re PR fortran/38282 (Bit intrinsics: ILEN and IBCHNG)
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* intrinsic.c (add_functions): Support IALL, IANY, IPARITY.
(check_specific): Special case for those intrinsics.
* gfortran.h (gfc_isym_id): Add new intrinsics
* intrinsic.h (gfc_check_transf_bit_intrins,
gfc_simplify_iall, gfc_simplify_iany, gfc_simplify_iparity,
gfc_resolve_iall, gfc_resolve_iany, gfc_resolve_iparity):
New prototypes.
* iresolve.c (gfc_resolve_iall, gfc_resolve_iany,
gfc_resolve_iparity, resolve_transformational): New functions.
(gfc_resolve_product, gfc_resolve_sum,
gfc_resolve_parity): Use resolve_transformational.
* check.c (gfc_check_transf_bit_intrins): New function.
* simplify.c (gfc_simplify_iall, gfc_simplify_iany,
gfc_simplify_iparity, do_bit_any, do_bit_ior,
do_bit_xor, simplify_transformation): New functions.
(gfc_simplify_all, gfc_simplify_any, gfc_simplify_parity,
gfc_simplify_sum, gfc_simplify_product): Use simplify_transformation.
* trans-intrinsic.c (gfc_conv_intrinsic_arith,
gfc_conv_intrinsic_function, gfc_is_intrinsic_libcall):
Handle IALL, IANY and IPARITY intrinsics.
* intrinsic.texi (IMAGE_INDEX): Move up to fix alphabetic
order.
(IALL, IANY, IPARITY): Document new intrinsics.
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* gfortran.dg/iall_iany_iparity_1.f90: New.
* gfortran.dg/iall_iany_iparity_2.f90: New.
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* gfortran.map: Add new iany, iall and iparity intrinsics.
* Makefile.am: Ditto.
* m4/iany.m4: New.
* m4/iall.m4: New.
* m4/iparity.m4: New.
* Makefile.in: Regenerate.
* generated/iall_i1.c: Generate.
* generated/iall_i2.c: Generate.
* generated/iall_i4.c: Generate.
* generated/iall_i8.c: Generate.
* generated/iall_i16.c: Generate.
* generated/iany_i1.c: Generate.
* generated/iany_i2.c: Generate.
* generated/iany_i4.c: Generate.
* generated/iany_i8.c: Generate.
* generated/iany_i16.c: Generate.
* generated/iparity_i1.c: Generate.
* generated/iparity_i2.c: Generate.
* generated/iparity_i4.c: Generate.
* generated/iparity_i8.c: Generate.
* generated/iparity_i16.c: Generate.
From-SVN: r163898
2010-09-06 07:55:10 +02:00
|
|
|
/* Implementation of the IALL intrinsic
|
|
|
|
Copyright 2010 Free Software Foundation, Inc.
|
|
|
|
Contributed by Tobias Burnus <burnus@net-b.de>
|
|
|
|
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "libgfortran.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
|
|
|
|
#if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
|
|
|
|
|
|
|
|
|
|
|
|
extern void iall_i2 (gfc_array_i2 * const restrict,
|
|
|
|
gfc_array_i2 * const restrict, const index_type * const restrict);
|
|
|
|
export_proto(iall_i2);
|
|
|
|
|
|
|
|
void
|
|
|
|
iall_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
|
gfc_array_i2 * const restrict array,
|
|
|
|
const index_type * const restrict pdim)
|
|
|
|
{
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
|
|
const GFC_INTEGER_2 * restrict base;
|
|
|
|
GFC_INTEGER_2 * restrict dest;
|
|
|
|
index_type rank;
|
|
|
|
index_type n;
|
|
|
|
index_type len;
|
|
|
|
index_type delta;
|
|
|
|
index_type dim;
|
|
|
|
int continue_loop;
|
|
|
|
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
|
|
dim = (*pdim) - 1;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
|
|
if (len < 0)
|
|
|
|
len = 0;
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
|
|
|
|
|
|
for (n = 0; n < dim; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
|
|
|
|
if (extent[n] < 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
}
|
|
|
|
for (n = dim; n < rank; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
|
|
|
|
if (extent[n] < 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (retarray->data == NULL)
|
|
|
|
{
|
|
|
|
size_t alloc_size, str;
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
if (n == 0)
|
|
|
|
str = 1;
|
|
|
|
else
|
|
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
retarray->offset = 0;
|
|
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
|
|
|
|
alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
|
|
* extent[rank-1];
|
|
|
|
|
|
|
|
if (alloc_size == 0)
|
|
|
|
{
|
|
|
|
/* Make sure we have a zero-sized array. */
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
|
|
return;
|
|
|
|
|
|
|
|
}
|
|
|
|
else
|
|
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
|
|
runtime_error ("rank of return array incorrect in"
|
|
|
|
" IALL intrinsic: is %ld, should be %ld",
|
|
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
|
|
(long int) rank);
|
|
|
|
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
|
|
"return value", "IALL");
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
count[n] = 0;
|
|
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
|
|
if (extent[n] <= 0)
|
2011-08-28 12:08:50 +02:00
|
|
|
return;
|
re PR fortran/38282 (Bit intrinsics: ILEN and IBCHNG)
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* intrinsic.c (add_functions): Support IALL, IANY, IPARITY.
(check_specific): Special case for those intrinsics.
* gfortran.h (gfc_isym_id): Add new intrinsics
* intrinsic.h (gfc_check_transf_bit_intrins,
gfc_simplify_iall, gfc_simplify_iany, gfc_simplify_iparity,
gfc_resolve_iall, gfc_resolve_iany, gfc_resolve_iparity):
New prototypes.
* iresolve.c (gfc_resolve_iall, gfc_resolve_iany,
gfc_resolve_iparity, resolve_transformational): New functions.
(gfc_resolve_product, gfc_resolve_sum,
gfc_resolve_parity): Use resolve_transformational.
* check.c (gfc_check_transf_bit_intrins): New function.
* simplify.c (gfc_simplify_iall, gfc_simplify_iany,
gfc_simplify_iparity, do_bit_any, do_bit_ior,
do_bit_xor, simplify_transformation): New functions.
(gfc_simplify_all, gfc_simplify_any, gfc_simplify_parity,
gfc_simplify_sum, gfc_simplify_product): Use simplify_transformation.
* trans-intrinsic.c (gfc_conv_intrinsic_arith,
gfc_conv_intrinsic_function, gfc_is_intrinsic_libcall):
Handle IALL, IANY and IPARITY intrinsics.
* intrinsic.texi (IMAGE_INDEX): Move up to fix alphabetic
order.
(IALL, IANY, IPARITY): Document new intrinsics.
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* gfortran.dg/iall_iany_iparity_1.f90: New.
* gfortran.dg/iall_iany_iparity_2.f90: New.
2010-09-06 Tobias Burnus <burnus@net-b.de>
PR fortran/38282
* gfortran.map: Add new iany, iall and iparity intrinsics.
* Makefile.am: Ditto.
* m4/iany.m4: New.
* m4/iall.m4: New.
* m4/iparity.m4: New.
* Makefile.in: Regenerate.
* generated/iall_i1.c: Generate.
* generated/iall_i2.c: Generate.
* generated/iall_i4.c: Generate.
* generated/iall_i8.c: Generate.
* generated/iall_i16.c: Generate.
* generated/iany_i1.c: Generate.
* generated/iany_i2.c: Generate.
* generated/iany_i4.c: Generate.
* generated/iany_i8.c: Generate.
* generated/iany_i16.c: Generate.
* generated/iparity_i1.c: Generate.
* generated/iparity_i2.c: Generate.
* generated/iparity_i4.c: Generate.
* generated/iparity_i8.c: Generate.
* generated/iparity_i16.c: Generate.
From-SVN: r163898
2010-09-06 07:55:10 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
base = array->data;
|
|
|
|
dest = retarray->data;
|
|
|
|
|
|
|
|
continue_loop = 1;
|
|
|
|
while (continue_loop)
|
|
|
|
{
|
|
|
|
const GFC_INTEGER_2 * restrict src;
|
|
|
|
GFC_INTEGER_2 result;
|
|
|
|
src = base;
|
|
|
|
{
|
|
|
|
|
|
|
|
result = (GFC_INTEGER_2) -1;
|
|
|
|
if (len <= 0)
|
|
|
|
*dest = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for (n = 0; n < len; n++, src += delta)
|
|
|
|
{
|
|
|
|
|
|
|
|
result &= *src;
|
|
|
|
}
|
|
|
|
|
|
|
|
*dest = result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Advance to the next element. */
|
|
|
|
count[0]++;
|
|
|
|
base += sstride[0];
|
|
|
|
dest += dstride[0];
|
|
|
|
n = 0;
|
|
|
|
while (count[n] == extent[n])
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base -= sstride[n] * extent[n];
|
|
|
|
dest -= dstride[n] * extent[n];
|
|
|
|
n++;
|
|
|
|
if (n == rank)
|
|
|
|
{
|
|
|
|
/* Break out of the look. */
|
|
|
|
continue_loop = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base += sstride[n];
|
|
|
|
dest += dstride[n];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void miall_i2 (gfc_array_i2 * const restrict,
|
|
|
|
gfc_array_i2 * const restrict, const index_type * const restrict,
|
|
|
|
gfc_array_l1 * const restrict);
|
|
|
|
export_proto(miall_i2);
|
|
|
|
|
|
|
|
void
|
|
|
|
miall_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
|
gfc_array_i2 * const restrict array,
|
|
|
|
const index_type * const restrict pdim,
|
|
|
|
gfc_array_l1 * const restrict mask)
|
|
|
|
{
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
|
|
GFC_INTEGER_2 * restrict dest;
|
|
|
|
const GFC_INTEGER_2 * restrict base;
|
|
|
|
const GFC_LOGICAL_1 * restrict mbase;
|
|
|
|
int rank;
|
|
|
|
int dim;
|
|
|
|
index_type n;
|
|
|
|
index_type len;
|
|
|
|
index_type delta;
|
|
|
|
index_type mdelta;
|
|
|
|
int mask_kind;
|
|
|
|
|
|
|
|
dim = (*pdim) - 1;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
|
|
if (len <= 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mbase = mask->data;
|
|
|
|
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|
|
|| mask_kind == 16
|
|
|
|
#endif
|
|
|
|
)
|
|
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
|
|
else
|
|
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
|
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
|
|
|
|
|
|
|
for (n = 0; n < dim; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
|
|
|
|
if (extent[n] < 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
|
|
|
|
}
|
|
|
|
for (n = dim; n < rank; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
|
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
|
|
|
|
if (extent[n] < 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (retarray->data == NULL)
|
|
|
|
{
|
|
|
|
size_t alloc_size, str;
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
if (n == 0)
|
|
|
|
str = 1;
|
|
|
|
else
|
|
|
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
|
|
* extent[rank-1];
|
|
|
|
|
|
|
|
retarray->offset = 0;
|
|
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
|
|
|
|
if (alloc_size == 0)
|
|
|
|
{
|
|
|
|
/* Make sure we have a zero-sized array. */
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
|
|
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
|
|
runtime_error ("rank of return array incorrect in IALL intrinsic");
|
|
|
|
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
|
|
{
|
|
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
|
|
"return value", "IALL");
|
|
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
|
|
"MASK argument", "IALL");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
count[n] = 0;
|
|
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
|
|
if (extent[n] <= 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest = retarray->data;
|
|
|
|
base = array->data;
|
|
|
|
|
|
|
|
while (base)
|
|
|
|
{
|
|
|
|
const GFC_INTEGER_2 * restrict src;
|
|
|
|
const GFC_LOGICAL_1 * restrict msrc;
|
|
|
|
GFC_INTEGER_2 result;
|
|
|
|
src = base;
|
|
|
|
msrc = mbase;
|
|
|
|
{
|
|
|
|
|
|
|
|
result = 0;
|
|
|
|
if (len <= 0)
|
|
|
|
*dest = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (*msrc)
|
|
|
|
result &= *src;
|
|
|
|
}
|
|
|
|
*dest = result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Advance to the next element. */
|
|
|
|
count[0]++;
|
|
|
|
base += sstride[0];
|
|
|
|
mbase += mstride[0];
|
|
|
|
dest += dstride[0];
|
|
|
|
n = 0;
|
|
|
|
while (count[n] == extent[n])
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base -= sstride[n] * extent[n];
|
|
|
|
mbase -= mstride[n] * extent[n];
|
|
|
|
dest -= dstride[n] * extent[n];
|
|
|
|
n++;
|
|
|
|
if (n == rank)
|
|
|
|
{
|
|
|
|
/* Break out of the look. */
|
|
|
|
base = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base += sstride[n];
|
|
|
|
mbase += mstride[n];
|
|
|
|
dest += dstride[n];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern void siall_i2 (gfc_array_i2 * const restrict,
|
|
|
|
gfc_array_i2 * const restrict, const index_type * const restrict,
|
|
|
|
GFC_LOGICAL_4 *);
|
|
|
|
export_proto(siall_i2);
|
|
|
|
|
|
|
|
void
|
|
|
|
siall_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
|
gfc_array_i2 * const restrict array,
|
|
|
|
const index_type * const restrict pdim,
|
|
|
|
GFC_LOGICAL_4 * mask)
|
|
|
|
{
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
|
|
GFC_INTEGER_2 * restrict dest;
|
|
|
|
index_type rank;
|
|
|
|
index_type n;
|
|
|
|
index_type dim;
|
|
|
|
|
|
|
|
|
|
|
|
if (*mask)
|
|
|
|
{
|
|
|
|
iall_i2 (retarray, array, pdim);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
|
|
dim = (*pdim) - 1;
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
|
|
|
|
for (n = 0; n < dim; n++)
|
|
|
|
{
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
|
|
|
|
if (extent[n] <= 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = dim; n < rank; n++)
|
|
|
|
{
|
|
|
|
extent[n] =
|
|
|
|
GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
|
|
|
|
|
|
|
if (extent[n] <= 0)
|
|
|
|
extent[n] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (retarray->data == NULL)
|
|
|
|
{
|
|
|
|
size_t alloc_size, str;
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
if (n == 0)
|
|
|
|
str = 1;
|
|
|
|
else
|
|
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
retarray->offset = 0;
|
|
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
|
|
|
|
|
alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
|
|
|
* extent[rank-1];
|
|
|
|
|
|
|
|
if (alloc_size == 0)
|
|
|
|
{
|
|
|
|
/* Make sure we have a zero-sized array. */
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
retarray->data = internal_malloc_size (alloc_size);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
|
|
runtime_error ("rank of return array incorrect in"
|
|
|
|
" IALL intrinsic: is %ld, should be %ld",
|
|
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
|
|
(long int) rank);
|
|
|
|
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
|
|
{
|
|
|
|
for (n=0; n < rank; n++)
|
|
|
|
{
|
|
|
|
index_type ret_extent;
|
|
|
|
|
|
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
|
|
|
if (extent[n] != ret_extent)
|
|
|
|
runtime_error ("Incorrect extent in return value of"
|
|
|
|
" IALL intrinsic in dimension %ld:"
|
|
|
|
" is %ld, should be %ld", (long int) n + 1,
|
|
|
|
(long int) ret_extent, (long int) extent[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
count[n] = 0;
|
|
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
|
|
}
|
|
|
|
|
|
|
|
dest = retarray->data;
|
|
|
|
|
|
|
|
while(1)
|
|
|
|
{
|
|
|
|
*dest = 0;
|
|
|
|
count[0]++;
|
|
|
|
dest += dstride[0];
|
|
|
|
n = 0;
|
|
|
|
while (count[n] == extent[n])
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
dest -= dstride[n] * extent[n];
|
|
|
|
n++;
|
|
|
|
if (n == rank)
|
|
|
|
return;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
dest += dstride[n];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|