51 lines
1.9 KiB
C
51 lines
1.9 KiB
C
|
/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), ....
|
||
|
Copyright (C) 2015-2018 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "quadmath-imp.h"
|
||
|
|
||
|
/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
|
||
|
1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
|
||
|
all the values X + 1, ..., X + N - 1 are exactly representable, and
|
||
|
X_EPS / X is small enough that factors quadratic in it can be
|
||
|
neglected. */
|
||
|
|
||
|
__float128
|
||
|
__quadmath_lgamma_productq (__float128 t, __float128 x, __float128 x_eps, int n)
|
||
|
{
|
||
|
__float128 ret = 0, ret_eps = 0;
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
__float128 xi = x + i;
|
||
|
__float128 quot = t / xi;
|
||
|
__float128 mhi, mlo;
|
||
|
mul_splitq (&mhi, &mlo, quot, xi);
|
||
|
__float128 quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi);
|
||
|
/* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */
|
||
|
__float128 rhi, rlo;
|
||
|
mul_splitq (&rhi, &rlo, ret, quot);
|
||
|
__float128 rpq = ret + quot;
|
||
|
__float128 rpq_eps = (ret - rpq) + quot;
|
||
|
__float128 nret = rpq + rhi;
|
||
|
__float128 nret_eps = (rpq - nret) + rhi;
|
||
|
ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot
|
||
|
+ quot_lo + quot_lo * (ret + ret_eps));
|
||
|
ret = nret;
|
||
|
}
|
||
|
return ret + ret_eps;
|
||
|
}
|