gcc/libgo/go/math/big/decimal.go

268 lines
6.5 KiB
Go
Raw Normal View History

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements multi-precision decimal numbers.
// The implementation is for float to decimal conversion only;
// not general purpose use.
// The only operations are precise conversion from binary to
// decimal and rounding.
//
// The key observation and some code (shr) is borrowed from
// strconv/decimal.go: conversion of binary fractional values can be done
// precisely in multi-precision decimal because 2 divides 10 (required for
// >> of mantissa); but conversion of decimal floating-point values cannot
// be done precisely in binary representation.
//
// In contrast to strconv/decimal.go, only right shift is implemented in
// decimal format - left shift can be done precisely in binary format.
package big
// A decimal represents an unsigned floating-point number in decimal representation.
// The value of a non-zero decimal d is d.mant * 10**d.exp with 0.5 <= d.mant < 1,
// with the most-significant mantissa digit at index 0. For the zero decimal, the
// mantissa length and exponent are 0.
// The zero value for decimal represents a ready-to-use 0.0.
type decimal struct {
mant []byte // mantissa ASCII digits, big-endian
exp int // exponent
}
// at returns the i'th mantissa digit, starting with the most significant digit at 0.
func (d *decimal) at(i int) byte {
if 0 <= i && i < len(d.mant) {
return d.mant[i]
}
return '0'
}
// Maximum shift amount that can be done in one pass without overflow.
// A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
const maxShift = _W - 4
// TODO(gri) Since we know the desired decimal precision when converting
// a floating-point number, we may be able to limit the number of decimal
// digits that need to be computed by init by providing an additional
// precision argument and keeping track of when a number was truncated early
// (equivalent of "sticky bit" in binary rounding).
// TODO(gri) Along the same lines, enforce some limit to shift magnitudes
// to avoid "infinitely" long running conversions (until we run out of space).
// Init initializes x to the decimal representation of m << shift (for
// shift >= 0), or m >> -shift (for shift < 0).
func (x *decimal) init(m nat, shift int) {
// special case 0
if len(m) == 0 {
x.mant = x.mant[:0]
x.exp = 0
return
}
// Optimization: If we need to shift right, first remove any trailing
// zero bits from m to reduce shift amount that needs to be done in
// decimal format (since that is likely slower).
if shift < 0 {
ntz := m.trailingZeroBits()
s := uint(-shift)
if s >= ntz {
s = ntz // shift at most ntz bits
}
m = nat(nil).shr(m, s)
shift += int(s)
}
// Do any shift left in binary representation.
if shift > 0 {
m = nat(nil).shl(m, uint(shift))
shift = 0
}
// Convert mantissa into decimal representation.
s := m.utoa(10)
n := len(s)
x.exp = n
// Trim trailing zeros; instead the exponent is tracking
// the decimal point independent of the number of digits.
for n > 0 && s[n-1] == '0' {
n--
}
x.mant = append(x.mant[:0], s[:n]...)
// Do any (remaining) shift right in decimal representation.
if shift < 0 {
for shift < -maxShift {
shr(x, maxShift)
shift += maxShift
}
shr(x, uint(-shift))
}
}
// shr implements x >> s, for s <= maxShift.
func shr(x *decimal, s uint) {
// Division by 1<<s using shift-and-subtract algorithm.
// pick up enough leading digits to cover first shift
r := 0 // read index
var n Word
for n>>s == 0 && r < len(x.mant) {
ch := Word(x.mant[r])
r++
n = n*10 + ch - '0'
}
if n == 0 {
// x == 0; shouldn't get here, but handle anyway
x.mant = x.mant[:0]
return
}
for n>>s == 0 {
r++
n *= 10
}
x.exp += 1 - r
// read a digit, write a digit
w := 0 // write index
mask := Word(1)<<s - 1
for r < len(x.mant) {
ch := Word(x.mant[r])
r++
d := n >> s
n &= mask // n -= d << s
x.mant[w] = byte(d + '0')
w++
n = n*10 + ch - '0'
}
// write extra digits that still fit
for n > 0 && w < len(x.mant) {
d := n >> s
n &= mask
x.mant[w] = byte(d + '0')
w++
n = n * 10
}
x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10)
// append additional digits that didn't fit
for n > 0 {
d := n >> s
n &= mask
x.mant = append(x.mant, byte(d+'0'))
n = n * 10
}
trim(x)
}
func (x *decimal) String() string {
if len(x.mant) == 0 {
return "0"
}
var buf []byte
switch {
case x.exp <= 0:
// 0.00ddd
buf = append(buf, "0."...)
buf = appendZeros(buf, -x.exp)
buf = append(buf, x.mant...)
case /* 0 < */ x.exp < len(x.mant):
// dd.ddd
buf = append(buf, x.mant[:x.exp]...)
buf = append(buf, '.')
buf = append(buf, x.mant[x.exp:]...)
default: // len(x.mant) <= x.exp
// ddd00
buf = append(buf, x.mant...)
buf = appendZeros(buf, x.exp-len(x.mant))
}
return string(buf)
}
// appendZeros appends n 0 digits to buf and returns buf.
func appendZeros(buf []byte, n int) []byte {
for ; n > 0; n-- {
buf = append(buf, '0')
}
return buf
}
// shouldRoundUp reports if x should be rounded up
// if shortened to n digits. n must be a valid index
// for x.mant.
func shouldRoundUp(x *decimal, n int) bool {
if x.mant[n] == '5' && n+1 == len(x.mant) {
// exactly halfway - round to even
return n > 0 && (x.mant[n-1]-'0')&1 != 0
}
// not halfway - digit tells all (x.mant has no trailing zeros)
return x.mant[n] >= '5'
}
// round sets x to (at most) n mantissa digits by rounding it
// to the nearest even value with n (or fever) mantissa digits.
// If n < 0, x remains unchanged.
func (x *decimal) round(n int) {
if n < 0 || n >= len(x.mant) {
return // nothing to do
}
if shouldRoundUp(x, n) {
x.roundUp(n)
} else {
x.roundDown(n)
}
}
func (x *decimal) roundUp(n int) {
if n < 0 || n >= len(x.mant) {
return // nothing to do
}
// 0 <= n < len(x.mant)
// find first digit < '9'
for n > 0 && x.mant[n-1] >= '9' {
n--
}
if n == 0 {
// all digits are '9's => round up to '1' and update exponent
x.mant[0] = '1' // ok since len(x.mant) > n
x.mant = x.mant[:1]
x.exp++
return
}
// n > 0 && x.mant[n-1] < '9'
x.mant[n-1]++
x.mant = x.mant[:n]
// x already trimmed
}
func (x *decimal) roundDown(n int) {
if n < 0 || n >= len(x.mant) {
return // nothing to do
}
x.mant = x.mant[:n]
trim(x)
}
// trim cuts off any trailing zeros from x's mantissa;
// they are meaningless for the value of x.
func trim(x *decimal) {
i := len(x.mant)
for i > 0 && x.mant[i-1] == '0' {
i--
}
x.mant = x.mant[:i]
if i == 0 {
x.exp = 0
}
}