2014-07-19 23:36:26 +02:00
|
|
|
/* go-ffi.c -- convert Go type description to libffi.
|
|
|
|
|
|
|
|
Copyright 2009 The Go Authors. All rights reserved.
|
|
|
|
Use of this source code is governed by a BSD-style
|
|
|
|
license that can be found in the LICENSE file. */
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include "runtime.h"
|
|
|
|
#include "go-alloc.h"
|
|
|
|
#include "go-assert.h"
|
|
|
|
#include "go-type.h"
|
|
|
|
|
|
|
|
#ifdef USE_LIBFFI
|
|
|
|
|
|
|
|
#include "ffi.h"
|
|
|
|
|
|
|
|
/* The functions in this file are only called from reflect_call and
|
|
|
|
reflect.ffi. As these functions call libffi functions, which will
|
|
|
|
be compiled without -fsplit-stack, they will always run with a
|
|
|
|
large stack. */
|
|
|
|
|
|
|
|
static ffi_type *go_array_to_ffi (const struct __go_array_type *)
|
|
|
|
__attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_slice_to_ffi (const struct __go_slice_type *)
|
|
|
|
__attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_struct_to_ffi (const struct __go_struct_type *)
|
|
|
|
__attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_string_to_ffi (void) __attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_interface_to_ffi (void) __attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_type_to_ffi (const struct __go_type_descriptor *)
|
|
|
|
__attribute__ ((no_split_stack));
|
|
|
|
static ffi_type *go_func_return_ffi (const struct __go_func_type *)
|
|
|
|
__attribute__ ((no_split_stack));
|
|
|
|
|
|
|
|
/* Return an ffi_type for a Go array type. The libffi library does
|
|
|
|
not have any builtin support for passing arrays as values. We work
|
|
|
|
around this by pretending that the array is a struct. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_array_to_ffi (const struct __go_array_type *descriptor)
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
uintptr_t len;
|
|
|
|
ffi_type *element;
|
|
|
|
uintptr_t i;
|
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
len = descriptor->__len;
|
runtime: Use a struct, not void, for an empty struct for libffi.
A recent libffi upgrade caused the reflect test to fail on
386. The problem case is a function that returns an empty
struct--a struct with no fields. The libffi library does not
recognize the existence of empty structs, presumably since
they can't happen in C. To work around this, the Go interface
to the libffi library changes an empty struct to void. This
normally works fine, but with the new libffi upgrade it fails
for a function that returns an empty struct. On 386 a
function that returns a struct is expected to pop the hidden
pointer when it returns. So when we convert an empty struct
to void, libffi is calling a function that pops the hidden
pointer but does not expect that to happen.
In the older version of libffi, this didn't matter, because
the libffi code for 386 used a frame pointer, so the fact that
the stack pointer was wonky when the function returned was
ignored as the stack pointer was immediately replaced by the
saved frame pointer. In the newer version of libffi, the 386
code is more efficient and does not use a frame pointer, and
therefore it matters whether libffi expects the function to
pop the hidden pointer or not.
This patch changes libgo to convert an empty to a struct with
a single field of type void. This seems to be enough to get
the test cases working again.
Of course the real fix would be to change libffi to handle
empty types, but as libffi uses size == 0 as a marker for an
uninitialized type, that would be a non-trivial change.
From-SVN: r219701
2015-01-16 03:54:13 +01:00
|
|
|
if (len == 0)
|
|
|
|
{
|
|
|
|
/* The libffi library won't accept an empty struct. */
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (2 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = &ffi_type_void;
|
|
|
|
ret->elements[1] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
2014-07-19 23:36:26 +02:00
|
|
|
ret->elements = (ffi_type **) __go_alloc ((len + 1) * sizeof (ffi_type *));
|
|
|
|
element = go_type_to_ffi (descriptor->__element_type);
|
|
|
|
for (i = 0; i < len; ++i)
|
|
|
|
ret->elements[i] = element;
|
|
|
|
ret->elements[len] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return an ffi_type for a Go slice type. This describes the
|
|
|
|
__go_open_array type defines in array.h. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_slice_to_ffi (
|
|
|
|
const struct __go_slice_type *descriptor __attribute__ ((unused)))
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
ffi_type *ffi_intgo;
|
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (4 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = &ffi_type_pointer;
|
|
|
|
ffi_intgo = sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64;
|
|
|
|
ret->elements[1] = ffi_intgo;
|
|
|
|
ret->elements[2] = ffi_intgo;
|
|
|
|
ret->elements[3] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return an ffi_type for a Go struct type. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_struct_to_ffi (const struct __go_struct_type *descriptor)
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
int field_count;
|
|
|
|
const struct __go_struct_field *fields;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
field_count = descriptor->__fields.__count;
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
runtime: Use a struct, not void, for an empty struct for libffi.
A recent libffi upgrade caused the reflect test to fail on
386. The problem case is a function that returns an empty
struct--a struct with no fields. The libffi library does not
recognize the existence of empty structs, presumably since
they can't happen in C. To work around this, the Go interface
to the libffi library changes an empty struct to void. This
normally works fine, but with the new libffi upgrade it fails
for a function that returns an empty struct. On 386 a
function that returns a struct is expected to pop the hidden
pointer when it returns. So when we convert an empty struct
to void, libffi is calling a function that pops the hidden
pointer but does not expect that to happen.
In the older version of libffi, this didn't matter, because
the libffi code for 386 used a frame pointer, so the fact that
the stack pointer was wonky when the function returned was
ignored as the stack pointer was immediately replaced by the
saved frame pointer. In the newer version of libffi, the 386
code is more efficient and does not use a frame pointer, and
therefore it matters whether libffi expects the function to
pop the hidden pointer or not.
This patch changes libgo to convert an empty to a struct with
a single field of type void. This seems to be enough to get
the test cases working again.
Of course the real fix would be to change libffi to handle
empty types, but as libffi uses size == 0 as a marker for an
uninitialized type, that would be a non-trivial change.
From-SVN: r219701
2015-01-16 03:54:13 +01:00
|
|
|
if (field_count == 0)
|
|
|
|
{
|
|
|
|
/* The libffi library won't accept an empty struct. */
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (2 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = &ffi_type_void;
|
|
|
|
ret->elements[1] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
2014-07-19 23:36:26 +02:00
|
|
|
fields = (const struct __go_struct_field *) descriptor->__fields.__values;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc ((field_count + 1)
|
|
|
|
* sizeof (ffi_type *));
|
|
|
|
for (i = 0; i < field_count; ++i)
|
|
|
|
ret->elements[i] = go_type_to_ffi (fields[i].__type);
|
|
|
|
ret->elements[field_count] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return an ffi_type for a Go string type. This describes the String
|
|
|
|
struct. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_string_to_ffi (void)
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
ffi_type *ffi_intgo;
|
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = &ffi_type_pointer;
|
|
|
|
ffi_intgo = sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64;
|
|
|
|
ret->elements[1] = ffi_intgo;
|
|
|
|
ret->elements[2] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return an ffi_type for a Go interface type. This describes the
|
|
|
|
__go_interface and __go_empty_interface structs. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_interface_to_ffi (void)
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = &ffi_type_pointer;
|
|
|
|
ret->elements[1] = &ffi_type_pointer;
|
|
|
|
ret->elements[2] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-01-16 23:58:53 +01:00
|
|
|
|
|
|
|
#ifndef FFI_TARGET_HAS_COMPLEX_TYPE
|
|
|
|
/* If libffi hasn't been updated for this target to support complex,
|
|
|
|
pretend complex is a structure. Warning: This does not work for
|
|
|
|
all ABIs. Eventually libffi should be updated for all targets
|
|
|
|
and this should go away. */
|
|
|
|
|
|
|
|
static ffi_type *go_complex_to_ffi (ffi_type *)
|
|
|
|
__attribute__ ((no_split_stack));
|
2014-07-19 23:36:26 +02:00
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_complex_to_ffi (ffi_type *float_type)
|
|
|
|
{
|
|
|
|
ffi_type *ret;
|
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc (3 * sizeof (ffi_type *));
|
|
|
|
ret->elements[0] = float_type;
|
|
|
|
ret->elements[1] = float_type;
|
|
|
|
ret->elements[2] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
2015-01-16 23:58:53 +01:00
|
|
|
#endif
|
2014-07-19 23:36:26 +02:00
|
|
|
|
|
|
|
/* Return an ffi_type for a type described by a
|
|
|
|
__go_type_descriptor. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_type_to_ffi (const struct __go_type_descriptor *descriptor)
|
|
|
|
{
|
|
|
|
switch (descriptor->__code & GO_CODE_MASK)
|
|
|
|
{
|
|
|
|
case GO_BOOL:
|
|
|
|
if (sizeof (_Bool) == 1)
|
|
|
|
return &ffi_type_uint8;
|
|
|
|
else if (sizeof (_Bool) == sizeof (int))
|
|
|
|
return &ffi_type_uint;
|
|
|
|
abort ();
|
|
|
|
case GO_FLOAT32:
|
|
|
|
if (sizeof (float) == 4)
|
|
|
|
return &ffi_type_float;
|
|
|
|
abort ();
|
|
|
|
case GO_FLOAT64:
|
|
|
|
if (sizeof (double) == 8)
|
|
|
|
return &ffi_type_double;
|
|
|
|
abort ();
|
|
|
|
case GO_COMPLEX64:
|
|
|
|
if (sizeof (float) == 4)
|
2015-01-16 23:58:53 +01:00
|
|
|
{
|
|
|
|
#ifdef FFI_TARGET_HAS_COMPLEX_TYPE
|
|
|
|
return &ffi_type_complex_float;
|
|
|
|
#else
|
|
|
|
return go_complex_to_ffi (&ffi_type_float);
|
2014-07-19 23:36:26 +02:00
|
|
|
#endif
|
2015-01-16 23:58:53 +01:00
|
|
|
}
|
|
|
|
abort ();
|
2014-07-19 23:36:26 +02:00
|
|
|
case GO_COMPLEX128:
|
|
|
|
if (sizeof (double) == 8)
|
2015-01-16 23:58:53 +01:00
|
|
|
{
|
|
|
|
#ifdef FFI_TARGET_HAS_COMPLEX_TYPE
|
|
|
|
return &ffi_type_complex_double;
|
|
|
|
#else
|
|
|
|
return go_complex_to_ffi (&ffi_type_double);
|
2014-07-19 23:36:26 +02:00
|
|
|
#endif
|
2015-01-16 23:58:53 +01:00
|
|
|
}
|
|
|
|
abort ();
|
2014-07-19 23:36:26 +02:00
|
|
|
case GO_INT16:
|
|
|
|
return &ffi_type_sint16;
|
|
|
|
case GO_INT32:
|
|
|
|
return &ffi_type_sint32;
|
|
|
|
case GO_INT64:
|
|
|
|
return &ffi_type_sint64;
|
|
|
|
case GO_INT8:
|
|
|
|
return &ffi_type_sint8;
|
|
|
|
case GO_INT:
|
|
|
|
return sizeof (intgo) == 4 ? &ffi_type_sint32 : &ffi_type_sint64;
|
|
|
|
case GO_UINT16:
|
|
|
|
return &ffi_type_uint16;
|
|
|
|
case GO_UINT32:
|
|
|
|
return &ffi_type_uint32;
|
|
|
|
case GO_UINT64:
|
|
|
|
return &ffi_type_uint64;
|
|
|
|
case GO_UINT8:
|
|
|
|
return &ffi_type_uint8;
|
|
|
|
case GO_UINT:
|
|
|
|
return sizeof (uintgo) == 4 ? &ffi_type_uint32 : &ffi_type_uint64;
|
|
|
|
case GO_UINTPTR:
|
|
|
|
if (sizeof (void *) == 2)
|
|
|
|
return &ffi_type_uint16;
|
|
|
|
else if (sizeof (void *) == 4)
|
|
|
|
return &ffi_type_uint32;
|
|
|
|
else if (sizeof (void *) == 8)
|
|
|
|
return &ffi_type_uint64;
|
|
|
|
abort ();
|
|
|
|
case GO_ARRAY:
|
|
|
|
return go_array_to_ffi ((const struct __go_array_type *) descriptor);
|
|
|
|
case GO_SLICE:
|
|
|
|
return go_slice_to_ffi ((const struct __go_slice_type *) descriptor);
|
|
|
|
case GO_STRUCT:
|
|
|
|
return go_struct_to_ffi ((const struct __go_struct_type *) descriptor);
|
|
|
|
case GO_STRING:
|
|
|
|
return go_string_to_ffi ();
|
|
|
|
case GO_INTERFACE:
|
|
|
|
return go_interface_to_ffi ();
|
|
|
|
case GO_CHAN:
|
|
|
|
case GO_FUNC:
|
|
|
|
case GO_MAP:
|
|
|
|
case GO_PTR:
|
|
|
|
case GO_UNSAFE_POINTER:
|
|
|
|
/* These types are always pointers, and for FFI purposes nothing
|
|
|
|
else matters. */
|
|
|
|
return &ffi_type_pointer;
|
|
|
|
default:
|
|
|
|
abort ();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the return type for a function, given the number of out
|
|
|
|
parameters and their types. */
|
|
|
|
|
|
|
|
static ffi_type *
|
|
|
|
go_func_return_ffi (const struct __go_func_type *func)
|
|
|
|
{
|
|
|
|
int count;
|
|
|
|
const struct __go_type_descriptor **types;
|
|
|
|
ffi_type *ret;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
count = func->__out.__count;
|
|
|
|
if (count == 0)
|
|
|
|
return &ffi_type_void;
|
|
|
|
|
|
|
|
types = (const struct __go_type_descriptor **) func->__out.__values;
|
|
|
|
|
2016-08-08 21:53:44 +02:00
|
|
|
// We compile a function that returns a zero-sized value as though
|
|
|
|
// it returns void. This works around a problem in libffi: it can't
|
|
|
|
// represent a zero-sized value.
|
|
|
|
for (i = 0; i < count; ++i)
|
|
|
|
{
|
|
|
|
if (types[i]->__size > 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i == count)
|
|
|
|
return &ffi_type_void;
|
|
|
|
|
2014-07-19 23:36:26 +02:00
|
|
|
if (count == 1)
|
2015-01-20 05:18:12 +01:00
|
|
|
return go_type_to_ffi (types[0]);
|
2014-07-19 23:36:26 +02:00
|
|
|
|
|
|
|
ret = (ffi_type *) __go_alloc (sizeof (ffi_type));
|
|
|
|
ret->type = FFI_TYPE_STRUCT;
|
|
|
|
ret->elements = (ffi_type **) __go_alloc ((count + 1) * sizeof (ffi_type *));
|
|
|
|
for (i = 0; i < count; ++i)
|
|
|
|
ret->elements[i] = go_type_to_ffi (types[i]);
|
|
|
|
ret->elements[count] = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Build an ffi_cif structure for a function described by a
|
|
|
|
__go_func_type structure. */
|
|
|
|
|
|
|
|
void
|
|
|
|
__go_func_to_cif (const struct __go_func_type *func, _Bool is_interface,
|
|
|
|
_Bool is_method, ffi_cif *cif)
|
|
|
|
{
|
|
|
|
int num_params;
|
|
|
|
const struct __go_type_descriptor **in_types;
|
|
|
|
size_t num_args;
|
|
|
|
ffi_type **args;
|
|
|
|
int off;
|
|
|
|
int i;
|
|
|
|
ffi_type *rettype;
|
|
|
|
ffi_status status;
|
|
|
|
|
|
|
|
num_params = func->__in.__count;
|
|
|
|
in_types = ((const struct __go_type_descriptor **)
|
|
|
|
func->__in.__values);
|
|
|
|
|
|
|
|
num_args = num_params + (is_interface ? 1 : 0);
|
|
|
|
args = (ffi_type **) __go_alloc (num_args * sizeof (ffi_type *));
|
|
|
|
i = 0;
|
|
|
|
off = 0;
|
|
|
|
if (is_interface)
|
|
|
|
{
|
|
|
|
args[0] = &ffi_type_pointer;
|
|
|
|
off = 1;
|
|
|
|
}
|
|
|
|
else if (is_method)
|
|
|
|
{
|
|
|
|
args[0] = &ffi_type_pointer;
|
|
|
|
i = 1;
|
|
|
|
}
|
|
|
|
for (; i < num_params; ++i)
|
|
|
|
args[i + off] = go_type_to_ffi (in_types[i]);
|
|
|
|
|
|
|
|
rettype = go_func_return_ffi (func);
|
|
|
|
|
|
|
|
status = ffi_prep_cif (cif, FFI_DEFAULT_ABI, num_args, rettype, args);
|
|
|
|
__go_assert (status == FFI_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* defined(USE_LIBFFI) */
|