2010-12-03 04:34:57 +00:00
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package testing
|
|
|
|
|
|
|
|
import (
|
|
|
|
"flag"
|
|
|
|
"fmt"
|
|
|
|
"os"
|
2011-03-16 23:05:44 +00:00
|
|
|
"runtime"
|
2012-10-23 04:31:11 +00:00
|
|
|
"sync"
|
2014-06-06 22:37:27 +00:00
|
|
|
"sync/atomic"
|
2010-12-03 04:34:57 +00:00
|
|
|
"time"
|
|
|
|
)
|
|
|
|
|
2011-03-16 23:05:44 +00:00
|
|
|
var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run")
|
2012-10-23 04:31:11 +00:00
|
|
|
var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark")
|
|
|
|
var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
|
|
|
|
|
|
|
|
// Global lock to ensure only one benchmark runs at a time.
|
|
|
|
var benchmarkLock sync.Mutex
|
|
|
|
|
|
|
|
// Used for every benchmark for measuring memory.
|
|
|
|
var memStats runtime.MemStats
|
2010-12-03 04:34:57 +00:00
|
|
|
|
|
|
|
// An internal type but exported because it is cross-package; part of the implementation
|
2012-03-02 16:38:43 +00:00
|
|
|
// of the "go test" command.
|
2010-12-03 04:34:57 +00:00
|
|
|
type InternalBenchmark struct {
|
|
|
|
Name string
|
|
|
|
F func(b *B)
|
|
|
|
}
|
|
|
|
|
|
|
|
// B is a type passed to Benchmark functions to manage benchmark
|
|
|
|
// timing and to specify the number of iterations to run.
|
|
|
|
type B struct {
|
2012-01-13 05:11:45 +00:00
|
|
|
common
|
2014-06-06 22:37:27 +00:00
|
|
|
N int
|
|
|
|
previousN int // number of iterations in the previous run
|
|
|
|
previousDuration time.Duration // total duration of the previous run
|
|
|
|
benchmark InternalBenchmark
|
|
|
|
bytes int64
|
|
|
|
timerOn bool
|
|
|
|
showAllocResult bool
|
|
|
|
result BenchmarkResult
|
|
|
|
parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines
|
2012-10-23 04:31:11 +00:00
|
|
|
// The initial states of memStats.Mallocs and memStats.TotalAlloc.
|
|
|
|
startAllocs uint64
|
|
|
|
startBytes uint64
|
|
|
|
// The net total of this test after being run.
|
|
|
|
netAllocs uint64
|
|
|
|
netBytes uint64
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// StartTimer starts timing a test. This function is called automatically
|
|
|
|
// before a benchmark starts, but it can also used to resume timing after
|
|
|
|
// a call to StopTimer.
|
2011-09-16 15:47:21 +00:00
|
|
|
func (b *B) StartTimer() {
|
2011-12-13 19:16:27 +00:00
|
|
|
if !b.timerOn {
|
2012-10-23 04:31:11 +00:00
|
|
|
runtime.ReadMemStats(&memStats)
|
|
|
|
b.startAllocs = memStats.Mallocs
|
|
|
|
b.startBytes = memStats.TotalAlloc
|
2011-12-13 19:16:27 +00:00
|
|
|
b.start = time.Now()
|
|
|
|
b.timerOn = true
|
2011-09-16 15:47:21 +00:00
|
|
|
}
|
|
|
|
}
|
2010-12-03 04:34:57 +00:00
|
|
|
|
|
|
|
// StopTimer stops timing a test. This can be used to pause the timer
|
|
|
|
// while performing complex initialization that you don't
|
|
|
|
// want to measure.
|
|
|
|
func (b *B) StopTimer() {
|
2011-12-13 19:16:27 +00:00
|
|
|
if b.timerOn {
|
2012-01-13 05:11:45 +00:00
|
|
|
b.duration += time.Now().Sub(b.start)
|
2012-10-23 04:31:11 +00:00
|
|
|
runtime.ReadMemStats(&memStats)
|
|
|
|
b.netAllocs += memStats.Mallocs - b.startAllocs
|
|
|
|
b.netBytes += memStats.TotalAlloc - b.startBytes
|
2011-12-13 19:16:27 +00:00
|
|
|
b.timerOn = false
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-06-06 22:37:27 +00:00
|
|
|
// ResetTimer zeros the elapsed benchmark time and memory allocation counters.
|
2011-09-16 15:47:21 +00:00
|
|
|
// It does not affect whether the timer is running.
|
2010-12-03 04:34:57 +00:00
|
|
|
func (b *B) ResetTimer() {
|
2011-12-13 19:16:27 +00:00
|
|
|
if b.timerOn {
|
2012-10-23 04:31:11 +00:00
|
|
|
runtime.ReadMemStats(&memStats)
|
|
|
|
b.startAllocs = memStats.Mallocs
|
|
|
|
b.startBytes = memStats.TotalAlloc
|
2011-12-13 19:16:27 +00:00
|
|
|
b.start = time.Now()
|
2011-09-16 15:47:21 +00:00
|
|
|
}
|
2012-01-13 05:11:45 +00:00
|
|
|
b.duration = 0
|
2012-10-23 04:31:11 +00:00
|
|
|
b.netAllocs = 0
|
|
|
|
b.netBytes = 0
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// SetBytes records the number of bytes processed in a single operation.
|
|
|
|
// If this is called, the benchmark will report ns/op and MB/s.
|
|
|
|
func (b *B) SetBytes(n int64) { b.bytes = n }
|
|
|
|
|
2013-01-29 20:52:43 +00:00
|
|
|
// ReportAllocs enables malloc statistics for this benchmark.
|
|
|
|
// It is equivalent to setting -test.benchmem, but it only affects the
|
|
|
|
// benchmark function that calls ReportAllocs.
|
|
|
|
func (b *B) ReportAllocs() {
|
|
|
|
b.showAllocResult = true
|
|
|
|
}
|
|
|
|
|
2010-12-03 04:34:57 +00:00
|
|
|
func (b *B) nsPerOp() int64 {
|
|
|
|
if b.N <= 0 {
|
|
|
|
return 0
|
|
|
|
}
|
2012-01-13 05:11:45 +00:00
|
|
|
return b.duration.Nanoseconds() / int64(b.N)
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// runN runs a single benchmark for the specified number of iterations.
|
|
|
|
func (b *B) runN(n int) {
|
2012-10-23 04:31:11 +00:00
|
|
|
benchmarkLock.Lock()
|
|
|
|
defer benchmarkLock.Unlock()
|
2011-03-16 23:05:44 +00:00
|
|
|
// Try to get a comparable environment for each run
|
|
|
|
// by clearing garbage from previous runs.
|
|
|
|
runtime.GC()
|
2010-12-03 04:34:57 +00:00
|
|
|
b.N = n
|
2014-06-06 22:37:27 +00:00
|
|
|
b.parallelism = 1
|
2010-12-03 04:34:57 +00:00
|
|
|
b.ResetTimer()
|
|
|
|
b.StartTimer()
|
|
|
|
b.benchmark.F(b)
|
|
|
|
b.StopTimer()
|
2014-06-06 22:37:27 +00:00
|
|
|
b.previousN = n
|
|
|
|
b.previousDuration = b.duration
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
func min(x, y int) int {
|
|
|
|
if x > y {
|
|
|
|
return y
|
|
|
|
}
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
|
|
|
|
func max(x, y int) int {
|
|
|
|
if x < y {
|
|
|
|
return y
|
|
|
|
}
|
|
|
|
return x
|
|
|
|
}
|
|
|
|
|
|
|
|
// roundDown10 rounds a number down to the nearest power of 10.
|
|
|
|
func roundDown10(n int) int {
|
|
|
|
var tens = 0
|
|
|
|
// tens = floor(log_10(n))
|
2013-11-06 19:49:01 +00:00
|
|
|
for n >= 10 {
|
2010-12-03 04:34:57 +00:00
|
|
|
n = n / 10
|
|
|
|
tens++
|
|
|
|
}
|
|
|
|
// result = 10^tens
|
|
|
|
result := 1
|
|
|
|
for i := 0; i < tens; i++ {
|
|
|
|
result *= 10
|
|
|
|
}
|
|
|
|
return result
|
|
|
|
}
|
|
|
|
|
|
|
|
// roundUp rounds x up to a number of the form [1eX, 2eX, 5eX].
|
|
|
|
func roundUp(n int) int {
|
|
|
|
base := roundDown10(n)
|
2013-11-06 19:49:01 +00:00
|
|
|
switch {
|
|
|
|
case n <= base:
|
|
|
|
return base
|
|
|
|
case n <= (2 * base):
|
2010-12-03 04:34:57 +00:00
|
|
|
return 2 * base
|
2013-11-06 19:49:01 +00:00
|
|
|
case n <= (5 * base):
|
2010-12-03 04:34:57 +00:00
|
|
|
return 5 * base
|
2013-11-06 19:49:01 +00:00
|
|
|
default:
|
|
|
|
return 10 * base
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-01-13 05:11:45 +00:00
|
|
|
// run times the benchmark function in a separate goroutine.
|
|
|
|
func (b *B) run() BenchmarkResult {
|
|
|
|
go b.launch()
|
|
|
|
<-b.signal
|
|
|
|
return b.result
|
|
|
|
}
|
|
|
|
|
|
|
|
// launch launches the benchmark function. It gradually increases the number
|
2010-12-03 04:34:57 +00:00
|
|
|
// of benchmark iterations until the benchmark runs for a second in order
|
|
|
|
// to get a reasonable measurement. It prints timing information in this form
|
|
|
|
// testing.BenchmarkHello 100000 19 ns/op
|
2012-01-13 05:11:45 +00:00
|
|
|
// launch is run by the fun function as a separate goroutine.
|
|
|
|
func (b *B) launch() {
|
2010-12-03 04:34:57 +00:00
|
|
|
// Run the benchmark for a single iteration in case it's expensive.
|
|
|
|
n := 1
|
2012-01-25 20:56:26 +00:00
|
|
|
|
|
|
|
// Signal that we're done whether we return normally
|
|
|
|
// or by FailNow's runtime.Goexit.
|
|
|
|
defer func() {
|
|
|
|
b.signal <- b
|
|
|
|
}()
|
|
|
|
|
2010-12-03 04:34:57 +00:00
|
|
|
b.runN(n)
|
2011-09-16 15:47:21 +00:00
|
|
|
// Run the benchmark for at least the specified amount of time.
|
2012-10-23 04:31:11 +00:00
|
|
|
d := *benchTime
|
2012-01-13 05:11:45 +00:00
|
|
|
for !b.failed && b.duration < d && n < 1e9 {
|
2010-12-03 04:34:57 +00:00
|
|
|
last := n
|
|
|
|
// Predict iterations/sec.
|
|
|
|
if b.nsPerOp() == 0 {
|
|
|
|
n = 1e9
|
|
|
|
} else {
|
2011-12-13 19:16:27 +00:00
|
|
|
n = int(d.Nanoseconds() / b.nsPerOp())
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
// Run more iterations than we think we'll need for a second (1.5x).
|
|
|
|
// Don't grow too fast in case we had timing errors previously.
|
|
|
|
// Be sure to run at least one more than last time.
|
|
|
|
n = max(min(n+n/2, 100*last), last+1)
|
|
|
|
// Round up to something easy to read.
|
|
|
|
n = roundUp(n)
|
|
|
|
b.runN(n)
|
|
|
|
}
|
2012-10-23 04:31:11 +00:00
|
|
|
b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// The results of a benchmark run.
|
|
|
|
type BenchmarkResult struct {
|
2012-10-23 04:31:11 +00:00
|
|
|
N int // The number of iterations.
|
|
|
|
T time.Duration // The total time taken.
|
|
|
|
Bytes int64 // Bytes processed in one iteration.
|
|
|
|
MemAllocs uint64 // The total number of memory allocations.
|
|
|
|
MemBytes uint64 // The total number of bytes allocated.
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
func (r BenchmarkResult) NsPerOp() int64 {
|
|
|
|
if r.N <= 0 {
|
|
|
|
return 0
|
|
|
|
}
|
2011-12-13 19:16:27 +00:00
|
|
|
return r.T.Nanoseconds() / int64(r.N)
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
2011-09-16 15:47:21 +00:00
|
|
|
func (r BenchmarkResult) mbPerSec() float64 {
|
2011-12-13 19:16:27 +00:00
|
|
|
if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
|
2011-09-16 15:47:21 +00:00
|
|
|
return 0
|
|
|
|
}
|
2011-12-13 19:16:27 +00:00
|
|
|
return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
|
2011-09-16 15:47:21 +00:00
|
|
|
}
|
|
|
|
|
2012-10-23 04:31:11 +00:00
|
|
|
func (r BenchmarkResult) AllocsPerOp() int64 {
|
|
|
|
if r.N <= 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
return int64(r.MemAllocs) / int64(r.N)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (r BenchmarkResult) AllocedBytesPerOp() int64 {
|
|
|
|
if r.N <= 0 {
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
return int64(r.MemBytes) / int64(r.N)
|
|
|
|
}
|
|
|
|
|
2010-12-03 04:34:57 +00:00
|
|
|
func (r BenchmarkResult) String() string {
|
2011-09-16 15:47:21 +00:00
|
|
|
mbs := r.mbPerSec()
|
2010-12-03 04:34:57 +00:00
|
|
|
mb := ""
|
2011-09-16 15:47:21 +00:00
|
|
|
if mbs != 0 {
|
|
|
|
mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
2011-09-16 15:47:21 +00:00
|
|
|
nsop := r.NsPerOp()
|
|
|
|
ns := fmt.Sprintf("%10d ns/op", nsop)
|
|
|
|
if r.N > 0 && nsop < 100 {
|
|
|
|
// The format specifiers here make sure that
|
|
|
|
// the ones digits line up for all three possible formats.
|
|
|
|
if nsop < 10 {
|
2011-12-13 19:16:27 +00:00
|
|
|
ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
|
2011-09-16 15:47:21 +00:00
|
|
|
} else {
|
2011-12-13 19:16:27 +00:00
|
|
|
ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
|
2011-09-16 15:47:21 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb)
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
|
2012-10-23 04:31:11 +00:00
|
|
|
func (r BenchmarkResult) MemString() string {
|
|
|
|
return fmt.Sprintf("%8d B/op\t%8d allocs/op",
|
|
|
|
r.AllocedBytesPerOp(), r.AllocsPerOp())
|
|
|
|
}
|
|
|
|
|
2010-12-03 04:34:57 +00:00
|
|
|
// An internal function but exported because it is cross-package; part of the implementation
|
2012-03-02 16:38:43 +00:00
|
|
|
// of the "go test" command.
|
2011-12-03 02:17:34 +00:00
|
|
|
func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
|
2010-12-03 04:34:57 +00:00
|
|
|
// If no flag was specified, don't run benchmarks.
|
|
|
|
if len(*matchBenchmarks) == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
for _, Benchmark := range benchmarks {
|
|
|
|
matched, err := matchString(*matchBenchmarks, Benchmark.Name)
|
|
|
|
if err != nil {
|
2011-12-12 23:40:51 +00:00
|
|
|
fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.bench: %s\n", err)
|
2010-12-03 04:34:57 +00:00
|
|
|
os.Exit(1)
|
|
|
|
}
|
|
|
|
if !matched {
|
|
|
|
continue
|
|
|
|
}
|
2011-09-16 15:47:21 +00:00
|
|
|
for _, procs := range cpuList {
|
|
|
|
runtime.GOMAXPROCS(procs)
|
2012-01-13 05:11:45 +00:00
|
|
|
b := &B{
|
|
|
|
common: common{
|
|
|
|
signal: make(chan interface{}),
|
|
|
|
},
|
|
|
|
benchmark: Benchmark,
|
|
|
|
}
|
2011-09-16 15:47:21 +00:00
|
|
|
benchName := Benchmark.Name
|
|
|
|
if procs != 1 {
|
|
|
|
benchName = fmt.Sprintf("%s-%d", Benchmark.Name, procs)
|
|
|
|
}
|
2011-12-12 23:40:51 +00:00
|
|
|
fmt.Printf("%s\t", benchName)
|
2011-09-16 15:47:21 +00:00
|
|
|
r := b.run()
|
2012-01-13 05:11:45 +00:00
|
|
|
if b.failed {
|
|
|
|
// The output could be very long here, but probably isn't.
|
|
|
|
// We print it all, regardless, because we don't want to trim the reason
|
|
|
|
// the benchmark failed.
|
|
|
|
fmt.Printf("--- FAIL: %s\n%s", benchName, b.output)
|
|
|
|
continue
|
|
|
|
}
|
2012-10-23 04:31:11 +00:00
|
|
|
results := r.String()
|
2013-01-29 20:52:43 +00:00
|
|
|
if *benchmarkMemory || b.showAllocResult {
|
2012-10-23 04:31:11 +00:00
|
|
|
results += "\t" + r.MemString()
|
|
|
|
}
|
|
|
|
fmt.Println(results)
|
2012-01-13 05:11:45 +00:00
|
|
|
// Unlike with tests, we ignore the -chatty flag and always print output for
|
|
|
|
// benchmarks since the output generation time will skew the results.
|
|
|
|
if len(b.output) > 0 {
|
|
|
|
b.trimOutput()
|
|
|
|
fmt.Printf("--- BENCH: %s\n%s", benchName, b.output)
|
|
|
|
}
|
2011-09-16 15:47:21 +00:00
|
|
|
if p := runtime.GOMAXPROCS(-1); p != procs {
|
2011-12-12 23:40:51 +00:00
|
|
|
fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
|
2011-09-16 15:47:21 +00:00
|
|
|
}
|
|
|
|
}
|
2010-12-03 04:34:57 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-01-13 05:11:45 +00:00
|
|
|
// trimOutput shortens the output from a benchmark, which can be very long.
|
|
|
|
func (b *B) trimOutput() {
|
|
|
|
// The output is likely to appear multiple times because the benchmark
|
|
|
|
// is run multiple times, but at least it will be seen. This is not a big deal
|
|
|
|
// because benchmarks rarely print, but just in case, we trim it if it's too long.
|
|
|
|
const maxNewlines = 10
|
|
|
|
for nlCount, j := 0, 0; j < len(b.output); j++ {
|
|
|
|
if b.output[j] == '\n' {
|
|
|
|
nlCount++
|
|
|
|
if nlCount >= maxNewlines {
|
|
|
|
b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-06-06 22:37:27 +00:00
|
|
|
// A PB is used by RunParallel for running parallel benchmarks.
|
|
|
|
type PB struct {
|
|
|
|
globalN *uint64 // shared between all worker goroutines iteration counter
|
|
|
|
grain uint64 // acquire that many iterations from globalN at once
|
|
|
|
cache uint64 // local cache of acquired iterations
|
|
|
|
bN uint64 // total number of iterations to execute (b.N)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Next reports whether there are more iterations to execute.
|
|
|
|
func (pb *PB) Next() bool {
|
|
|
|
if pb.cache == 0 {
|
|
|
|
n := atomic.AddUint64(pb.globalN, pb.grain)
|
|
|
|
if n <= pb.bN {
|
|
|
|
pb.cache = pb.grain
|
|
|
|
} else if n < pb.bN+pb.grain {
|
|
|
|
pb.cache = pb.bN + pb.grain - n
|
|
|
|
} else {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pb.cache--
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
// RunParallel runs a benchmark in parallel.
|
|
|
|
// It creates multiple goroutines and distributes b.N iterations among them.
|
|
|
|
// The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
|
|
|
|
// non-CPU-bound benchmarks, call SetParallelism before RunParallel.
|
|
|
|
// RunParallel is usually used with the go test -cpu flag.
|
|
|
|
//
|
|
|
|
// The body function will be run in each goroutine. It should set up any
|
|
|
|
// goroutine-local state and then iterate until pb.Next returns false.
|
|
|
|
// It should not use the StartTimer, StopTimer, or ResetTimer functions,
|
|
|
|
// because they have global effect.
|
|
|
|
func (b *B) RunParallel(body func(*PB)) {
|
|
|
|
// Calculate grain size as number of iterations that take ~100µs.
|
|
|
|
// 100µs is enough to amortize the overhead and provide sufficient
|
|
|
|
// dynamic load balancing.
|
|
|
|
grain := uint64(0)
|
|
|
|
if b.previousN > 0 && b.previousDuration > 0 {
|
|
|
|
grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
|
|
|
|
}
|
|
|
|
if grain < 1 {
|
|
|
|
grain = 1
|
|
|
|
}
|
|
|
|
// We expect the inner loop and function call to take at least 10ns,
|
|
|
|
// so do not do more than 100µs/10ns=1e4 iterations.
|
|
|
|
if grain > 1e4 {
|
|
|
|
grain = 1e4
|
|
|
|
}
|
|
|
|
|
|
|
|
n := uint64(0)
|
|
|
|
numProcs := b.parallelism * runtime.GOMAXPROCS(0)
|
|
|
|
var wg sync.WaitGroup
|
|
|
|
wg.Add(numProcs)
|
|
|
|
for p := 0; p < numProcs; p++ {
|
|
|
|
go func() {
|
|
|
|
defer wg.Done()
|
|
|
|
pb := &PB{
|
|
|
|
globalN: &n,
|
|
|
|
grain: grain,
|
|
|
|
bN: uint64(b.N),
|
|
|
|
}
|
|
|
|
body(pb)
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
wg.Wait()
|
|
|
|
}
|
|
|
|
|
|
|
|
// SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
|
|
|
|
// There is usually no need to call SetParallelism for CPU-bound benchmarks.
|
|
|
|
// If p is less than 1, this call will have no effect.
|
|
|
|
func (b *B) SetParallelism(p int) {
|
|
|
|
if p >= 1 {
|
|
|
|
b.parallelism = p
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-12-03 04:34:57 +00:00
|
|
|
// Benchmark benchmarks a single function. Useful for creating
|
2012-03-02 16:38:43 +00:00
|
|
|
// custom benchmarks that do not use the "go test" command.
|
2011-01-21 18:19:03 +00:00
|
|
|
func Benchmark(f func(b *B)) BenchmarkResult {
|
2012-01-13 05:11:45 +00:00
|
|
|
b := &B{
|
|
|
|
common: common{
|
|
|
|
signal: make(chan interface{}),
|
|
|
|
},
|
|
|
|
benchmark: InternalBenchmark{"", f},
|
|
|
|
}
|
2010-12-03 04:34:57 +00:00
|
|
|
return b.run()
|
|
|
|
}
|