2018-10-28 12:05:05 +01:00
|
|
|
|
|
|
|
/* Implementation of the FINDLOC intrinsic
|
2019-01-01 13:31:55 +01:00
|
|
|
Copyright (C) 2018-2019 Free Software Foundation, Inc.
|
2018-10-28 12:05:05 +01:00
|
|
|
Contributed by Thomas König <tk@tkoenig.net>
|
|
|
|
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "libgfortran.h"
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#if defined (HAVE_GFC_UINTEGER_4)
|
|
|
|
extern void findloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
GFC_LOGICAL_4 back, gfc_charlen_type len_array, gfc_charlen_type len_value);
|
|
|
|
|
|
|
|
export_proto(findloc0_s4);
|
|
|
|
|
|
|
|
void
|
|
|
|
findloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
GFC_LOGICAL_4 back, gfc_charlen_type len_array, gfc_charlen_type len_value)
|
|
|
|
{
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type dstride;
|
|
|
|
const GFC_UINTEGER_4 *base;
|
|
|
|
index_type * restrict dest;
|
|
|
|
index_type rank;
|
|
|
|
index_type n;
|
|
|
|
index_type sz;
|
|
|
|
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
|
|
if (rank <= 0)
|
|
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
|
|
|
|
if (retarray->base_addr == NULL)
|
|
|
|
{
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
|
|
|
retarray->dtype.rank = 1;
|
|
|
|
retarray->offset = 0;
|
2018-12-31 15:59:46 +01:00
|
|
|
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
|
2018-10-28 12:05:05 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
|
|
"FINDLOC");
|
|
|
|
}
|
|
|
|
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
|
|
|
|
/* Set the return value. */
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = 0;
|
|
|
|
|
|
|
|
sz = 1;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
sz *= extent[n];
|
|
|
|
if (extent[n] <= 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
count[n] = 0;
|
|
|
|
|
|
|
|
if (back)
|
|
|
|
{
|
|
|
|
base = array->base_addr + (sz - 1) * len_array;
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (unlikely(compare_string_char4 (len_array, base, len_value, value) == 0))
|
|
|
|
{
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = extent[n] - count[n];
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
base -= sstride[0] * len_array;
|
|
|
|
} while(++count[0] != extent[0]);
|
|
|
|
|
|
|
|
n = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base += sstride[n] * extent[n] * len_array;
|
|
|
|
n++;
|
|
|
|
if (n >= rank)
|
|
|
|
return;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base -= sstride[n] * len_array;
|
|
|
|
}
|
|
|
|
} while (count[n] == extent[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
base = array->base_addr;
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (unlikely(compare_string_char4 (len_array, base, len_value, value) == 0))
|
|
|
|
{
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = count[n] + 1;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
base += sstride[0] * len_array;
|
|
|
|
} while(++count[0] != extent[0]);
|
|
|
|
|
|
|
|
n = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base -= sstride[n] * extent[n] * len_array;
|
|
|
|
n++;
|
|
|
|
if (n >= rank)
|
|
|
|
return;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base += sstride[n] * len_array;
|
|
|
|
}
|
|
|
|
} while (count[n] == extent[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void mfindloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
gfc_array_l1 *const restrict, GFC_LOGICAL_4 back, gfc_charlen_type len_array,
|
|
|
|
gfc_charlen_type len_value);
|
|
|
|
export_proto(mfindloc0_s4);
|
|
|
|
|
|
|
|
void
|
|
|
|
mfindloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
gfc_array_l1 *const restrict mask, GFC_LOGICAL_4 back,
|
|
|
|
gfc_charlen_type len_array, gfc_charlen_type len_value)
|
|
|
|
{
|
|
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
|
|
index_type dstride;
|
|
|
|
const GFC_UINTEGER_4 *base;
|
|
|
|
index_type * restrict dest;
|
|
|
|
GFC_LOGICAL_1 *mbase;
|
|
|
|
index_type rank;
|
|
|
|
index_type n;
|
|
|
|
int mask_kind;
|
|
|
|
index_type sz;
|
|
|
|
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
|
|
if (rank <= 0)
|
|
|
|
runtime_error ("Rank of array needs to be > 0");
|
|
|
|
|
|
|
|
if (retarray->base_addr == NULL)
|
|
|
|
{
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
|
|
|
retarray->dtype.rank = 1;
|
|
|
|
retarray->offset = 0;
|
2018-12-31 15:59:46 +01:00
|
|
|
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
|
2018-10-28 12:05:05 +01:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
|
|
{
|
|
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
|
|
"FINDLOC");
|
|
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
|
|
"MASK argument", "FINDLOC");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
|
|
|
|
mbase = mask->base_addr;
|
|
|
|
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|
|
|| mask_kind == 16
|
|
|
|
#endif
|
|
|
|
)
|
|
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
|
|
else
|
|
|
|
internal_error (NULL, "Funny sized logical array");
|
|
|
|
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
|
|
|
|
/* Set the return value. */
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = 0;
|
|
|
|
|
|
|
|
sz = 1;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
{
|
|
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
|
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
sz *= extent[n];
|
|
|
|
if (extent[n] <= 0)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
count[n] = 0;
|
|
|
|
|
|
|
|
if (back)
|
|
|
|
{
|
|
|
|
base = array->base_addr + (sz - 1) * len_array;
|
|
|
|
mbase = mbase + (sz - 1) * mask_kind;
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (unlikely(*mbase && compare_string_char4 (len_array, base, len_value, value) == 0))
|
|
|
|
{
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = extent[n] - count[n];
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
base -= sstride[0] * len_array;
|
|
|
|
mbase -= mstride[0];
|
|
|
|
} while(++count[0] != extent[0]);
|
|
|
|
|
|
|
|
n = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base += sstride[n] * extent[n] * len_array;
|
|
|
|
mbase -= mstride[n] * extent[n];
|
|
|
|
n++;
|
|
|
|
if (n >= rank)
|
|
|
|
return;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base -= sstride[n] * len_array;
|
|
|
|
mbase += mstride[n];
|
|
|
|
}
|
|
|
|
} while (count[n] == extent[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
base = array->base_addr;
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (unlikely(*mbase && compare_string_char4 (len_array, base, len_value, value) == 0))
|
|
|
|
{
|
|
|
|
for (n = 0; n < rank; n++)
|
|
|
|
dest[n * dstride] = count[n] + 1;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
base += sstride[0] * len_array;
|
|
|
|
mbase += mstride[0];
|
|
|
|
} while(++count[0] != extent[0]);
|
|
|
|
|
|
|
|
n = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
|
|
the next dimension. */
|
|
|
|
count[n] = 0;
|
|
|
|
/* We could precalculate these products, but this is a less
|
|
|
|
frequently used path so probably not worth it. */
|
|
|
|
base -= sstride[n] * extent[n] * len_array;
|
|
|
|
mbase -= mstride[n] * extent[n];
|
|
|
|
n++;
|
|
|
|
if (n >= rank)
|
|
|
|
return;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
count[n]++;
|
|
|
|
base += sstride[n]* len_array;
|
|
|
|
mbase += mstride[n];
|
|
|
|
}
|
|
|
|
} while (count[n] == extent[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void sfindloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
GFC_LOGICAL_4 *, GFC_LOGICAL_4 back, gfc_charlen_type len_array,
|
|
|
|
gfc_charlen_type len_value);
|
|
|
|
export_proto(sfindloc0_s4);
|
|
|
|
|
|
|
|
void
|
|
|
|
sfindloc0_s4 (gfc_array_index_type * const restrict retarray,
|
|
|
|
gfc_array_s4 * const restrict array, GFC_UINTEGER_4 *value,
|
|
|
|
GFC_LOGICAL_4 * mask, GFC_LOGICAL_4 back, gfc_charlen_type len_array,
|
|
|
|
gfc_charlen_type len_value)
|
|
|
|
{
|
|
|
|
index_type rank;
|
|
|
|
index_type dstride;
|
|
|
|
index_type * restrict dest;
|
|
|
|
index_type n;
|
|
|
|
|
2018-12-31 15:59:46 +01:00
|
|
|
if (mask == NULL || *mask)
|
2018-10-28 12:05:05 +01:00
|
|
|
{
|
|
|
|
findloc0_s4 (retarray, array, value, back, len_array, len_value);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
rank = GFC_DESCRIPTOR_RANK (array);
|
|
|
|
|
|
|
|
if (rank <= 0)
|
|
|
|
internal_error (NULL, "Rank of array needs to be > 0");
|
|
|
|
|
|
|
|
if (retarray->base_addr == NULL)
|
|
|
|
{
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
|
|
|
|
retarray->dtype.rank = 1;
|
|
|
|
retarray->offset = 0;
|
2018-12-31 15:59:46 +01:00
|
|
|
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
|
2018-10-28 12:05:05 +01:00
|
|
|
}
|
|
|
|
else if (unlikely (compile_options.bounds_check))
|
|
|
|
{
|
|
|
|
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
|
|
|
|
"FINDLOC");
|
|
|
|
}
|
|
|
|
|
|
|
|
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
for (n = 0; n<rank; n++)
|
|
|
|
dest[n * dstride] = 0 ;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|