception while reading the value. */
args->unordered = 1;
REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
/* Comparisons of Inf versus Inf are ordered. */
if (REAL_VALUE_ISNAN (d0)
|| REAL_VALUE_ISNAN (d1))
return;
args->equal = REAL_VALUES_EQUAL (d0, d1);
args->op0lt = REAL_VALUES_LESS (d0, d1);
args->op1lt = REAL_VALUES_LESS (d1, d0);
args->unordered = 0;
}
/* Like simplify_binary_operation except used for relational operators.
MODE is the mode of the operands, not that of the result. If MODE
is VOIDmode, both operands must also be VOIDmode and we compare the
operands in "infinite precision".
If no simplification is possible, this function returns zero. Otherwise,
it returns either const_true_rtx or const0_rtx. */
rtx
simplify_relational_operation (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
int equal, op0lt, op0ltu, op1lt, op1ltu;
rtx tem;
if (mode == VOIDmode
&& (GET_MODE (op0) != VOIDmode
|| GET_MODE (op1) != VOIDmode))
abort ();
/* If op0 is a compare, extract the comparison arguments from it. */
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* We can't simplify MODE_CC values since we don't know what the
actual comparison is. */
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
#ifdef HAVE_cc0
|| op0 == cc0_rtx
#endif
)
return 0;
/* Make sure the constant is second. */
if (swap_commutative_operands_p (op0, op1))
{
tem = op0, op0 = op1, op1 = tem;
code = swap_condition (code);
}
/* For integer comparisons of A and B maybe we can simplify A - B and can
then simplify a comparison of that with zero. If A and B are both either
a register or a CONST_INT, this can't help; testing for these cases will
prevent infinite recursion here and speed things up.
If CODE is an unsigned comparison, then we can never do this optimization,
because it gives an incorrect result if the subtraction wraps around zero.
ANSI C defines unsigned operations such that they never overflow, and
thus such cases can not be ignored. */
if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
&& ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
&& (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
&& 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
&& code != GTU && code != GEU && code != LTU && code != LEU)
return simplify_relational_operation (signed_condition (code),
mode, tem, const0_rtx);
if (flag_unsafe_math_optimizations && code == ORDERED)
return const_true_rtx;
if (flag_unsafe_math_optimizations && code == UNORDERED)
return const0_rtx;
/* For non-IEEE floating-point, if the two operands are equal, we know the
result. */
if (rtx_equal_p (op0, op1)
&& (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (GET_MODE (op0))
|| flag_unsafe_math_optimizations))
equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
/* If the operands are floating-point constants, see if we can fold
the result. */
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
{
struct cfc_args args;
/* Setup input for check_fold_consts() */
args.op0 = op0;
args.op1 = op1;
if (!do_float_handler (check_fold_consts, (PTR) &args))
args.unordered = 1;
if (args.unordered)
switch (code)
{
case UNEQ:
case UNLT:
case UNGT:
case UNLE:
case UNGE:
case NE:
case UNORDERED:
return const_true_rtx;
case EQ:
case LT:
case GT:
case LE:
case GE:
case LTGT:
case ORDERED:
return const0_rtx;
default:
return 0;
}
/* Receive output from check_fold_consts() */
equal = args.equal;
op0lt = op0ltu = args.op0lt;
op1lt = op1ltu = args.op1lt;
}
#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
/* Otherwise, see if the operands are both integers. */
else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
&& (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
&& (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
{
int width = GET_MODE_BITSIZE (mode);
HOST_WIDE_INT l0s, h0s, l1s, h1s;
unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
/* Get the two words comprising each integer constant. */
if (GET_CODE (op0) == CONST_DOUBLE)
{
l0u = l0s = CONST_DOUBLE_LOW (op0);
h0u = h0s = CONST_DOUBLE_HIGH (op0);
}
else
{
l0u = l0s = INTVAL (op0);
h0u = h0s = HWI_SIGN_EXTEND (l0s);
}
if (GET_CODE (op1) == CONST_DOUBLE)
{
l1u = l1s = CONST_DOUBLE_LOW (op1);
h1u = h1s = CONST_DOUBLE_HIGH (op1);
}
else
{
l1u = l1s = INTVAL (op1);
h1u = h1s = HWI_SIGN_EXTEND (l1s);
}
/* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
we have to sign or zero-extend the values. */
if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
{
l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
l0s |= ((HOST_WIDE_INT) (-1) << width);
if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
l1s |= ((HOST_WIDE_INT) (-1) << width);
}
if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
equal = (h0u == h1u && l0u == l1u);
op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
}
/* Otherwise, there are some code-specific tests we can make. */
else
{
switch (code)
{
case EQ:
/* References to the frame plus a constant or labels cannot
be zero, but a SYMBOL_REF can due to #pragma weak. */
if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
|| GET_CODE (op0) == LABEL_REF)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
/* On some machines, the ap reg can be 0 sometimes. */
&& op0 != arg_pointer_rtx
#endif
)
return const0_rtx;
break;
case NE:
if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
|| GET_CODE (op0) == LABEL_REF)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& op0 != arg_pointer_rtx
#endif
)
return const_true_rtx;
break;
case GEU:
/* Unsigned values are never negative. */
if (op1 == const0_rtx)
return const_true_rtx;
break;
case LTU:
if (op1 == const0_rtx)
return const0_rtx;
break;
case LEU:
/* Unsigned values are never greater than the largest
unsigned value. */
if (GET_CODE (op1) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
&& INTEGRAL_MODE_P (mode))
return const_true_rtx;
break;
case GTU:
if (GET_CODE (op1) == CONST_INT
&& (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
&& INTEGRAL_MODE_P (mode))
return const0_rtx;
break;
default:
break;
}
return 0;
}
/* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
as appropriate. */
switch (code)
{
case EQ:
case UNEQ:
return equal ? const_true_rtx : const0_rtx;
case NE:
case LTGT:
return ! equal ? const_true_rtx : const0_rtx;
case LT:
case UNLT:
return op0lt ? const_true_rtx : const0_rtx;
case GT:
case UNGT:
return op1lt ? const_true_rtx : const0_rtx;
case LTU:
return op0ltu ? const_true_rtx : const0_rtx;
case GTU:
return op1ltu ? const_true_rtx : const0_rtx;
case LE:
case UNLE:
return equal || op0lt ? const_true_rtx : const0_rtx;
case GE:
case UNGE:
return equal || op1lt ? const_true_rtx : const0_rtx;
case LEU:
return equal || op0ltu ? const_true_rtx : const0_rtx;
case GEU:
return equal || op1ltu ? const_true_rtx : const0_rtx;
case ORDERED:
return const_true_rtx;
case UNORDERED:
return const0_rtx;
default:
abort ();
}
}
/* Simplify CODE, an operation with result mode MODE and three operands,
OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
a constant. Return 0 if no simplifications is possible. */
rtx
simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
enum rtx_code code;
enum machine_mode mode, op0_mode;
rtx op0, op1, op2;
{
unsigned int width = GET_MODE_BITSIZE (mode);
/* VOIDmode means "infinite" precision. */
if (width == 0)
width = HOST_BITS_PER_WIDE_INT;
switch (code)
{
case SIGN_EXTRACT:
case ZERO_EXTRACT:
if (GET_CODE (op0) == CONST_INT
&& GET_CODE (op1) == CONST_INT
&& GET_CODE (op2) == CONST_INT
&& ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
&& width <= (unsigned) HOST_BITS_PER_WIDE_INT)
{
/* Extracting a bit-field from a constant */
HOST_WIDE_INT val = INTVAL (op0);
if (BITS_BIG_ENDIAN)
val >>= (GET_MODE_BITSIZE (op0_mode)
- INTVAL (op2) - INTVAL (op1));
else
val >>= INTVAL (op2);
if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
{
/* First zero-extend. */
val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
/* If desired, propagate sign bit. */
if (code == SIGN_EXTRACT
&& (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
}
/* Clear the bits that don't belong in our mode,
unless they and our sign bit are all one.
So we get either a reasonable negative value or a reasonable
unsigned value for this mode. */
if (width < HOST_BITS_PER_WIDE_INT
&& ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
val &= ((HOST_WIDE_INT) 1 << width) - 1;
return GEN_INT (val);
}
break;
case IF_THEN_ELSE:
if (GET_CODE (op0) == CONST_INT)
return op0 != const0_rtx ? op1 : op2;
/* Convert a == b ? b : a to "a". */
if (GET_CODE (op0) == NE && ! side_effects_p (op0)
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& rtx_equal_p (XEXP (op0, 0), op1)
&& rtx_equal_p (XEXP (op0, 1), op2))
return op1;
else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
&& (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
&& rtx_equal_p (XEXP (op0, 1), op1)
&& rtx_equal_p (XEXP (op0, 0), op2))
return op2;
else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
{
enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
? GET_MODE (XEXP (op0, 1))
: GET_MODE (XEXP (op0, 0)));
rtx temp;
if (cmp_mode == VOIDmode)
cmp_mode = op0_mode;
temp = simplify_relational_operation (GET_CODE (op0), cmp_mode,
XEXP (op0, 0), XEXP (op0, 1));
/* See if any simplifications were possible. */
if (temp == const0_rtx)
return op2;
else if (temp == const1_rtx)
return op1;
else if (temp)
op0 = temp;
/* Look for happy constants in op1 and op2. */
if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
{
HOST_WIDE_INT t = INTVAL (op1);
HOST_WIDE_INT f = INTVAL (op2);
if (t == STORE_FLAG_VALUE && f == 0)
code = GET_CODE (op0);
else if (t == 0 && f == STORE_FLAG_VALUE)
{
enum rtx_code tmp;
tmp = reversed_comparison_code (op0, NULL_RTX);
if (tmp == UNKNOWN)
break;
code = tmp;
}
else
break;
return gen_rtx_fmt_ee (code, mode, XEXP (op0, 0), XEXP (op0, 1));
}
}
break;
default:
abort ();
}
return 0;
}
/* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
Return 0 if no simplifications is possible. */
rtx
simplify_subreg (outermode, op, innermode, byte)
rtx op;
unsigned int byte;
enum machine_mode outermode, innermode;
{
/* Little bit of sanity checking. */
if (innermode == VOIDmode || outermode == VOIDmode
|| innermode == BLKmode || outermode == BLKmode)
abort ();
if (GET_MODE (op) != innermode
&& GET_MODE (op) != VOIDmode)
abort ();
if (byte % GET_MODE_SIZE (outermode)
|| byte >= GET_MODE_SIZE (innermode))
abort ();
if (outermode == innermode && !byte)
return op;
/* Attempt to simplify constant to non-SUBREG expression. */
if (CONSTANT_P (op))
{
int offset, part;
unsigned HOST_WIDE_INT val;
/* ??? This code is partly redundant with code bellow, but can handle
the subregs of floats and similar corner cases.
Later it we should move all simplification code here and rewrite
GEN_LOWPART_IF_POSSIBLE, GEN_HIGHPART, OPERAND_SUBWORD and friends
using SIMPLIFY_SUBREG. */
if (subreg_lowpart_offset (outermode, innermode) == byte)
{
rtx new = gen_lowpart_if_possible (outermode, op);
if (new)
return new;
}
/* Similar comment as above apply here. */
if (GET_MODE_SIZE (outermode) == UNITS_PER_WORD
&& GET_MODE_SIZE (innermode) > UNITS_PER_WORD
&& GET_MODE_CLASS (outermode) == MODE_INT)
{
rtx new = constant_subword (op,
(byte / UNITS_PER_WORD),
innermode);
if (new)
return new;
}
offset = byte * BITS_PER_UNIT;
switch (GET_CODE (op))
{
case CONST_DOUBLE:
if (GET_MODE (op) != VOIDmode)
break;
/* We can't handle this case yet. */
if (GET_MODE_BITSIZE (outermode) >= HOST_BITS_PER_WIDE_INT)
return NULL;
part = offset >= HOST_BITS_PER_WIDE_INT;
if ((BITS_PER_WORD > HOST_BITS_PER_WIDE_INT
&& BYTES_BIG_ENDIAN)
|| (BITS_PER_WORD <= HOST_BITS_PER_WIDE_INT
&& WORDS_BIG_ENDIAN))
part = !part;
val = part ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op);
offset %= HOST_BITS_PER_WIDE_INT;
/* We've already picked the word we want from a double, so
pretend this is actually an integer. */
innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
/* FALLTHROUGH */
case CONST_INT:
if (GET_CODE (op) == CONST_INT)
val = INTVAL (op);
/* We don't handle synthetizing of non-integral constants yet. */
if (GET_MODE_CLASS (outermode) != MODE_INT)
return NULL;
if (BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
{
if (WORDS_BIG_ENDIAN)
offset = (GET_MODE_BITSIZE (innermode)
- GET_MODE_BITSIZE (outermode) - offset);
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (outermode) < UNITS_PER_WORD)
offset = (offset + BITS_PER_WORD - GET_MODE_BITSIZE (outermode)
- 2 * (offset % BITS_PER_WORD));
}
if (offset >= HOST_BITS_PER_WIDE_INT)
return ((HOST_WIDE_INT) val < 0) ? constm1_rtx : const0_rtx;
else
{
val >>= offset;
if (GET_MODE_BITSIZE (outermode) < HOST_BITS_PER_WIDE_INT)
val = trunc_int_for_mode (val, outermode);
return GEN_INT (val);
}
default:
break;
}
}
/* Changing mode twice with SUBREG => just change it once,
or not at all if changing back op starting mode. */
if (GET_CODE (op) == SUBREG)
{
enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
int final_offset = byte + SUBREG_BYTE (op);
rtx new;
if (outermode == innermostmode
&& byte == 0 && SUBREG_BYTE (op) == 0)
return SUBREG_REG (op);
/* The SUBREG_BYTE represents offset, as if the value were stored
in memory. Irritating exception is paradoxical subreg, where
we define SUBREG_BYTE to be 0. On big endian machines, this
value should be negative. For a moment, undo this exception. */
if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
{
int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
if (WORDS_BIG_ENDIAN)
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
final_offset += difference % UNITS_PER_WORD;
}
if (SUBREG_BYTE (op) == 0
&& GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
{
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
if (WORDS_BIG_ENDIAN)
final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
final_offset += difference % UNITS_PER_WORD;
}
/* See whether resulting subreg will be paradoxical. */
if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
{
/* In nonparadoxical subregs we can't handle negative offsets. */
if (final_offset < 0)
return NULL_RTX;
/* Bail out in case resulting subreg would be incorrect. */
if (final_offset % GET_MODE_SIZE (outermode)
|| final_offset >= GET_MODE_SIZE (innermostmode))
return NULL;
}
else
{
int offset = 0;
int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
/* In paradoxical subreg, see if we are still looking on lower part.
If so, our SUBREG_BYTE will be 0. */
if (WORDS_BIG_ENDIAN)
offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset += difference % UNITS_PER_WORD;
if (offset == final_offset)
final_offset = 0;
else
return NULL;
}
/* Recurse for futher possible simplifications. */
new = simplify_subreg (outermode, SUBREG_REG (op),
GET_MODE (SUBREG_REG (op)),
final_offset);
if (new)
return new;
return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
}
/* SUBREG of a hard register => just change the register number
and/or mode. If the hard register is not valid in that mode,
suppress this simplification. If the hard register is the stack,
frame, or argument pointer, leave this as a SUBREG. */
if (REG_P (op)
&& (! REG_FUNCTION_VALUE_P (op)
|| ! rtx_equal_function_value_matters)
#ifdef CLASS_CANNOT_CHANGE_MODE
&& ! (CLASS_CANNOT_CHANGE_MODE_P (outermode, innermode)
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
&& GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT
&& (TEST_HARD_REG_BIT
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
REGNO (op))))
#endif
&& REGNO (op) < FIRST_PSEUDO_REGISTER
&& ((reload_completed && !frame_pointer_needed)
|| (REGNO (op) != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& REGNO (op) != HARD_FRAME_POINTER_REGNUM
#endif
))
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& REGNO (op) != ARG_POINTER_REGNUM
#endif
&& REGNO (op) != STACK_POINTER_REGNUM)
{
int final_regno = subreg_hard_regno (gen_rtx_SUBREG (outermode, op, byte),
0);
/* ??? We do allow it if the current REG is not valid for
its mode. This is a kludge to work around how float/complex
arguments are passed on 32-bit Sparc and should be fixed. */
if (HARD_REGNO_MODE_OK (final_regno, outermode)
|| ! HARD_REGNO_MODE_OK (REGNO (op), innermode))
return gen_rtx_REG (outermode, final_regno);
}
/* If we have a SUBREG of a register that we are replacing and we are
replacing it with a MEM, make a new MEM and try replacing the
SUBREG with it. Don't do this if the MEM has a mode-dependent address
or if we would be widening it. */
if (GET_CODE (op) == MEM
&& ! mode_dependent_address_p (XEXP (op, 0))
/* Allow splitting of volatile memory references in case we don't
have instruction to move the whole thing. */
&& (! MEM_VOLATILE_P (op)
|| (mov_optab->handlers[(int) innermode].insn_code
== CODE_FOR_nothing))
&& GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
{
rtx new;
new = gen_rtx_MEM (outermode, plus_constant (XEXP (op, 0), byte));
MEM_COPY_ATTRIBUTES (new, op);
return new;
}
/* Handle complex values represented as CONCAT
of real and imaginary part. */
if (GET_CODE (op) == CONCAT)
{
int is_realpart = byte < GET_MODE_UNIT_SIZE (innermode);
rtx part = is_realpart ? XEXP (op, 0) : XEXP (op, 1);
unsigned int final_offset;
final_offset = byte % (GET_MODE_UNIT_SIZE (innermode));
return simplify_subreg (outermode, part, GET_MODE (part), final_offset);
}
return NULL_RTX;
}
/* Make a SUBREG operation or equivalent if it folds. */
rtx
simplify_gen_subreg (outermode, op, innermode, byte)
rtx op;
unsigned int byte;
enum machine_mode outermode, innermode;
{
rtx new;
/* Little bit of sanity checking. */
if (innermode == VOIDmode || outermode == VOIDmode
|| innermode == BLKmode || outermode == BLKmode)
abort ();
if (GET_MODE (op) != innermode
&& GET_MODE (op) != VOIDmode)
abort ();
if (byte % GET_MODE_SIZE (outermode)
|| byte >= GET_MODE_SIZE (innermode))
abort ();
new = simplify_subreg (outermode, op, innermode, byte);
if (new)
return new;
if (GET_CODE (op) == SUBREG || GET_MODE (op) == VOIDmode)
return NULL_RTX;
return gen_rtx_SUBREG (outermode, op, byte);
}
/* Simplify X, an rtx expression.
Return the simplified expression or NULL if no simplifications
were possible.
This is the preferred entry point into the simplification routines;
however, we still allow passes to call the more specific routines.
Right now GCC has three (yes, three) major bodies of RTL simplficiation
code that need to be unified.
1. fold_rtx in cse.c. This code uses various CSE specific
information to aid in RTL simplification.
2. simplify_rtx in combine.c. Similar to fold_rtx, except that
it uses combine specific information to aid in RTL
simplification.
3. The routines in this file.
Long term we want to only have one body of simplification code; to
get to that state I recommend the following steps:
1. Pour over fold_rtx & simplify_rtx and move any simplifications
which are not pass dependent state into these routines.
2. As code is moved by #1, change fold_rtx & simplify_rtx to
use this routine whenever possible.
3. Allow for pass dependent state to be provided to these
routines and add simplifications based on the pass dependent
state. Remove code from cse.c & combine.c that becomes
redundant/dead.
It will take time, but ultimately the compiler will be easier to
maintain and improve. It's totally silly that when we add a
simplification that it needs to be added to 4 places (3 for RTL
simplification and 1 for tree simplification. */
rtx
simplify_rtx (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
switch (GET_RTX_CLASS (code))
{
case '1':
return simplify_unary_operation (code, mode,
XEXP (x, 0), GET_MODE (XEXP (x, 0)));
case 'c':
/* Put complex operands first and constants second if commutative. */
if (GET_RTX_CLASS (code) == 'c'
&& ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
|| (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
{
rtx tem;
tem = XEXP (x, 0);
XEXP (x, 0) = XEXP (x, 1);
XEXP (x, 1) = tem;
return simplify_binary_operation (code, mode,
XEXP (x, 0), XEXP (x, 1));
}
case '2':
return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
case '3':
case 'b':
return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
XEXP (x, 0), XEXP (x, 1),
XEXP (x, 2));
case '<':
return simplify_relational_operation (code,
((GET_MODE (XEXP (x, 0))
!= VOIDmode)
? GET_MODE (XEXP (x, 0))
: GET_MODE (XEXP (x, 1))),
XEXP (x, 0), XEXP (x, 1));
case 'x':
/* The only case we try to handle is a SUBREG. */
if (code == SUBREG)
return simplify_gen_subreg (mode, SUBREG_REG (x),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
return NULL;
default:
return NULL;
}
}