304 lines
11 KiB
C++
304 lines
11 KiB
C++
|
/* Copyright (C) 2011 Free Software Foundation, Inc.
|
||
|
Contributed by Torvald Riegel <triegel@redhat.com>.
|
||
|
|
||
|
This file is part of the GNU Transactional Memory Library (libitm).
|
||
|
|
||
|
Libitm is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
more details.
|
||
|
|
||
|
Under Section 7 of GPL version 3, you are granted additional
|
||
|
permissions described in the GCC Runtime Library Exception, version
|
||
|
3.1, as published by the Free Software Foundation.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License and
|
||
|
a copy of the GCC Runtime Library Exception along with this program;
|
||
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include "libitm_i.h"
|
||
|
|
||
|
using namespace GTM;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// This group consists of all TM methods that synchronize via just a single
|
||
|
// global lock (or ownership record).
|
||
|
struct gl_mg : public method_group
|
||
|
{
|
||
|
static const gtm_word LOCK_BIT = (~(gtm_word)0 >> 1) + 1;
|
||
|
// We can't use the full bitrange because ~0 in gtm_thread::shared_state has
|
||
|
// special meaning.
|
||
|
static const gtm_word VERSION_MAX = (~(gtm_word)0 >> 1) - 1;
|
||
|
static bool is_locked(gtm_word l) { return l & LOCK_BIT; }
|
||
|
static gtm_word set_locked(gtm_word l) { return l | LOCK_BIT; }
|
||
|
static gtm_word clear_locked(gtm_word l) { return l & ~LOCK_BIT; }
|
||
|
|
||
|
// The global ownership record.
|
||
|
gtm_word orec;
|
||
|
virtual void init()
|
||
|
{
|
||
|
orec = 0;
|
||
|
}
|
||
|
virtual void fini() { }
|
||
|
};
|
||
|
|
||
|
static gl_mg o_gl_mg;
|
||
|
|
||
|
|
||
|
// The global lock, write-through TM method.
|
||
|
// Acquires the orec eagerly before the first write, and then writes through.
|
||
|
// Reads abort if the global orec's version number changed or if it is locked.
|
||
|
// Currently, writes require undo-logging to prevent deadlock between the
|
||
|
// serial lock and the global orec (writer txn acquires orec, reader txn
|
||
|
// upgrades to serial and waits for all other txns, writer tries to upgrade to
|
||
|
// serial too but cannot, writer cannot abort either, deadlock). We could
|
||
|
// avoid this if the serial lock would allow us to prevent other threads from
|
||
|
// going to serial mode, but this probably is too much additional complexity
|
||
|
// just to optimize this TM method.
|
||
|
// gtm_thread::shared_state is used to store a transaction's current
|
||
|
// snapshot time (or commit time). The serial lock uses ~0 for inactive
|
||
|
// transactions and 0 for active ones. Thus, we always have a meaningful
|
||
|
// timestamp in shared_state that can be used to implement quiescence-based
|
||
|
// privatization safety. This even holds if a writing transaction has the
|
||
|
// lock bit set in its shared_state because this is fine for both the serial
|
||
|
// lock (the value will be smaller than ~0) and privatization safety (we
|
||
|
// validate that no other update transaction comitted before we acquired the
|
||
|
// orec, so we have the most recent timestamp and no other transaction can
|
||
|
// commit until we have committed).
|
||
|
// However, we therefore cannot use this method for a serial transaction
|
||
|
// (because shared_state needs to remain at ~0) and we have to be careful
|
||
|
// when switching to serial mode (see the special handling in trycommit() and
|
||
|
// rollback()).
|
||
|
// ??? This sharing adds some complexity wrt. serial mode. Just use a separate
|
||
|
// state variable?
|
||
|
class gl_wt_dispatch : public abi_dispatch
|
||
|
{
|
||
|
protected:
|
||
|
static void pre_write(const void *addr, size_t len)
|
||
|
{
|
||
|
gtm_thread *tx = gtm_thr();
|
||
|
if (unlikely(!gl_mg::is_locked(tx->shared_state)))
|
||
|
{
|
||
|
// Check for and handle version number overflow.
|
||
|
if (unlikely(tx->shared_state >= gl_mg::VERSION_MAX))
|
||
|
tx->restart(RESTART_INIT_METHOD_GROUP);
|
||
|
|
||
|
// CAS global orec from our snapshot time to the locked state.
|
||
|
// This validates that we have a consistent snapshot, which is also
|
||
|
// for making privatization safety work (see the class' comments).
|
||
|
gtm_word now = o_gl_mg.orec;
|
||
|
if (now != tx->shared_state)
|
||
|
tx->restart(RESTART_VALIDATE_WRITE);
|
||
|
if (__sync_val_compare_and_swap(&o_gl_mg.orec, now,
|
||
|
gl_mg::set_locked(now)) != now)
|
||
|
tx->restart(RESTART_LOCKED_WRITE);
|
||
|
|
||
|
// Set shared_state to new value. The CAS is a full barrier, so the
|
||
|
// acquisition of the global orec is visible before this store here,
|
||
|
// and the store will not be visible before earlier data loads, which
|
||
|
// is required to correctly ensure privatization safety (see
|
||
|
// begin_and_restart() and release_orec() for further comments).
|
||
|
tx->shared_state = gl_mg::set_locked(now);
|
||
|
}
|
||
|
|
||
|
// TODO Ensure that this gets inlined: Use internal log interface and LTO.
|
||
|
GTM_LB(addr, len);
|
||
|
}
|
||
|
|
||
|
static void validate()
|
||
|
{
|
||
|
// Check that snapshot is consistent. The barrier ensures that this
|
||
|
// happens after previous data loads.
|
||
|
atomic_read_barrier();
|
||
|
gtm_thread *tx = gtm_thr();
|
||
|
gtm_word l = o_gl_mg.orec;
|
||
|
if (l != tx->shared_state)
|
||
|
tx->restart(RESTART_VALIDATE_READ);
|
||
|
}
|
||
|
|
||
|
template <typename V> static V load(const V* addr, ls_modifier mod)
|
||
|
{
|
||
|
// Read-for-write should be unlikely, but we need to handle it or will
|
||
|
// break later WaW optimizations.
|
||
|
if (unlikely(mod == RfW))
|
||
|
{
|
||
|
pre_write(addr, sizeof(V));
|
||
|
return *addr;
|
||
|
}
|
||
|
V v = *addr;
|
||
|
if (likely(mod != RaW))
|
||
|
validate();
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
template <typename V> static void store(V* addr, const V value,
|
||
|
ls_modifier mod)
|
||
|
{
|
||
|
if (unlikely(mod != WaW))
|
||
|
pre_write(addr, sizeof(V));
|
||
|
*addr = value;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
static void memtransfer_static(void *dst, const void* src, size_t size,
|
||
|
bool may_overlap, ls_modifier dst_mod, ls_modifier src_mod)
|
||
|
{
|
||
|
if ((dst_mod != WaW && src_mod != RaW)
|
||
|
&& (dst_mod != NONTXNAL || src_mod == RfW))
|
||
|
pre_write(dst, size);
|
||
|
|
||
|
if (!may_overlap)
|
||
|
::memcpy(dst, src, size);
|
||
|
else
|
||
|
::memmove(dst, src, size);
|
||
|
|
||
|
if (src_mod != RfW && src_mod != RaW && src_mod != NONTXNAL
|
||
|
&& dst_mod != WaW)
|
||
|
validate();
|
||
|
}
|
||
|
|
||
|
static void memset_static(void *dst, int c, size_t size, ls_modifier mod)
|
||
|
{
|
||
|
if (mod != WaW)
|
||
|
pre_write(dst, size);
|
||
|
::memset(dst, c, size);
|
||
|
}
|
||
|
|
||
|
virtual gtm_restart_reason begin_or_restart()
|
||
|
{
|
||
|
// We don't need to do anything for nested transactions.
|
||
|
gtm_thread *tx = gtm_thr();
|
||
|
if (tx->parent_txns.size() > 0)
|
||
|
return NO_RESTART;
|
||
|
|
||
|
// Spin until global orec is not locked.
|
||
|
// TODO This is not necessary if there are no pure loads (check txn props).
|
||
|
gtm_word v;
|
||
|
unsigned i = 0;
|
||
|
while (gl_mg::is_locked(v = o_gl_mg.orec))
|
||
|
{
|
||
|
// TODO need method-specific max spin count
|
||
|
if (++i > gtm_spin_count_var) return RESTART_VALIDATE_READ;
|
||
|
cpu_relax();
|
||
|
}
|
||
|
// This barrier ensures that we have read the global orec before later
|
||
|
// data loads.
|
||
|
atomic_read_barrier();
|
||
|
|
||
|
// Everything is okay, we have a snapshot time.
|
||
|
// We don't need to enforce any ordering for the following store. There
|
||
|
// are no earlier data loads in this transaction, so the store cannot
|
||
|
// become visible before those (which could lead to the violation of
|
||
|
// privatization safety). The store can become visible after later loads
|
||
|
// but this does not matter because the previous value will have been
|
||
|
// smaller or equal (the serial lock will set shared_state to zero when
|
||
|
// marking the transaction as active, and restarts enforce immediate
|
||
|
// visibility of a smaller or equal value with a barrier (see
|
||
|
// release_orec()).
|
||
|
tx->shared_state = v;
|
||
|
return NO_RESTART;
|
||
|
}
|
||
|
|
||
|
virtual bool trycommit(gtm_word& priv_time)
|
||
|
{
|
||
|
gtm_thread* tx = gtm_thr();
|
||
|
gtm_word v = tx->shared_state;
|
||
|
|
||
|
// Special case: If shared_state is ~0, then we have acquired the
|
||
|
// serial lock (tx->state is not updated yet). In this case, the previous
|
||
|
// value isn't available anymore, so grab it from the global lock, which
|
||
|
// must have a meaningful value because no other transactions are active
|
||
|
// anymore. In particular, if it is locked, then we are an update
|
||
|
// transaction, which is all we care about for commit.
|
||
|
if (v == ~(typeof v)0)
|
||
|
v = o_gl_mg.orec;
|
||
|
|
||
|
// Release the orec but do not reset shared_state, which will be modified
|
||
|
// by the serial lock right after our commit anyway. Also, resetting
|
||
|
// shared state here would interfere with the serial lock's use of this
|
||
|
// location.
|
||
|
if (gl_mg::is_locked(v))
|
||
|
{
|
||
|
// Release the global orec, increasing its version number / timestamp.
|
||
|
// TODO replace with C++0x-style atomics (a release in this case)
|
||
|
atomic_write_barrier();
|
||
|
v = gl_mg::clear_locked(v) + 1;
|
||
|
o_gl_mg.orec = v;
|
||
|
|
||
|
// Need to ensure privatization safety. Every other transaction must
|
||
|
// have a snapshot time that is at least as high as our commit time
|
||
|
// (i.e., our commit must be visible to them).
|
||
|
priv_time = v;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
virtual void rollback(gtm_transaction_cp *cp)
|
||
|
{
|
||
|
// We don't do anything for rollbacks of nested transactions.
|
||
|
if (cp != 0)
|
||
|
return;
|
||
|
|
||
|
gtm_thread *tx = gtm_thr();
|
||
|
gtm_word v = tx->shared_state;
|
||
|
// Special case: If shared_state is ~0, then we have acquired the
|
||
|
// serial lock (tx->state is not updated yet). In this case, the previous
|
||
|
// value isn't available anymore, so grab it from the global lock, which
|
||
|
// must have a meaningful value because no other transactions are active
|
||
|
// anymore. In particular, if it is locked, then we are an update
|
||
|
// transaction, which is all we care about for rollback.
|
||
|
if (v == ~(typeof v)0)
|
||
|
v = o_gl_mg.orec;
|
||
|
|
||
|
// Release lock and increment version number to prevent dirty reads.
|
||
|
// Also reset shared state here, so that begin_or_restart() can expect a
|
||
|
// value that is correct wrt. privatization safety.
|
||
|
if (gl_mg::is_locked(v))
|
||
|
{
|
||
|
// Release the global orec, increasing its version number / timestamp.
|
||
|
// TODO replace with C++0x-style atomics (a release in this case)
|
||
|
atomic_write_barrier();
|
||
|
v = gl_mg::clear_locked(v) + 1;
|
||
|
o_gl_mg.orec = v;
|
||
|
|
||
|
// Also reset the timestamp published via shared_state.
|
||
|
// Special case: Only do this if we are not a serial transaction
|
||
|
// because otherwise, we would interfere with the serial lock.
|
||
|
if (tx->shared_state != ~(typeof tx->shared_state)0)
|
||
|
tx->shared_state = v;
|
||
|
|
||
|
// We need a store-load barrier after this store to prevent it
|
||
|
// from becoming visible after later data loads because the
|
||
|
// previous value of shared_state has been higher than the actual
|
||
|
// snapshot time (the lock bit had been set), which could break
|
||
|
// privatization safety. We do not need a barrier before this
|
||
|
// store (see pre_write() for an explanation).
|
||
|
__sync_synchronize();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
CREATE_DISPATCH_METHODS(virtual, )
|
||
|
CREATE_DISPATCH_METHODS_MEM()
|
||
|
|
||
|
gl_wt_dispatch() : abi_dispatch(false, true, false, false, &o_gl_mg)
|
||
|
{ }
|
||
|
};
|
||
|
|
||
|
} // anon namespace
|
||
|
|
||
|
static const gl_wt_dispatch o_gl_wt_dispatch;
|
||
|
|
||
|
abi_dispatch *
|
||
|
GTM::dispatch_gl_wt ()
|
||
|
{
|
||
|
return const_cast<gl_wt_dispatch *>(&o_gl_wt_dispatch);
|
||
|
}
|