272 lines
8.5 KiB
C
272 lines
8.5 KiB
C
|
//===-- sanitizer_allocator_secondary.h -------------------------*- C++ -*-===//
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the Sanitizer Allocator.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
#ifndef SANITIZER_ALLOCATOR_H
|
||
|
#error This file must be included inside sanitizer_allocator.h
|
||
|
#endif
|
||
|
|
||
|
// This class can (de)allocate only large chunks of memory using mmap/unmap.
|
||
|
// The main purpose of this allocator is to cover large and rare allocation
|
||
|
// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
|
||
|
template <class MapUnmapCallback = NoOpMapUnmapCallback>
|
||
|
class LargeMmapAllocator {
|
||
|
public:
|
||
|
void InitLinkerInitialized(bool may_return_null) {
|
||
|
page_size_ = GetPageSizeCached();
|
||
|
atomic_store(&may_return_null_, may_return_null, memory_order_relaxed);
|
||
|
}
|
||
|
|
||
|
void Init(bool may_return_null) {
|
||
|
internal_memset(this, 0, sizeof(*this));
|
||
|
InitLinkerInitialized(may_return_null);
|
||
|
}
|
||
|
|
||
|
void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
|
||
|
CHECK(IsPowerOfTwo(alignment));
|
||
|
uptr map_size = RoundUpMapSize(size);
|
||
|
if (alignment > page_size_)
|
||
|
map_size += alignment;
|
||
|
// Overflow.
|
||
|
if (map_size < size) return ReturnNullOrDieOnBadRequest();
|
||
|
uptr map_beg = reinterpret_cast<uptr>(
|
||
|
MmapOrDie(map_size, "LargeMmapAllocator"));
|
||
|
CHECK(IsAligned(map_beg, page_size_));
|
||
|
MapUnmapCallback().OnMap(map_beg, map_size);
|
||
|
uptr map_end = map_beg + map_size;
|
||
|
uptr res = map_beg + page_size_;
|
||
|
if (res & (alignment - 1)) // Align.
|
||
|
res += alignment - (res & (alignment - 1));
|
||
|
CHECK(IsAligned(res, alignment));
|
||
|
CHECK(IsAligned(res, page_size_));
|
||
|
CHECK_GE(res + size, map_beg);
|
||
|
CHECK_LE(res + size, map_end);
|
||
|
Header *h = GetHeader(res);
|
||
|
h->size = size;
|
||
|
h->map_beg = map_beg;
|
||
|
h->map_size = map_size;
|
||
|
uptr size_log = MostSignificantSetBitIndex(map_size);
|
||
|
CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
|
||
|
{
|
||
|
SpinMutexLock l(&mutex_);
|
||
|
uptr idx = n_chunks_++;
|
||
|
chunks_sorted_ = false;
|
||
|
CHECK_LT(idx, kMaxNumChunks);
|
||
|
h->chunk_idx = idx;
|
||
|
chunks_[idx] = h;
|
||
|
stats.n_allocs++;
|
||
|
stats.currently_allocated += map_size;
|
||
|
stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
|
||
|
stats.by_size_log[size_log]++;
|
||
|
stat->Add(AllocatorStatAllocated, map_size);
|
||
|
stat->Add(AllocatorStatMapped, map_size);
|
||
|
}
|
||
|
return reinterpret_cast<void*>(res);
|
||
|
}
|
||
|
|
||
|
bool MayReturnNull() const {
|
||
|
return atomic_load(&may_return_null_, memory_order_acquire);
|
||
|
}
|
||
|
|
||
|
void *ReturnNullOrDieOnBadRequest() {
|
||
|
if (MayReturnNull()) return nullptr;
|
||
|
ReportAllocatorCannotReturnNull(false);
|
||
|
}
|
||
|
|
||
|
void *ReturnNullOrDieOnOOM() {
|
||
|
if (MayReturnNull()) return nullptr;
|
||
|
ReportAllocatorCannotReturnNull(true);
|
||
|
}
|
||
|
|
||
|
void SetMayReturnNull(bool may_return_null) {
|
||
|
atomic_store(&may_return_null_, may_return_null, memory_order_release);
|
||
|
}
|
||
|
|
||
|
void Deallocate(AllocatorStats *stat, void *p) {
|
||
|
Header *h = GetHeader(p);
|
||
|
{
|
||
|
SpinMutexLock l(&mutex_);
|
||
|
uptr idx = h->chunk_idx;
|
||
|
CHECK_EQ(chunks_[idx], h);
|
||
|
CHECK_LT(idx, n_chunks_);
|
||
|
chunks_[idx] = chunks_[n_chunks_ - 1];
|
||
|
chunks_[idx]->chunk_idx = idx;
|
||
|
n_chunks_--;
|
||
|
chunks_sorted_ = false;
|
||
|
stats.n_frees++;
|
||
|
stats.currently_allocated -= h->map_size;
|
||
|
stat->Sub(AllocatorStatAllocated, h->map_size);
|
||
|
stat->Sub(AllocatorStatMapped, h->map_size);
|
||
|
}
|
||
|
MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
|
||
|
UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
|
||
|
}
|
||
|
|
||
|
uptr TotalMemoryUsed() {
|
||
|
SpinMutexLock l(&mutex_);
|
||
|
uptr res = 0;
|
||
|
for (uptr i = 0; i < n_chunks_; i++) {
|
||
|
Header *h = chunks_[i];
|
||
|
CHECK_EQ(h->chunk_idx, i);
|
||
|
res += RoundUpMapSize(h->size);
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
bool PointerIsMine(const void *p) {
|
||
|
return GetBlockBegin(p) != nullptr;
|
||
|
}
|
||
|
|
||
|
uptr GetActuallyAllocatedSize(void *p) {
|
||
|
return RoundUpTo(GetHeader(p)->size, page_size_);
|
||
|
}
|
||
|
|
||
|
// At least page_size_/2 metadata bytes is available.
|
||
|
void *GetMetaData(const void *p) {
|
||
|
// Too slow: CHECK_EQ(p, GetBlockBegin(p));
|
||
|
if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
|
||
|
Printf("%s: bad pointer %p\n", SanitizerToolName, p);
|
||
|
CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
|
||
|
}
|
||
|
return GetHeader(p) + 1;
|
||
|
}
|
||
|
|
||
|
void *GetBlockBegin(const void *ptr) {
|
||
|
uptr p = reinterpret_cast<uptr>(ptr);
|
||
|
SpinMutexLock l(&mutex_);
|
||
|
uptr nearest_chunk = 0;
|
||
|
// Cache-friendly linear search.
|
||
|
for (uptr i = 0; i < n_chunks_; i++) {
|
||
|
uptr ch = reinterpret_cast<uptr>(chunks_[i]);
|
||
|
if (p < ch) continue; // p is at left to this chunk, skip it.
|
||
|
if (p - ch < p - nearest_chunk)
|
||
|
nearest_chunk = ch;
|
||
|
}
|
||
|
if (!nearest_chunk)
|
||
|
return nullptr;
|
||
|
Header *h = reinterpret_cast<Header *>(nearest_chunk);
|
||
|
CHECK_GE(nearest_chunk, h->map_beg);
|
||
|
CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
|
||
|
CHECK_LE(nearest_chunk, p);
|
||
|
if (h->map_beg + h->map_size <= p)
|
||
|
return nullptr;
|
||
|
return GetUser(h);
|
||
|
}
|
||
|
|
||
|
// This function does the same as GetBlockBegin, but is much faster.
|
||
|
// Must be called with the allocator locked.
|
||
|
void *GetBlockBeginFastLocked(void *ptr) {
|
||
|
mutex_.CheckLocked();
|
||
|
uptr p = reinterpret_cast<uptr>(ptr);
|
||
|
uptr n = n_chunks_;
|
||
|
if (!n) return nullptr;
|
||
|
if (!chunks_sorted_) {
|
||
|
// Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
|
||
|
SortArray(reinterpret_cast<uptr*>(chunks_), n);
|
||
|
for (uptr i = 0; i < n; i++)
|
||
|
chunks_[i]->chunk_idx = i;
|
||
|
chunks_sorted_ = true;
|
||
|
min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
|
||
|
max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
|
||
|
chunks_[n - 1]->map_size;
|
||
|
}
|
||
|
if (p < min_mmap_ || p >= max_mmap_)
|
||
|
return nullptr;
|
||
|
uptr beg = 0, end = n - 1;
|
||
|
// This loop is a log(n) lower_bound. It does not check for the exact match
|
||
|
// to avoid expensive cache-thrashing loads.
|
||
|
while (end - beg >= 2) {
|
||
|
uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1
|
||
|
if (p < reinterpret_cast<uptr>(chunks_[mid]))
|
||
|
end = mid - 1; // We are not interested in chunks_[mid].
|
||
|
else
|
||
|
beg = mid; // chunks_[mid] may still be what we want.
|
||
|
}
|
||
|
|
||
|
if (beg < end) {
|
||
|
CHECK_EQ(beg + 1, end);
|
||
|
// There are 2 chunks left, choose one.
|
||
|
if (p >= reinterpret_cast<uptr>(chunks_[end]))
|
||
|
beg = end;
|
||
|
}
|
||
|
|
||
|
Header *h = chunks_[beg];
|
||
|
if (h->map_beg + h->map_size <= p || p < h->map_beg)
|
||
|
return nullptr;
|
||
|
return GetUser(h);
|
||
|
}
|
||
|
|
||
|
void PrintStats() {
|
||
|
Printf("Stats: LargeMmapAllocator: allocated %zd times, "
|
||
|
"remains %zd (%zd K) max %zd M; by size logs: ",
|
||
|
stats.n_allocs, stats.n_allocs - stats.n_frees,
|
||
|
stats.currently_allocated >> 10, stats.max_allocated >> 20);
|
||
|
for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
|
||
|
uptr c = stats.by_size_log[i];
|
||
|
if (!c) continue;
|
||
|
Printf("%zd:%zd; ", i, c);
|
||
|
}
|
||
|
Printf("\n");
|
||
|
}
|
||
|
|
||
|
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
|
||
|
// introspection API.
|
||
|
void ForceLock() {
|
||
|
mutex_.Lock();
|
||
|
}
|
||
|
|
||
|
void ForceUnlock() {
|
||
|
mutex_.Unlock();
|
||
|
}
|
||
|
|
||
|
// Iterate over all existing chunks.
|
||
|
// The allocator must be locked when calling this function.
|
||
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
||
|
for (uptr i = 0; i < n_chunks_; i++)
|
||
|
callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
|
||
|
struct Header {
|
||
|
uptr map_beg;
|
||
|
uptr map_size;
|
||
|
uptr size;
|
||
|
uptr chunk_idx;
|
||
|
};
|
||
|
|
||
|
Header *GetHeader(uptr p) {
|
||
|
CHECK(IsAligned(p, page_size_));
|
||
|
return reinterpret_cast<Header*>(p - page_size_);
|
||
|
}
|
||
|
Header *GetHeader(const void *p) {
|
||
|
return GetHeader(reinterpret_cast<uptr>(p));
|
||
|
}
|
||
|
|
||
|
void *GetUser(Header *h) {
|
||
|
CHECK(IsAligned((uptr)h, page_size_));
|
||
|
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
|
||
|
}
|
||
|
|
||
|
uptr RoundUpMapSize(uptr size) {
|
||
|
return RoundUpTo(size, page_size_) + page_size_;
|
||
|
}
|
||
|
|
||
|
uptr page_size_;
|
||
|
Header *chunks_[kMaxNumChunks];
|
||
|
uptr n_chunks_;
|
||
|
uptr min_mmap_, max_mmap_;
|
||
|
bool chunks_sorted_;
|
||
|
struct Stats {
|
||
|
uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
|
||
|
} stats;
|
||
|
atomic_uint8_t may_return_null_;
|
||
|
SpinMutex mutex_;
|
||
|
};
|