gcc/libgfortran/io/transfer.c

1573 lines
34 KiB
C
Raw Normal View History

/* Copyright (C) 2002-2003 Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Libgfortran; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* transfer.c -- Top level handling of data transfer statements. */
#include "config.h"
#include <string.h>
#include "libgfortran.h"
#include "io.h"
/* Calling conventions: Data transfer statements are unlike other
* library calls in that they extend over several calls.
* The first call is always a call to st_read() or st_write(). These
* subroutines return no status unless a namelist read or write is
* being done, in which case there is the usual status. No further
* calls are necessary in this case.
*
* For other sorts of data transfer, there are zero or more data
* transfer statement that depend on the format of the data transfer
* statement.
*
* transfer_integer
* transfer_logical
* transfer_character
* transfer_real
* transfer_complex
*
* These subroutines do not return status.
*
* The last call is a call to st_[read|write]_done(). While
* something can easily go wrong with the initial st_read() or
* st_write(), an error inhibits any data from actually being
* transferred.
*/
gfc_unit *current_unit;
static int sf_seen_eor = 0;
char scratch[SCRATCH_SIZE];
static char *line_buffer = NULL;
static unit_advance advance_status;
static st_option advance_opt[] = {
{"yes", ADVANCE_YES},
{"no", ADVANCE_NO},
{NULL}
};
static void (*transfer) (bt, void *, int);
typedef enum
{ FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
FORMATTED_DIRECT, UNFORMATTED_DIRECT
}
file_mode;
static file_mode
current_mode (void)
{
file_mode m;
if (current_unit->flags.access == ACCESS_DIRECT)
{
m = current_unit->flags.form == FORM_FORMATTED ?
FORMATTED_DIRECT : UNFORMATTED_DIRECT;
}
else
{
m = current_unit->flags.form == FORM_FORMATTED ?
FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
}
return m;
}
/* Mid level data transfer statements. These subroutines do reading
* and writing in the style of salloc_r()/salloc_w() within the
* current record. */
/* read_sf()-- When reading sequential formatted records we have a
* problem. We don't know how long the line is until we read the
* trailing newline, and we don't want to read too much. If we read
* too much, we might have to do a physical seek backwards depending
* on how much data is present, and devices like terminals aren't
* seekable and would cause an I/O error.
*
* Given this, the solution is to read a byte at a time, stopping if
* we hit the newline. For small locations, we use a static buffer.
* For larger allocations, we are forced to allocate memory on the
* heap. Hopefully this won't happen very often. */
static char *
read_sf (int *length)
{
static char data[SCRATCH_SIZE];
char *base, *p, *q;
int n, unity;
if (*length > SCRATCH_SIZE)
p = base = line_buffer = get_mem (*length);
else
p = base = data;
memset(base,'\0',*length);
current_unit->bytes_left = options.default_recl;
unity = 1;
n = 0;
do
{
if (is_internal_unit())
{
/* unity may be modified inside salloc_r if is_internal_unit() is true */
unity = 1;
}
q = salloc_r (current_unit->s, &unity);
if (q == NULL)
break;
if (*q == '\n')
{
if (current_unit->unit_number == options.stdin_unit)
{
if (n <= 0)
continue;
}
/* Unexpected end of line */
if (current_unit->flags.pad == PAD_NO)
{
generate_error (ERROR_EOR, NULL);
return NULL;
}
current_unit->bytes_left = 0;
*length = n;
sf_seen_eor = 1;
break;
}
n++;
*p++ = *q;
sf_seen_eor = 0;
}
while (n < *length);
return base;
}
/* read_block()-- Function for reading the next couple of bytes from
* the current file, advancing the current position. We return a
* pointer to a buffer containing the bytes. We return NULL on end of
* record or end of file.
*
* If the read is short, then it is because the current record does not
* have enough data to satisfy the read request and the file was
* opened with PAD=YES. The caller must assume tailing spaces for
* short reads. */
void *
read_block (int *length)
{
char *source;
int nread;
if (current_unit->flags.form == FORM_FORMATTED &&
current_unit->flags.access == ACCESS_SEQUENTIAL)
return read_sf (length); /* Special case */
if (current_unit->bytes_left < *length)
{
if (current_unit->flags.pad == PAD_NO)
{
generate_error (ERROR_EOR, NULL); /* Not enough data left */
return NULL;
}
*length = current_unit->bytes_left;
}
current_unit->bytes_left -= *length;
nread = *length;
source = salloc_r (current_unit->s, &nread);
if (ioparm.size != NULL)
*ioparm.size += nread;
if (nread != *length)
{ /* Short read, this shouldn't happen */
if (current_unit->flags.pad == PAD_YES)
*length = nread;
else
{
generate_error (ERROR_EOR, NULL);
source = NULL;
}
}
return source;
}
/* write_block()-- Function for writing a block of bytes to the
* current file at the current position, advancing the file pointer.
* We are given a length and return a pointer to a buffer that the
* caller must (completely) fill in. Returns NULL on error. */
void *
write_block (int length)
{
char *dest;
if (!is_internal_unit() && current_unit->bytes_left < length)
{
generate_error (ERROR_EOR, NULL);
return NULL;
}
current_unit->bytes_left -= length;
dest = salloc_w (current_unit->s, &length);
if (ioparm.size != NULL)
*ioparm.size += length;
return dest;
}
/* unformatted_read()-- Master function for unformatted reads. */
static void
unformatted_read (bt type, void *dest, int length)
{
void *source;
int w;
w = length;
source = read_block (&w);
if (source != NULL)
{
memcpy (dest, source, w);
if (length != w)
memset (((char *) dest) + w, ' ', length - w);
}
}
static void
unformatted_write (bt type, void *source, int length)
{
void *dest;
dest = write_block (length);
if (dest != NULL)
memcpy (dest, source, length);
}
/* type_name()-- Return a pointer to the name of a type. */
const char *
type_name (bt type)
{
const char *p;
switch (type)
{
case BT_INTEGER:
p = "INTEGER";
break;
case BT_LOGICAL:
p = "LOGICAL";
break;
case BT_CHARACTER:
p = "CHARACTER";
break;
case BT_REAL:
p = "REAL";
break;
case BT_COMPLEX:
p = "COMPLEX";
break;
default:
internal_error ("type_name(): Bad type");
}
return p;
}
/* write_constant_string()-- write a constant string to the output.
* This is complicated because the string can have doubled delimiters
* in it. The length in the format node is the true length. */
static void
write_constant_string (fnode * f)
{
char c, delimiter, *p, *q;
int length;
length = f->u.string.length;
if (length == 0)
return;
p = write_block (length);
if (p == NULL)
return;
q = f->u.string.p;
delimiter = q[-1];
for (; length > 0; length--)
{
c = *p++ = *q++;
if (c == delimiter && c != 'H')
q++; /* Skip the doubled delimiter */
}
}
/* require_type()-- Given actual and expected types in a formatted
* data transfer, make sure they agree. If not, an error message is
* generated. Returns nonzero if something went wrong. */
static int
require_type (bt expected, bt actual, fnode * f)
{
char buffer[100];
if (actual == expected)
return 0;
st_sprintf (buffer, "Expected %s for item %d in formatted transfer, got %s",
type_name (expected), g.item_count, type_name (actual));
format_error (f, buffer);
return 1;
}
/* formatted_transfer()-- This subroutine is the main loop for a
* formatted data transfer statement. It would be natural to
* implement this as a coroutine with the user program, but C makes
* that awkward. We loop, processesing format elements. When we
* actually have to transfer data instead of just setting flags, we
* return control to the user program which calls a subroutine that
* supplies the address and type of the next element, then comes back
* here to process it. */
static void
formatted_transfer (bt type, void *p, int len)
{
int pos ,m ;
fnode *f;
int i, n;
int consume_data_flag;
/* Change a complex data item into a pair of reals */
n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
if (type == BT_COMPLEX)
type = BT_REAL;
/* If reversion has occurred and there is another real data item,
* then we have to move to the next record */
if (g.reversion_flag && n > 0)
{
g.reversion_flag = 0;
next_record (0);
}
for (;;)
{
consume_data_flag = 1 ;
if (ioparm.library_return != LIBRARY_OK)
break;
f = next_format ();
if (f == NULL)
return; /* No data descriptors left (already raised) */
switch (f->format)
{
case FMT_I:
if (n == 0)
goto need_data;
if (require_type (BT_INTEGER, type, f))
return;
if (g.mode == READING)
read_decimal (f, p, len);
else
write_i (f, p, len);
break;
case FMT_B:
if (n == 0)
goto need_data;
if (require_type (BT_INTEGER, type, f))
return;
if (g.mode == READING)
read_radix (f, p, len, 2);
else
write_b (f, p, len);
break;
case FMT_O:
if (n == 0)
goto need_data;
if (g.mode == READING)
read_radix (f, p, len, 8);
else
write_o (f, p, len);
break;
case FMT_Z:
if (n == 0)
goto need_data;
if (g.mode == READING)
read_radix (f, p, len, 16);
else
write_z (f, p, len);
break;
case FMT_A:
if (n == 0)
goto need_data;
if (require_type (BT_CHARACTER, type, f))
return;
if (g.mode == READING)
read_a (f, p, len);
else
write_a (f, p, len);
break;
case FMT_L:
if (n == 0)
goto need_data;
if (g.mode == READING)
read_l (f, p, len);
else
write_l (f, p, len);
break;
case FMT_D:
if (n == 0)
goto need_data;
if (require_type (BT_REAL, type, f))
return;
if (g.mode == READING)
read_f (f, p, len);
else
write_d (f, p, len);
break;
case FMT_E:
if (n == 0)
goto need_data;
if (require_type (BT_REAL, type, f))
return;
if (g.mode == READING)
read_f (f, p, len);
else
write_e (f, p, len);
break;
case FMT_EN:
if (n == 0)
goto need_data;
if (require_type (BT_REAL, type, f))
return;
if (g.mode == READING)
read_f (f, p, len);
else
write_en (f, p, len);
break;
case FMT_ES:
if (n == 0)
goto need_data;
if (require_type (BT_REAL, type, f))
return;
if (g.mode == READING)
read_f (f, p, len);
else
write_es (f, p, len);
break;
case FMT_F:
if (n == 0)
goto need_data;
if (require_type (BT_REAL, type, f))
return;
if (g.mode == READING)
read_f (f, p, len);
else
write_f (f, p, len);
break;
case FMT_G:
if (n == 0)
goto need_data;
if (g.mode == READING)
switch (type)
{
case BT_INTEGER:
read_decimal (f, p, len);
break;
case BT_LOGICAL:
read_l (f, p, len);
break;
case BT_CHARACTER:
read_a (f, p, len);
break;
case BT_REAL:
read_f (f, p, len);
break;
default:
goto bad_type;
}
else
switch (type)
{
case BT_INTEGER:
write_i (f, p, len);
break;
case BT_LOGICAL:
write_l (f, p, len);
break;
case BT_CHARACTER:
write_a (f, p, len);
break;
case BT_REAL:
write_d (f, p, len);
break;
default:
bad_type:
internal_error ("formatted_transfer(): Bad type");
}
break;
case FMT_STRING:
consume_data_flag = 0 ;
if (g.mode == READING)
{
format_error (f, "Constant string in input format");
return;
}
write_constant_string (f);
break;
/* Format codes that don't transfer data */
case FMT_X:
case FMT_TR:
consume_data_flag = 0 ;
if (g.mode == READING)
read_x (f);
else
write_x (f);
break;
case FMT_TL:
case FMT_T:
if (f->format==FMT_TL)
{
pos = f->u.n ;
pos= current_unit->recl - current_unit->bytes_left - pos;
}
else // FMT==T
{
consume_data_flag = 0 ;
pos = f->u.n - 1;
}
if (pos < 0 || pos >= current_unit->recl )
{
generate_error (ERROR_EOR, "T Or TL edit position error");
break ;
}
m = pos - (current_unit->recl - current_unit->bytes_left);
if (m == 0)
break;
if (m > 0)
{
f->u.n = m;
if (g.mode == READING)
read_x (f);
else
write_x (f);
}
if (m < 0)
{
move_pos_offset (current_unit->s,m);
}
break;
case FMT_S:
consume_data_flag = 0 ;
g.sign_status = SIGN_S;
break;
case FMT_SS:
consume_data_flag = 0 ;
g.sign_status = SIGN_SS;
break;
case FMT_SP:
consume_data_flag = 0 ;
g.sign_status = SIGN_SP;
break;
case FMT_BN:
consume_data_flag = 0 ;
g.blank_status = BLANK_NULL;
break;
case FMT_BZ:
consume_data_flag = 0 ;
g.blank_status = BLANK_ZERO;
break;
case FMT_P:
consume_data_flag = 0 ;
g.scale_factor = f->u.k;
break;
case FMT_DOLLAR:
consume_data_flag = 0 ;
g.seen_dollar = 1;
break;
case FMT_SLASH:
consume_data_flag = 0 ;
for (i = 0; i < f->repeat; i++)
next_record (0);
break;
case FMT_COLON:
/* A colon descriptor causes us to exit this loop (in particular
* preventing another / descriptor from being processed) unless there
* is another data item to be transferred. */
consume_data_flag = 0 ;
if (n == 0)
return;
break;
default:
internal_error ("Bad format node");
}
/* Free a buffer that we had to allocate during a sequential
* formatted read of a block that was larger than the static
* buffer. */
if (line_buffer != NULL)
{
free_mem (line_buffer);
line_buffer = NULL;
}
/* Adjust the item count and data pointer */
if ((consume_data_flag > 0) && (n > 0))
{
n--;
p = ((char *) p) + len;
}
}
return;
/* Come here when we need a data descriptor but don't have one. We
* push the current format node back onto the input, then return and
* let the user program call us back with the data. */
need_data:
unget_format (f);
}
/* Data transfer entry points. The type of the data entity is
* implicit in the subroutine call. This prevents us from having to
* share a common enum with the compiler. */
void
transfer_integer (void *p, int kind)
{
g.item_count++;
if (ioparm.library_return != LIBRARY_OK)
return;
transfer (BT_INTEGER, p, kind);
}
void
transfer_real (void *p, int kind)
{
g.item_count++;
if (ioparm.library_return != LIBRARY_OK)
return;
transfer (BT_REAL, p, kind);
}
void
transfer_logical (void *p, int kind)
{
g.item_count++;
if (ioparm.library_return != LIBRARY_OK)
return;
transfer (BT_LOGICAL, p, kind);
}
void
transfer_character (void *p, int len)
{
g.item_count++;
if (ioparm.library_return != LIBRARY_OK)
return;
transfer (BT_CHARACTER, p, len);
}
void
transfer_complex (void *p, int kind)
{
g.item_count++;
if (ioparm.library_return != LIBRARY_OK)
return;
transfer (BT_COMPLEX, p, kind);
}
/* us_read()-- Preposition a sequential unformatted file while reading. */
static void
us_read (void)
{
gfc_offset *p;
int n;
n = sizeof (gfc_offset);
p = (gfc_offset *) salloc_r (current_unit->s, &n);
if (p == NULL || n != sizeof (gfc_offset))
{
generate_error (ERROR_BAD_US, NULL);
return;
}
current_unit->bytes_left = *p;
}
/* us_write()-- Preposition a sequential unformatted file while
* writing. This amount to writing a bogus length that will be filled
* in later. */
static void
us_write (void)
{
gfc_offset *p;
int length;
length = sizeof (gfc_offset);
p = (gfc_offset *) salloc_w (current_unit->s, &length);
if (p == NULL)
{
generate_error (ERROR_OS, NULL);
return;
}
*p = 0; /* Bogus value for now */
if (sfree (current_unit->s) == FAILURE)
generate_error (ERROR_OS, NULL);
/* for sequential unformatted, we write until we have more bytes than
can fit in the record markers. if disk space runs out first it will
error on the write */
current_unit->recl = g.max_offset;
current_unit->bytes_left = current_unit->recl;
}
/* pre_position()-- position to the next record prior to transfer. We
* are assumed to be before the next record. We also calculate the
* bytes in the next record. */
static void
pre_position (void)
{
if (current_unit->current_record)
return; /* Already positioned */
switch (current_mode ())
{
case UNFORMATTED_SEQUENTIAL:
if (g.mode == READING)
us_read ();
else
us_write ();
break;
case FORMATTED_SEQUENTIAL:
case FORMATTED_DIRECT:
case UNFORMATTED_DIRECT:
current_unit->bytes_left = current_unit->recl;
break;
}
current_unit->current_record = 1;
}
/* data_transfer_init()-- Initialize things for a data transfer. This
* code is common for both reading and writing. */
static void
data_transfer_init (int read_flag)
{
unit_flags u_flags; /* used for creating a unit if needed */
g.mode = read_flag ? READING : WRITING;
if (ioparm.size != NULL)
*ioparm.size = 0; /* Initialize the count */
current_unit = get_unit (read_flag);
if (current_unit == NULL)
{ /* open the unit with some default flags */
memset (&u_flags, '\0', sizeof (u_flags));
u_flags.access = ACCESS_SEQUENTIAL;
u_flags.action = ACTION_READWRITE;
/* is it unformatted ?*/
if (ioparm.format == NULL && !ioparm.list_format)
u_flags.form = FORM_UNFORMATTED;
else
u_flags.form = FORM_UNSPECIFIED;
u_flags.delim = DELIM_UNSPECIFIED;
u_flags.blank = BLANK_UNSPECIFIED;
u_flags.pad = PAD_UNSPECIFIED;
u_flags.status = STATUS_UNKNOWN;
new_unit(&u_flags);
current_unit = get_unit (read_flag);
}
if (current_unit == NULL)
return;
if (is_internal_unit())
{
current_unit->recl = file_length(current_unit->s);
if (g.mode==WRITING)
empty_internal_buffer (current_unit->s);
}
/* Check the action */
if (read_flag && current_unit->flags.action == ACTION_WRITE)
generate_error (ERROR_BAD_ACTION,
"Cannot read from file opened for WRITE");
if (!read_flag && current_unit->flags.action == ACTION_READ)
generate_error (ERROR_BAD_ACTION, "Cannot write to file opened for READ");
if (ioparm.library_return != LIBRARY_OK)
return;
/* Check the format */
if (ioparm.format)
parse_format ();
if (ioparm.library_return != LIBRARY_OK)
return;
if (current_unit->flags.form == FORM_UNFORMATTED
&& (ioparm.format != NULL || ioparm.list_format))
generate_error (ERROR_OPTION_CONFLICT,
"Format present for UNFORMATTED data transfer");
if (ioparm.namelist_name != NULL && ionml != NULL)
{
if(ioparm.format != NULL)
generate_error (ERROR_OPTION_CONFLICT,
"A format cannot be specified with a namelist");
}
else if (current_unit->flags.form == FORM_FORMATTED &&
ioparm.format == NULL && !ioparm.list_format)
generate_error (ERROR_OPTION_CONFLICT,
"Missing format for FORMATTED data transfer");
if (is_internal_unit () && current_unit->flags.form == FORM_UNFORMATTED)
generate_error (ERROR_OPTION_CONFLICT,
"Internal file cannot be accessed by UNFORMATTED data transfer");
/* Check the record number */
if (current_unit->flags.access == ACCESS_DIRECT && ioparm.rec == 0)
{
generate_error (ERROR_MISSING_OPTION,
"Direct access data transfer requires record number");
return;
}
if (current_unit->flags.access == ACCESS_SEQUENTIAL && ioparm.rec != 0)
{
generate_error (ERROR_OPTION_CONFLICT,
"Record number not allowed for sequential access data transfer");
return;
}
/* Process the ADVANCE option */
advance_status = (ioparm.advance == NULL) ? ADVANCE_UNSPECIFIED :
find_option (ioparm.advance, ioparm.advance_len, advance_opt,
"Bad ADVANCE parameter in data transfer statement");
if (advance_status != ADVANCE_UNSPECIFIED)
{
if (current_unit->flags.access == ACCESS_DIRECT)
generate_error (ERROR_OPTION_CONFLICT,
"ADVANCE specification conflicts with sequential access");
if (is_internal_unit ())
generate_error (ERROR_OPTION_CONFLICT,
"ADVANCE specification conflicts with internal file");
if (ioparm.format == NULL || ioparm.list_format)
generate_error (ERROR_OPTION_CONFLICT,
"ADVANCE specification requires an explicit format");
}
if (read_flag)
{
if (ioparm.eor != 0 && advance_status == ADVANCE_NO)
generate_error (ERROR_MISSING_OPTION,
"EOR specification requires an ADVANCE specification of NO");
if (ioparm.size != NULL && advance_status != ADVANCE_NO)
generate_error (ERROR_MISSING_OPTION,
"SIZE specification requires an ADVANCE specification of NO");
}
else
{ /* Write constraints */
if (ioparm.end != 0)
generate_error (ERROR_OPTION_CONFLICT,
"END specification cannot appear in a write statement");
if (ioparm.eor != 0)
generate_error (ERROR_OPTION_CONFLICT,
"EOR specification cannot appear in a write statement");
if (ioparm.size != 0)
generate_error (ERROR_OPTION_CONFLICT,
"SIZE specification cannot appear in a write statement");
}
if (advance_status == ADVANCE_UNSPECIFIED)
advance_status = ADVANCE_YES;
if (ioparm.library_return != LIBRARY_OK)
return;
/* Sanity checks on the record number */
if (ioparm.rec)
{
if (ioparm.rec <= 0)
{
generate_error (ERROR_BAD_OPTION, "Record number must be positive");
return;
}
if (ioparm.rec >= current_unit->maxrec)
{
generate_error (ERROR_BAD_OPTION, "Record number too large");
return;
}
/* Position the file */
if (sseek (current_unit->s,
(ioparm.rec - 1) * current_unit->recl) == FAILURE)
generate_error (ERROR_OS, NULL);
}
/* Set the initial value of flags */
g.blank_status = current_unit->flags.blank;
g.sign_status = SIGN_S;
g.scale_factor = 0;
g.seen_dollar = 0;
g.first_item = 1;
g.item_count = 0;
pre_position ();
/* Set up the subroutine that will handle the transfers */
if (read_flag)
{
if (current_unit->flags.form == FORM_UNFORMATTED)
transfer = unformatted_read;
else
{
if (ioparm.list_format)
{
transfer = list_formatted_read;
init_at_eol();
}
else
transfer = formatted_transfer;
}
}
else
{
if (current_unit->flags.form == FORM_UNFORMATTED)
transfer = unformatted_write;
else
{
if (ioparm.list_format)
transfer = list_formatted_write;
else
transfer = formatted_transfer;
}
}
/* Make sure that we don't do a read after a nonadvancing write */
if (read_flag)
{
if (current_unit->read_bad)
{
generate_error (ERROR_BAD_OPTION,
"Cannot READ after a nonadvancing WRITE");
return;
}
}
else
{
if (advance_status == ADVANCE_YES)
current_unit->read_bad = 1;
}
/* Start the data transfer if we are doing a formatted transfer */
if (current_unit->flags.form == FORM_FORMATTED && !ioparm.list_format
&& ioparm.namelist_name == NULL && ionml == NULL)
formatted_transfer (0, NULL, 0);
}
/* next_record_r()-- Space to the next record for read mode. If the
* file is not seekable, we read MAX_READ chunks until we get to the
* right position. */
#define MAX_READ 4096
static void
next_record_r (int done)
{
int rlength, length;
gfc_offset new;
char *p;
switch (current_mode ())
{
case UNFORMATTED_SEQUENTIAL:
current_unit->bytes_left += sizeof (gfc_offset); /* Skip over tail */
/* Fall through */
case FORMATTED_DIRECT:
case UNFORMATTED_DIRECT:
if (current_unit->bytes_left == 0)
break;
if (is_seekable (current_unit->s))
{
new = file_position (current_unit->s) + current_unit->bytes_left;
/* Direct access files do not generate END conditions, only I/O errors */
if (sseek (current_unit->s, new) == FAILURE)
generate_error (ERROR_OS, NULL);
}
else
{ /* Seek by reading data */
while (current_unit->bytes_left > 0)
{
rlength = length = (MAX_READ > current_unit->bytes_left) ?
MAX_READ : current_unit->bytes_left;
p = salloc_r (current_unit->s, &rlength);
if (p == NULL)
{
generate_error (ERROR_OS, NULL);
break;
}
current_unit->bytes_left -= length;
}
}
break;
case FORMATTED_SEQUENTIAL:
length = 1;
if (sf_seen_eor && done)
break;
do
{
p = salloc_r (current_unit->s, &length);
/*In case of internal file, there may not be any '\n'.*/
if (is_internal_unit() && p == NULL)
{
break;
}
if (p == NULL)
{
generate_error (ERROR_OS, NULL);
break;
}
if (length == 0)
{
current_unit->endfile = AT_ENDFILE;
break;
}
}
while (*p != '\n');
break;
}
if (current_unit->flags.access == ACCESS_SEQUENTIAL)
test_endfile (current_unit);
}
/* next_record_w()-- Position to the next record in write mode */
static void
next_record_w (int done)
{
gfc_offset c, m;
int length;
char *p;
switch (current_mode ())
{
case FORMATTED_DIRECT:
case UNFORMATTED_DIRECT:
if (current_unit->bytes_left == 0)
break;
length = current_unit->bytes_left;
p = salloc_w (current_unit->s, &length);
if (p == NULL)
goto io_error;
memset (p, ' ', current_unit->bytes_left);
if (sfree (current_unit->s) == FAILURE)
goto io_error;
break;
case UNFORMATTED_SEQUENTIAL:
m = current_unit->recl - current_unit->bytes_left; /* Bytes written */
c = file_position (current_unit->s);
length = sizeof (gfc_offset);
/* Write the length tail */
p = salloc_w (current_unit->s, &length);
if (p == NULL)
goto io_error;
*((gfc_offset *) p) = m;
if (sfree (current_unit->s) == FAILURE)
goto io_error;
/* Seek to the head and overwrite the bogus length with the real length */
p = salloc_w_at (current_unit->s, &length, c - m - length);
if (p == NULL)
generate_error (ERROR_OS, NULL);
*((gfc_offset *) p) = m;
if (sfree (current_unit->s) == FAILURE)
goto io_error;
/* Seek past the end of the current record */
if (sseek (current_unit->s, c + sizeof (gfc_offset)) == FAILURE)
goto io_error;
break;
case FORMATTED_SEQUENTIAL:
length = 1;
p = salloc_w (current_unit->s, &length);
if (!is_internal_unit())
{
if (p)
*p = '\n'; /* no CR for internal writes */
else
goto io_error;
}
if (sfree (current_unit->s) == FAILURE)
goto io_error;
break;
io_error:
generate_error (ERROR_OS, NULL);
break;
}
}
/* next_record()-- Position to the next record, which means moving to
* the end of the current record. This can happen under several
* different conditions. If the done flag is not set, we get ready to
* process the next record. */
void
next_record (int done)
{
current_unit->read_bad = 0;
if (g.mode == READING)
next_record_r (done);
else
next_record_w (done);
current_unit->current_record = 0;
if (current_unit->flags.access == ACCESS_DIRECT)
current_unit->last_record = file_position (current_unit->s)
/ current_unit->recl;
else
current_unit->last_record++;
if (!done)
pre_position ();
}
/* Finalize the current data transfer. For a nonadvancing transfer,
* this means advancing to the next record. */
static void
finalize_transfer (void)
{
if (setjmp (g.eof_jump))
{
generate_error (ERROR_END, NULL);
return;
}
if ((ionml != NULL) && (ioparm.namelist_name != NULL))
{
if (ioparm.namelist_read_mode)
namelist_read();
else
namelist_write();
}
transfer = NULL;
if (current_unit == NULL)
return;
if (ioparm.list_format && g.mode == READING)
finish_list_read ();
else
{
free_fnodes ();
if (advance_status == ADVANCE_NO)
{
/* Most systems buffer lines, so force the partial record
to be written out. */
flush (current_unit->s);
return;
}
next_record (1);
current_unit->current_record = 0;
}
sfree (current_unit->s);
}
/* Transfer function for IOLENGTH. It doesn't actually do any
data transfer, it just updates the length counter. */
static void
iolength_transfer (bt type, void *dest, int len)
{
if (ioparm.iolength != NULL)
*ioparm.iolength += len;
}
/* Initialize the IOLENGTH data transfer. This function is in essence
a very much simplified version of data_transfer_init(), because it
doesn't have to deal with units at all. */
static void
iolength_transfer_init (void)
{
if (ioparm.iolength != NULL)
*ioparm.iolength = 0;
g.item_count = 0;
/* Set up the subroutine that will handle the transfers. */
transfer = iolength_transfer;
}
/* Library entry point for the IOLENGTH form of the INQUIRE
statement. The IOLENGTH form requires no I/O to be performed, but
it must still be a runtime library call so that we can determine
the iolength for dynamic arrays and such. */
void
st_iolength (void)
{
library_start ();
iolength_transfer_init ();
}
void
st_iolength_done (void)
{
library_end ();
}
/* The READ statement */
void
st_read (void)
{
library_start ();
data_transfer_init (1);
/* Handle complications dealing with the endfile record. It is
* significant that this is the only place where ERROR_END is
* generated. Reading an end of file elsewhere is either end of
* record or an I/O error. */
if (current_unit->flags.access == ACCESS_SEQUENTIAL)
switch (current_unit->endfile)
{
case NO_ENDFILE:
break;
case AT_ENDFILE:
if (!is_internal_unit())
{
generate_error (ERROR_END, NULL);
current_unit->endfile = AFTER_ENDFILE;
}
break;
case AFTER_ENDFILE:
generate_error (ERROR_ENDFILE, NULL);
break;
}
}
void
st_read_done (void)
{
finalize_transfer ();
library_end ();
}
void
st_write (void)
{
library_start ();
data_transfer_init (0);
}
void
st_write_done (void)
{
finalize_transfer ();
/* Deal with endfile conditions associated with sequential files */
if (current_unit != NULL && current_unit->flags.access == ACCESS_SEQUENTIAL)
switch (current_unit->endfile)
{
case AT_ENDFILE: /* Remain at the endfile record */
break;
case AFTER_ENDFILE:
current_unit->endfile = AT_ENDFILE; /* Just at it now */
break;
case NO_ENDFILE: /* Get rid of whatever is after this record */
if (struncate (current_unit->s) == FAILURE)
generate_error (ERROR_OS, NULL);
current_unit->endfile = AT_ENDFILE;
break;
}
library_end ();
}
static void
st_set_nml_var (void * var_addr, char * var_name, int var_name_len,
int kind, bt type)
{
namelist_info *t1 = NULL, *t2 = NULL;
namelist_info *nml = (namelist_info *) get_mem (sizeof(
namelist_info ));
nml->mem_pos = var_addr;
nml->var_name = (char*) get_mem (var_name_len+1);
strncpy (nml->var_name,var_name,var_name_len);
nml->var_name[var_name_len] = 0;
nml->len = kind;
nml->type = type;
nml->next = NULL;
if (ionml == NULL)
ionml = nml;
else
{
t1 = ionml;
while (t1 != NULL)
{
t2 = t1;
t1 = t1->next;
}
t2->next = nml;
}
}
void
st_set_nml_var_int (void * var_addr, char * var_name, int var_name_len,
int kind)
{
st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_INTEGER);
}
void
st_set_nml_var_float (void * var_addr, char * var_name, int var_name_len,
int kind)
{
st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_REAL);
}
void
st_set_nml_var_char (void * var_addr, char * var_name, int var_name_len,
int kind)
{
st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_CHARACTER);
}
void
st_set_nml_var_complex (void * var_addr, char * var_name, int var_name_len,
int kind)
{
st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_COMPLEX);
}
void
st_set_nml_var_log (void * var_addr, char * var_name, int var_name_len,
int kind)
{
st_set_nml_var (var_addr, var_name, var_name_len, kind, BT_LOGICAL);
}