252 lines
6.4 KiB
C
252 lines
6.4 KiB
C
|
/* Implementation of the SUM intrinsic
|
||
|
Copyright 2002 Free Software Foundation, Inc.
|
||
|
Contributed by Paul Brook <paul@nowt.org>
|
||
|
|
||
|
This file is part of the GNU Fortran 95 runtime library (libgfor).
|
||
|
|
||
|
Libgfortran is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
Libgfortran is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with libgfor; see the file COPYING.LIB. If not,
|
||
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
Boston, MA 02111-1307, USA. */
|
||
|
|
||
|
#include "config.h"
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include "libgfortran.h"
|
||
|
|
||
|
void
|
||
|
__sum_r4 (gfc_array_r4 * retarray, gfc_array_r4 *array, index_type *pdim)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS - 1];
|
||
|
GFC_REAL_4 *base;
|
||
|
GFC_REAL_4 *dest;
|
||
|
index_type rank;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type dim;
|
||
|
|
||
|
/* Make dim zero based to avoid confusion. */
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
assert (rank == GFC_DESCRIPTOR_RANK (retarray));
|
||
|
if (array->dim[0].stride == 0)
|
||
|
array->dim[0].stride = 1;
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
|
||
|
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
||
|
delta = array->dim[dim].stride;
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n].stride;
|
||
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n + 1].stride;
|
||
|
extent[n] =
|
||
|
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = retarray->dim[n].stride;
|
||
|
if (extent[n] <= 0)
|
||
|
len = 0;
|
||
|
}
|
||
|
|
||
|
base = array->data;
|
||
|
dest = retarray->data;
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
GFC_REAL_4 *src;
|
||
|
GFC_REAL_4 result;
|
||
|
src = base;
|
||
|
{
|
||
|
|
||
|
result = 0;
|
||
|
if (len <= 0)
|
||
|
*dest = 0;
|
||
|
else
|
||
|
{
|
||
|
for (n = 0; n < len; n++, src += delta)
|
||
|
{
|
||
|
|
||
|
result += *src;
|
||
|
}
|
||
|
*dest = result;
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the look. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
__msum_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array, index_type *pdim, gfc_array_l4 * mask)
|
||
|
{
|
||
|
index_type count[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type extent[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type sstride[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type dstride[GFC_MAX_DIMENSIONS - 1];
|
||
|
index_type mstride[GFC_MAX_DIMENSIONS - 1];
|
||
|
GFC_REAL_4 *dest;
|
||
|
GFC_REAL_4 *base;
|
||
|
GFC_LOGICAL_4 *mbase;
|
||
|
int rank;
|
||
|
int dim;
|
||
|
index_type n;
|
||
|
index_type len;
|
||
|
index_type delta;
|
||
|
index_type mdelta;
|
||
|
|
||
|
dim = (*pdim) - 1;
|
||
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||
|
assert (rank == GFC_DESCRIPTOR_RANK (retarray));
|
||
|
if (array->dim[0].stride == 0)
|
||
|
array->dim[0].stride = 1;
|
||
|
if (retarray->dim[0].stride == 0)
|
||
|
retarray->dim[0].stride = 1;
|
||
|
|
||
|
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
||
|
if (len <= 0)
|
||
|
return;
|
||
|
delta = array->dim[dim].stride;
|
||
|
mdelta = mask->dim[dim].stride;
|
||
|
|
||
|
for (n = 0; n < dim; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n].stride;
|
||
|
mstride[n] = mask->dim[n].stride;
|
||
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||
|
}
|
||
|
for (n = dim; n < rank; n++)
|
||
|
{
|
||
|
sstride[n] = array->dim[n + 1].stride;
|
||
|
mstride[n] = mask->dim[n + 1].stride;
|
||
|
extent[n] =
|
||
|
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < rank; n++)
|
||
|
{
|
||
|
count[n] = 0;
|
||
|
dstride[n] = retarray->dim[n].stride;
|
||
|
if (extent[n] <= 0)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
dest = retarray->data;
|
||
|
base = array->data;
|
||
|
mbase = mask->data;
|
||
|
|
||
|
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
|
||
|
{
|
||
|
/* This allows the same loop to be used for all logical types. */
|
||
|
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
|
||
|
for (n = 0; n < rank; n++)
|
||
|
mstride[n] <<= 1;
|
||
|
mdelta <<= 1;
|
||
|
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
|
||
|
}
|
||
|
|
||
|
while (base)
|
||
|
{
|
||
|
GFC_REAL_4 *src;
|
||
|
GFC_LOGICAL_4 *msrc;
|
||
|
GFC_REAL_4 result;
|
||
|
src = base;
|
||
|
msrc = mbase;
|
||
|
{
|
||
|
|
||
|
result = 0;
|
||
|
if (len <= 0)
|
||
|
*dest = 0;
|
||
|
else
|
||
|
{
|
||
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
||
|
{
|
||
|
|
||
|
if (*msrc)
|
||
|
result += *src;
|
||
|
}
|
||
|
*dest = result;
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next element. */
|
||
|
count[0]++;
|
||
|
base += sstride[0];
|
||
|
mbase += mstride[0];
|
||
|
dest += dstride[0];
|
||
|
n = 0;
|
||
|
while (count[n] == extent[n])
|
||
|
{
|
||
|
/* When we get to the end of a dimension, reset it and increment
|
||
|
the next dimension. */
|
||
|
count[n] = 0;
|
||
|
/* We could precalculate these products, but this is a less
|
||
|
frequently used path so proabably not worth it. */
|
||
|
base -= sstride[n] * extent[n];
|
||
|
mbase -= mstride[n] * extent[n];
|
||
|
dest -= dstride[n] * extent[n];
|
||
|
n++;
|
||
|
if (n == rank)
|
||
|
{
|
||
|
/* Break out of the look. */
|
||
|
base = NULL;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
count[n]++;
|
||
|
base += sstride[n];
|
||
|
mbase += mstride[n];
|
||
|
dest += dstride[n];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|