read-rtl.c (map_value, [...]): New structures.

* read-rtl.c (map_value, mapping, macro_group): New structures.
	(BELLWETHER_CODE): New macro.
	(modes, codes, bellwether_codes): New variables.
	(find_mode, uses_mode_macro_p, apply_mode_macro, find_code)
	(uses_code_macro_p, apply_code_macro, apply_macro_to_string)
	(apply_macro_to_rtx, uses_macro_p, add_condition_to_string)
	(add_condition_to_rtx, apply_macro_traverse, add_mapping)
	(add_map_value, initialize_macros): New functions.
	(def_hash, def_hash_eq_p): Generalize to anything that points to,
	or starts with, a char * field.
	(find_macro, read_mapping, check_code_macro): New functions.
	(read_rtx_1): New, split out from read_rtx.  Handle the new
	define_{mode,code}_{macro,attr} constructs.  Use find_macro
	to parse the name of a code or mode.  Use BELLWETHER_CODE to
	extract the format and to choose a suitable code for rtx_alloc.
	Modify recursive invocations to use read_rtx_1.
	(read_rtx): Call initialize_macros.  Apply code and mode macros
	to the rtx returned by read_rtx_1.  Cache everything after the
	first macro expansion for subsequent read_rtx calls.
	* doc/md.texi: Document new .md constructs.
	* config/mips/mips.md (GPR): New mode macro.
	(d, si8_di5): New mode attributes.
	(any_cond): New code macro.
	(add[sd]i3): Redefine using :GPR.
	(*add[sd]i3): Likewise, renaming from add[sd]i3_internal.
	(*add[sd]i3_sp[12], *add<mode>3_mips16): Redefine using :GPR, naming
	previously unnamed MIPS16 patterns.
	(*addsi3_extended): Renamed from addsi3_internal_2.  Fix overly long
	lines.  Don't match (plus (const_int 0) ...).
	(*addsi3_extended_mips16): Name previously unnamed MIPS16 pattern.
	Use a define_split to generate the addition.
	(sub[sd]i3): Redefine using :GPR.  Turn subsi3 into a define_insn.
	(subsi3_internal): Delete.
	(*subsi3_extended): Renamed from subsi3_internal_2.
	(bunordered, bordered, bunlt, bunge, buneq, bltgt, bunle, bungt)
	(beq, bne, bgt, bge, blt, ble, bgtu, bgeu, bltu, bleu): Redefine
	using an any_cond template.

From-SVN: r86404
This commit is contained in:
Richard Sandiford 2004-08-23 05:55:50 +00:00 committed by Richard Sandiford
parent ecce923e10
commit 032e83482b
4 changed files with 1050 additions and 435 deletions

View File

@ -1,3 +1,43 @@
2004-08-23 Richard Sandiford <rsandifo@redhat.com>
* read-rtl.c (map_value, mapping, macro_group): New structures.
(BELLWETHER_CODE): New macro.
(modes, codes, bellwether_codes): New variables.
(find_mode, uses_mode_macro_p, apply_mode_macro, find_code)
(uses_code_macro_p, apply_code_macro, apply_macro_to_string)
(apply_macro_to_rtx, uses_macro_p, add_condition_to_string)
(add_condition_to_rtx, apply_macro_traverse, add_mapping)
(add_map_value, initialize_macros): New functions.
(def_hash, def_hash_eq_p): Generalize to anything that points to,
or starts with, a char * field.
(find_macro, read_mapping, check_code_macro): New functions.
(read_rtx_1): New, split out from read_rtx. Handle the new
define_{mode,code}_{macro,attr} constructs. Use find_macro
to parse the name of a code or mode. Use BELLWETHER_CODE to
extract the format and to choose a suitable code for rtx_alloc.
Modify recursive invocations to use read_rtx_1.
(read_rtx): Call initialize_macros. Apply code and mode macros
to the rtx returned by read_rtx_1. Cache everything after the
first macro expansion for subsequent read_rtx calls.
* doc/md.texi: Document new .md constructs.
* config/mips/mips.md (GPR): New mode macro.
(d, si8_di5): New mode attributes.
(any_cond): New code macro.
(add[sd]i3): Redefine using :GPR.
(*add[sd]i3): Likewise, renaming from add[sd]i3_internal.
(*add[sd]i3_sp[12], *add<mode>3_mips16): Redefine using :GPR, naming
previously unnamed MIPS16 patterns.
(*addsi3_extended): Renamed from addsi3_internal_2. Fix overly long
lines. Don't match (plus (const_int 0) ...).
(*addsi3_extended_mips16): Name previously unnamed MIPS16 pattern.
Use a define_split to generate the addition.
(sub[sd]i3): Redefine using :GPR. Turn subsi3 into a define_insn.
(subsi3_internal): Delete.
(*subsi3_extended): Renamed from subsi3_internal_2.
(bunordered, bordered, bunlt, bunge, buneq, bltgt, bunle, bungt)
(beq, bne, bgt, bge, blt, ble, bgtu, bgeu, bltu, bleu): Redefine
using an any_cond template.
2004-08-23 Richard Sandiford <rsandifo@redhat.com>
* read-rtl.c (read_rtx): Tidy use of format_ptr.

View File

@ -289,6 +289,24 @@
(define_asm_attributes
[(set_attr "type" "multi")])
;; This mode macro allows 32-bit and 64-bit GPR patterns to be generated
;; from the same template.
(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
;; 32-bit version and "dsubu" in the 64-bit version.
(define_mode_attr d [(SI "") (DI "d")])
;; The unextended ranges of the MIPS16 addiu and daddiu instructions
;; are different. Some forms of unextended addiu have an 8-bit immediate
;; field but the equivalent daddiu has only a 5-bit field.
(define_mode_attr si8_di5 [(SI "8") (DI "5")])
;; This code macro allows all branch instructions to be generated from
;; a single define_expand template.
(define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt
eq ne gt ge lt le gtu geu ltu leu])
;; .........................
;;
;; Branch, call and jump delay slots
@ -425,69 +443,67 @@
[(set_attr "type" "fadd")
(set_attr "mode" "SF")])
(define_expand "addsi3"
[(set (match_operand:SI 0 "register_operand")
(plus:SI (match_operand:SI 1 "reg_or_0_operand")
(match_operand:SI 2 "arith_operand")))]
(define_expand "add<mode>3"
[(set (match_operand:GPR 0 "register_operand")
(plus:GPR (match_operand:GPR 1 "register_operand")
(match_operand:GPR 2 "arith_operand")))]
"")
(define_insn "addsi3_internal"
[(set (match_operand:SI 0 "register_operand" "=d,d")
(plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")
(match_operand:SI 2 "arith_operand" "d,Q")))]
(define_insn "*add<mode>3"
[(set (match_operand:GPR 0 "register_operand" "=d,d")
(plus:GPR (match_operand:GPR 1 "register_operand" "d,d")
(match_operand:GPR 2 "arith_operand" "d,Q")))]
"!TARGET_MIPS16"
"@
addu\t%0,%z1,%2
addiu\t%0,%z1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
<d>addu\t%0,%1,%2
<d>addiu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")])
;; For the mips16, we need to recognize stack pointer additions
;; explicitly, since we don't have a constraint for $sp. These insns
;; will be generated by the save_restore_insns functions.
;; We need to recognize MIPS16 stack pointer additions explicitly, since
;; we don't have a constraint for $sp. These insns will be generated by
;; the save_restore_insns functions.
(define_insn ""
[(set (reg:SI 29)
(plus:SI (reg:SI 29)
(match_operand:SI 0 "const_arith_operand" "")))]
(define_insn "*add<mode>3_sp1"
[(set (reg:GPR 29)
(plus:GPR (reg:GPR 29)
(match_operand:GPR 0 "const_arith_operand" "")))]
"TARGET_MIPS16"
"addu\t%$,%$,%0"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set (attr "length") (if_then_else (match_operand:VOID 0 "m16_simm8_8")
"<d>addiu\t%$,%$,%0"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")
(set (attr "length") (if_then_else (match_operand 0 "m16_simm8_8")
(const_int 4)
(const_int 8)))])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=d")
(plus:SI (reg:SI 29)
(match_operand:SI 1 "const_arith_operand" "")))]
(define_insn "*add<mode>3_sp2"
[(set (match_operand:GPR 0 "register_operand" "=d")
(plus:GPR (reg:GPR 29)
(match_operand:GPR 1 "const_arith_operand" "")))]
"TARGET_MIPS16"
"addu\t%0,%$,%1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set (attr "length") (if_then_else (match_operand:VOID 1 "m16_uimm8_4")
"<d>addiu\t%0,%$,%1"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")
(set (attr "length") (if_then_else (match_operand 1 "m16_uimm<si8_di5>_4")
(const_int 4)
(const_int 8)))])
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=d,d,d")
(plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
(match_operand:SI 2 "arith_operand" "Q,O,d")))]
(define_insn "*add<mode>3_mips16"
[(set (match_operand:GPR 0 "register_operand" "=d,d,d")
(plus:GPR (match_operand:GPR 1 "register_operand" "0,d,d")
(match_operand:GPR 2 "arith_operand" "Q,O,d")))]
"TARGET_MIPS16"
{
if (REGNO (operands[0]) == REGNO (operands[1]))
return "addu\t%0,%2";
else
return "addu\t%0,%1,%2";
}
[(set_attr "type" "arith")
(set_attr "mode" "SI")
"@
<d>addiu\t%0,%2
<d>addiu\t%0,%1,%2
<d>addu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")
(set_attr_alternative "length"
[(if_then_else (match_operand:VOID 2 "m16_simm8_1")
[(if_then_else (match_operand 2 "m16_simm<si8_di5>_1")
(const_int 4)
(const_int 8))
(if_then_else (match_operand:VOID 2 "m16_simm4_1")
(if_then_else (match_operand 2 "m16_simm4_1")
(const_int 4)
(const_int 8))
(const_int 4)])])
@ -560,80 +576,6 @@
}
})
(define_expand "adddi3"
[(set (match_operand:DI 0 "register_operand")
(plus:DI (match_operand:DI 1 "register_operand")
(match_operand:DI 2 "arith_operand")))]
"TARGET_64BIT")
(define_insn "adddi3_internal"
[(set (match_operand:DI 0 "register_operand" "=d,d")
(plus:DI (match_operand:DI 1 "reg_or_0_operand" "dJ,dJ")
(match_operand:DI 2 "arith_operand" "d,Q")))]
"TARGET_64BIT && !TARGET_MIPS16"
"@
daddu\t%0,%z1,%2
daddiu\t%0,%z1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
;; For the mips16, we need to recognize stack pointer additions
;; explicitly, since we don't have a constraint for $sp. These insns
;; will be generated by the save_restore_insns functions.
(define_insn ""
[(set (reg:DI 29)
(plus:DI (reg:DI 29)
(match_operand:DI 0 "const_arith_operand" "")))]
"TARGET_MIPS16 && TARGET_64BIT"
"daddu\t%$,%$,%0"
[(set_attr "type" "arith")
(set_attr "mode" "DI")
(set (attr "length") (if_then_else (match_operand:VOID 0 "m16_simm8_8")
(const_int 4)
(const_int 8)))])
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=d")
(plus:DI (reg:DI 29)
(match_operand:DI 1 "const_arith_operand" "")))]
"TARGET_MIPS16 && TARGET_64BIT"
"daddu\t%0,%$,%1"
[(set_attr "type" "arith")
(set_attr "mode" "DI")
(set (attr "length") (if_then_else (match_operand:VOID 0 "m16_uimm5_4")
(const_int 4)
(const_int 8)))])
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=d,d,d")
(plus:DI (match_operand:DI 1 "register_operand" "0,d,d")
(match_operand:DI 2 "arith_operand" "Q,O,d")))]
"TARGET_MIPS16 && TARGET_64BIT"
{
if (REGNO (operands[0]) == REGNO (operands[1]))
return "daddu\t%0,%2";
else
return "daddu\t%0,%1,%2";
}
[(set_attr "type" "arith")
(set_attr "mode" "DI")
(set_attr_alternative "length"
[(if_then_else (match_operand:VOID 2 "m16_simm5_1")
(const_int 4)
(const_int 8))
(if_then_else (match_operand:VOID 2 "m16_simm4_1")
(const_int 4)
(const_int 8))
(const_int 4)])])
;; On the mips16, we can sometimes split an add of a constant which is
;; a 4 byte instruction into two adds which are both 2 byte
;; instructions. There are two cases: one where we are adding a
;; constant plus a register to another register, and one where we are
;; simply adding a constant to a register.
(define_split
[(set (match_operand:DI 0 "register_operand")
(plus:DI (match_dup 0)
@ -695,38 +637,33 @@
}
})
(define_insn "addsi3_internal_2"
(define_insn "*addsi3_extended"
[(set (match_operand:DI 0 "register_operand" "=d,d")
(sign_extend:DI (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")
(match_operand:SI 2 "arith_operand" "d,Q"))))]
(sign_extend:DI
(plus:SI (match_operand:SI 1 "register_operand" "d,d")
(match_operand:SI 2 "arith_operand" "d,Q"))))]
"TARGET_64BIT && !TARGET_MIPS16"
"@
addu\t%0,%z1,%2
addiu\t%0,%z1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
addu\t%0,%1,%2
addiu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn ""
;; Split this insn so that the addiu splitters can have a crack at it.
;; Use a conservative length estimate until the split.
(define_insn_and_split "*addsi3_extended_mips16"
[(set (match_operand:DI 0 "register_operand" "=d,d,d")
(sign_extend:DI (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
(match_operand:SI 2 "arith_operand" "Q,O,d"))))]
"TARGET_MIPS16 && TARGET_64BIT"
{
if (REGNO (operands[0]) == REGNO (operands[1]))
return "addu\t%0,%2";
else
return "addu\t%0,%1,%2";
}
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr_alternative "length"
[(if_then_else (match_operand:VOID 2 "m16_simm8_1")
(const_int 4)
(const_int 8))
(if_then_else (match_operand:VOID 2 "m16_simm4_1")
(const_int 4)
(const_int 8))
(const_int 4)])])
(sign_extend:DI
(plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
(match_operand:SI 2 "arith_operand" "Q,O,d"))))]
"TARGET_64BIT && TARGET_MIPS16"
"#"
"&& reload_completed"
[(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
{ operands[3] = gen_lowpart (SImode, operands[0]); }
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "extended_mips16" "yes")])
;;
;; ....................
@ -754,40 +691,24 @@
[(set_attr "type" "fadd")
(set_attr "mode" "SF")])
(define_expand "subsi3"
[(set (match_operand:SI 0 "register_operand")
(minus:SI (match_operand:SI 1 "register_operand")
(match_operand:SI 2 "register_operand")))]
(define_insn "sub<mode>3"
[(set (match_operand:GPR 0 "register_operand" "=d")
(minus:GPR (match_operand:GPR 1 "register_operand" "d")
(match_operand:GPR 2 "register_operand" "d")))]
""
"")
"<d>subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")])
(define_insn "subsi3_internal"
[(set (match_operand:SI 0 "register_operand" "=d")
(minus:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]
""
"subu\t%0,%z1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=d")
(minus:DI (match_operand:DI 1 "register_operand" "d")
(match_operand:DI 2 "register_operand" "d")))]
"TARGET_64BIT"
"dsubu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
(define_insn "subsi3_internal_2"
(define_insn "*subsi3_extended"
[(set (match_operand:DI 0 "register_operand" "=d")
(sign_extend:DI
(minus:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d"))))]
"TARGET_64BIT"
"subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
;;
;; ....................
@ -5810,219 +5731,15 @@ dsrl\t%3,%3,1\n\
(set_attr "mode" "none")
(set_attr "length" "8")])
(define_expand "bunordered"
(define_expand "b<code>"
[(set (pc)
(if_then_else (unordered:CC (cc0)
(const_int 0))
(if_then_else (any_cond:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNORDERED);
DONE;
})
(define_expand "bordered"
[(set (pc)
(if_then_else (ordered:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, ORDERED);
DONE;
})
(define_expand "bunlt"
[(set (pc)
(if_then_else (unlt:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNLT);
DONE;
})
(define_expand "bunge"
[(set (pc)
(if_then_else (unge:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNGE);
DONE;
})
(define_expand "buneq"
[(set (pc)
(if_then_else (uneq:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNEQ);
DONE;
})
(define_expand "bltgt"
[(set (pc)
(if_then_else (ltgt:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, LTGT);
DONE;
})
(define_expand "bunle"
[(set (pc)
(if_then_else (unle:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNLE);
DONE;
})
(define_expand "bungt"
[(set (pc)
(if_then_else (ungt:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, UNGT);
DONE;
})
(define_expand "beq"
[(set (pc)
(if_then_else (eq:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, EQ);
DONE;
})
(define_expand "bne"
[(set (pc)
(if_then_else (ne:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, NE);
DONE;
})
(define_expand "bgt"
[(set (pc)
(if_then_else (gt:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, GT);
DONE;
})
(define_expand "bge"
[(set (pc)
(if_then_else (ge:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, GE);
DONE;
})
(define_expand "blt"
[(set (pc)
(if_then_else (lt:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, LT);
DONE;
})
(define_expand "ble"
[(set (pc)
(if_then_else (le:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, LE);
DONE;
})
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, GTU);
DONE;
})
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, GEU);
DONE;
})
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, LTU);
DONE;
})
(define_expand "bleu"
[(set (pc)
(if_then_else (leu:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
gen_conditional_branch (operands, LEU);
gen_conditional_branch (operands, <CODE>);
DONE;
})

View File

@ -47,6 +47,7 @@ See the next chapter for information on the C header file.
predication.
* Constant Definitions::Defining symbolic constants that can be used in the
md file.
* Macros:: Using macros to generate patterns from a template.
@end menu
@node Overview
@ -6420,3 +6421,272 @@ You could write:
The constants that are defined with a define_constant are also output
in the insn-codes.h header file as #defines.
@end ifset
@ifset INTERNALS
@node Macros
@section Macros
@cindex macros in @file{.md} files
Ports often need to define similar patterns for more than one machine
mode or for more than one rtx code. GCC provides some simple macro
facilities to make this process easier.
@menu
* Mode Macros:: Generating variations of patterns for different modes.
* Code Macros:: Doing the same for codes.
@end menu
@node Mode Macros
@subsection Mode Macros
@cindex mode macros in @file{.md} files
Ports often need to define similar patterns for two or more different modes.
For example:
@itemize @bullet
@item
If a processor has hardware support for both single and double
floating-point arithmetic, the @code{SFmode} patterns tend to be
very similar to the @code{DFmode} ones.
@item
If a port uses @code{SImode} pointers in one configuration and
@code{DImode} pointers in another, it will usually have very similar
@code{SImode} and @code{DImode} patterns for manipulating pointers.
@end itemize
Mode macros allow several patterns to be instantiated from one
@file{.md} file template. They can be used with any type of
rtx-based construct, such as a @code{define_insn},
@code{define_split}, or @code{define_peephole2}.
@menu
* Defining Mode Macros:: Defining a new mode macro.
* String Substitutions:: Combining mode macros with string substitutions
* Examples:: Examples
@end menu
@node Defining Mode Macros
@subsubsection Defining Mode Macros
@findex define_mode_macro
The syntax for defining a mode macro is:
@smallexample
(define_mode_macro @var{name} [(@var{mode1} "@var{cond1}") ... (@var{moden} "@var{condn}")])
@end smallexample
This allows subsequent @file{.md} file constructs to use the mode suffix
@code{:@var{name}}. Every construct that does so will be expanded
@var{n} times, once with every use of @code{:@var{name}} replaced by
@code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
and so on. In the expansion for a particular @var{modei}, every
C condition will also require that @var{condi} be true.
For example:
@smallexample
(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
@end smallexample
defines a new mode suffix @code{:P}. Every construct that uses
@code{:P} will be expanded twice, once with every @code{:P} replaced
by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
The @code{:SI} version will only apply if @code{Pmode == SImode} and
the @code{:DI} version will only apply if @code{Pmode == DImode}.
As with other @file{.md} conditions, an empty string is treated
as ``always true''. @code{(@var{mode} "")} can also be abbreviated
to @code{@var{mode}}. For example:
@smallexample
(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
@end smallexample
means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
but that the @code{:SI} expansion has no such constraint.
Macros are applied in the order they are defined. This can be
significant if two macros are used in a construct that requires
string substitutions. @xref{String Substitutions}.
@node String Substitutions
@subsubsection String Substitution in Mode Macros
@findex define_mode_attr
If an @file{.md} file construct uses mode macros, each version of the
construct will often need slightly different strings. For example:
@itemize @bullet
@item
When a @code{define_expand} defines several @code{add@var{m}3} patterns
(@pxref{Standard Names}), each expander will need to use the
appropriate mode name for @var{m}.
@item
When a @code{define_insn} defines several instruction patterns,
each instruction will often use a different assembler mnemonic.
@end itemize
GCC supports such variations through a system of ``mode attributes''.
There are two standard attributes: @code{mode}, which is the name of
the mode in lower case, and @code{MODE}, which is the same thing in
upper case. You can define other attributes using:
@smallexample
(define_mode_attr @var{name} [(@var{mode1} "@var{value1}") ... (@var{moden} "@var{valuen}")])
@end smallexample
where @var{name} is the name of the attribute and @var{valuei}
is the value associated with @var{modei}.
When GCC replaces some @var{:macro} with @var{:mode}, it will
scan each string in the pattern for sequences of the form
@code{<@var{macro}:@var{attr}>}, where @var{attr} is the name of
a mode attribute. If the attribute is defined for @var{mode}, the
whole @code{<...>} sequence will be replaced by the appropriate
attribute value.
For example, suppose an @file{.md} file has:
@smallexample
(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
(define_mode_attr load [(SI "lw") (DI "ld")])
@end smallexample
If one of the patterns that uses @code{:P} contains the string
@code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
will use @code{"lw\t%0,%1"} and the @code{DI} version will use
@code{"ld\t%0,%1"}.
The @code{@var{macro}:} prefix may be omitted, in which case the
substitution will be attempted for every macro expansion.
@node Examples
@subsubsection Mode Macro Examples
Here is an example from the MIPS port. It defines the following
modes and attributes (among others):
@smallexample
(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
(define_mode_attr d [(SI "") (DI "d")])
@end smallexample
and uses the following template to define both @code{subsi3}
and @code{subdi3}:
@smallexample
(define_insn "sub<mode>3"
[(set (match_operand:GPR 0 "register_operand" "=d")
(minus:GPR (match_operand:GPR 1 "register_operand" "d")
(match_operand:GPR 2 "register_operand" "d")))]
""
"<d>subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "<MODE>")])
@end smallexample
This is exactly equivalent to:
@smallexample
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=d")
(minus:SI (match_operand:SI 1 "register_operand" "d")
(match_operand:SI 2 "register_operand" "d")))]
""
"subu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")])
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=d")
(minus:DI (match_operand:DI 1 "register_operand" "d")
(match_operand:DI 2 "register_operand" "d")))]
""
"dsubu\t%0,%1,%2"
[(set_attr "type" "arith")
(set_attr "mode" "DI")])
@end smallexample
@node Code Macros
@subsection Code Macros
@cindex code macros in @file{.md} files
@findex define_code_macro
@findex define_code_attr
Code macros operate in a similar way to mode macros. @xref{Mode Macros}.
The construct:
@smallexample
(define_code_macro @var{name} [(@var{code1} "@var{cond1}") ... (@var{coden} "@var{condn}")])
@end smallexample
defines a pseudo rtx code @var{name} that can be instantiated as
@var{codei} if condition @var{condi} is true. Each @var{codei}
must have the same rtx format. @xref{RTL Classes}.
As with mode macros, each pattern that uses @var{name} will be
expanded @var{n} times, once with all uses of @var{name} replaced by
@var{code1}, once with all uses replaced by @var{code2}, and so on.
@xref{Defining Mode Macros}.
It is possible to define attributes for codes as well as for modes.
There are two standard code attributes: @code{code}, the name of the
code in lower case, and @code{CODE}, the name of the code in upper case.
Other attributes are defined using:
@smallexample
(define_code_attr @var{name} [(@var{code1} "@var{value1}") ... (@var{coden} "@var{valuen}")])
@end smallexample
Here's an example of code macros in action, taken from the MIPS port:
@smallexample
(define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt
eq ne gt ge lt le gtu geu ltu leu])
(define_expand "b<code>"
[(set (pc)
(if_then_else (any_cond:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
@{
gen_conditional_branch (operands, <CODE>);
DONE;
@})
@end smallexample
This is equivalent to:
@smallexample
(define_expand "bunordered"
[(set (pc)
(if_then_else (unordered:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
@{
gen_conditional_branch (operands, UNORDERED);
DONE;
@})
(define_expand "bordered"
[(set (pc)
(if_then_else (ordered:CC (cc0)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
@{
gen_conditional_branch (operands, ORDERED);
DONE;
@})
...
@end smallexample
@end ifset

View File

@ -30,9 +30,76 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
static htab_t md_constants;
/* One element in a singly-linked list of (integer, string) pairs. */
struct map_value {
struct map_value *next;
int number;
const char *string;
};
/* Maps a macro or attribute name to a list of (integer, string) pairs.
The integers are mode or code values; the strings are either C conditions
or attribute values. */
struct mapping {
/* The name of the macro or attribute. */
const char *name;
/* The group (modes or codes) to which the macro or attribute belongs. */
struct macro_group *group;
/* Gives a unique number to the attribute or macro. Numbers are
allocated consecutively, starting at 0. */
int index;
/* The list of (integer, string) pairs. */
struct map_value *values;
};
/* A structure for abstracting the common parts of code and mode macros. */
struct macro_group {
/* Tables of "mapping" structures, one for attributes and one for macros. */
htab_t attrs, macros;
/* The number of "real" modes or codes (and by extension, the first
number available for use as a macro placeholder). */
int num_builtins;
/* Treat the given string as the name of a standard mode or code and
return its integer value. Use the given file for error reporting. */
int (*find_builtin) (const char *, FILE *);
/* Return true if the given rtx uses the given mode or code. */
bool (*uses_macro_p) (rtx, int);
/* Make the given rtx use the given mode or code. */
void (*apply_macro) (rtx, int);
};
/* If CODE is the number of a code macro, return a real rtx code that
has the same format. Return CODE otherwise. */
#define BELLWETHER_CODE(CODE) \
((CODE) < NUM_RTX_CODE ? CODE : bellwether_codes[CODE - NUM_RTX_CODE])
static void fatal_with_file_and_line (FILE *, const char *, ...)
ATTRIBUTE_PRINTF_2 ATTRIBUTE_NORETURN;
static void fatal_expected_char (FILE *, int, int) ATTRIBUTE_NORETURN;
static int find_mode (const char *, FILE *);
static bool uses_mode_macro_p (rtx, int);
static void apply_mode_macro (rtx, int);
static int find_code (const char *, FILE *);
static bool uses_code_macro_p (rtx, int);
static void apply_code_macro (rtx, int);
static const char *apply_macro_to_string (const char *, struct mapping *, int);
static rtx apply_macro_to_rtx (rtx, struct mapping *, int);
static bool uses_macro_p (rtx, struct mapping *);
static const char *add_condition_to_string (const char *, const char *);
static void add_condition_to_rtx (rtx, const char *);
static int apply_macro_traverse (void **, void *);
static struct mapping *add_mapping (struct macro_group *, htab_t t,
const char *, FILE *);
static struct map_value **add_map_value (struct map_value **,
int, const char *);
static void initialize_macros (void);
static void read_name (char *, FILE *);
static char *read_string (FILE *, int);
static char *read_quoted_string (FILE *);
@ -42,6 +109,16 @@ static hashval_t def_hash (const void *);
static int def_name_eq_p (const void *, const void *);
static void read_constants (FILE *infile, char *tmp_char);
static void validate_const_int (FILE *, const char *);
static int find_macro (struct macro_group *, const char *, FILE *);
static struct mapping *read_mapping (struct macro_group *, htab_t, FILE *);
static void check_code_macro (struct mapping *, FILE *);
static rtx read_rtx_1 (FILE *);
/* The mode and code macro structures. */
static struct macro_group modes, codes;
/* Index I is the value of BELLWETHER_CODE (I + NUM_RTX_CODE). */
static enum rtx_code *bellwether_codes;
/* Obstack used for allocating RTL strings. */
static struct obstack string_obstack;
@ -97,6 +174,393 @@ fatal_expected_char (FILE *infile, int expected_c, int actual_c)
expected_c, actual_c);
}
/* Implementations of the macro_group callbacks for modes. */
static int
find_mode (const char *name, FILE *infile)
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
if (strcmp (GET_MODE_NAME (i), name) == 0)
return i;
fatal_with_file_and_line (infile, "unknown mode `%s'", name);
}
static bool
uses_mode_macro_p (rtx x, int mode)
{
return (int) GET_MODE (x) == mode;
}
static void
apply_mode_macro (rtx x, int mode)
{
PUT_MODE (x, mode);
}
/* Implementations of the macro_group callbacks for codes. */
static int
find_code (const char *name, FILE *infile)
{
int i;
for (i = 0; i < NUM_RTX_CODE; i++)
if (strcmp (GET_RTX_NAME (i), name) == 0)
return i;
fatal_with_file_and_line (infile, "unknown rtx code `%s'", name);
}
static bool
uses_code_macro_p (rtx x, int code)
{
return (int) GET_CODE (x) == code;
}
static void
apply_code_macro (rtx x, int code)
{
PUT_CODE (x, code);
}
/* Given that MACRO is being expanded as VALUE, apply the appropriate
string substitutions to STRING. Return the new string if any changes
were needed, otherwise return STRING itself. */
static const char *
apply_macro_to_string (const char *string, struct mapping *macro, int value)
{
char *base, *copy, *p, *attr, *start, *end;
struct mapping *m;
struct map_value *v;
if (string == 0)
return string;
base = p = copy = ASTRDUP (string);
while ((start = index (p, '<')) && (end = index (start, '>')))
{
p = start + 1;
/* If there's a "macro:" prefix, check whether the macro name matches.
Set ATTR to the start of the attribute name. */
attr = index (p, ':');
if (attr == 0 || attr > end)
attr = p;
else
{
if (strncmp (p, macro->name, attr - p) != 0
|| macro->name[attr - p] != 0)
continue;
attr++;
}
/* Find the attribute specification. */
*end = 0;
m = (struct mapping *) htab_find (macro->group->attrs, &attr);
*end = '>';
if (m == 0)
continue;
/* Find the attribute value for VALUE. */
for (v = m->values; v != 0; v = v->next)
if (v->number == value)
break;
if (v == 0)
continue;
/* Add everything between the last copied byte and the '<',
then add in the attribute value. */
obstack_grow (&string_obstack, base, start - base);
obstack_grow (&string_obstack, v->string, strlen (v->string));
base = end + 1;
}
if (base != copy)
{
obstack_grow (&string_obstack, base, strlen (base) + 1);
return (char *) obstack_finish (&string_obstack);
}
return string;
}
/* Return a copy of ORIGINAL in which all uses of MACRO have been
replaced by VALUE. */
static rtx
apply_macro_to_rtx (rtx original, struct mapping *macro, int value)
{
struct macro_group *group;
const char *format_ptr;
int i, j;
rtx x;
enum rtx_code bellwether_code;
if (original == 0)
return original;
/* Create a shallow copy of ORIGINAL. */
bellwether_code = BELLWETHER_CODE (GET_CODE (original));
x = rtx_alloc (bellwether_code);
memcpy (x, original, RTX_SIZE (bellwether_code));
/* Change the mode or code itself. */
group = macro->group;
if (group->uses_macro_p (x, macro->index + group->num_builtins))
group->apply_macro (x, value);
/* Change each string and recursively change each rtx. */
format_ptr = GET_RTX_FORMAT (bellwether_code);
for (i = 0; format_ptr[i] != 0; i++)
switch (format_ptr[i])
{
case 'S':
case 'T':
case 's':
XSTR (x, i) = apply_macro_to_string (XSTR (x, i), macro, value);
break;
case 'e':
XEXP (x, i) = apply_macro_to_rtx (XEXP (x, i), macro, value);
break;
case 'V':
case 'E':
if (XVEC (original, i))
{
XVEC (x, i) = rtvec_alloc (XVECLEN (original, i));
for (j = 0; j < XVECLEN (x, i); j++)
XVECEXP (x, i, j) = apply_macro_to_rtx (XVECEXP (original, i, j),
macro, value);
}
break;
default:
break;
}
return x;
}
/* Return true if X (or some subexpression of X) uses macro MACRO. */
static bool
uses_macro_p (rtx x, struct mapping *macro)
{
struct macro_group *group;
const char *format_ptr;
int i, j;
if (x == 0)
return false;
group = macro->group;
if (group->uses_macro_p (x, macro->index + group->num_builtins))
return true;
format_ptr = GET_RTX_FORMAT (BELLWETHER_CODE (GET_CODE (x)));
for (i = 0; format_ptr[i] != 0; i++)
switch (format_ptr[i])
{
case 'e':
if (uses_macro_p (XEXP (x, i), macro))
return true;
break;
case 'V':
case 'E':
if (XVEC (x, i))
for (j = 0; j < XVECLEN (x, i); j++)
if (uses_macro_p (XVECEXP (x, i, j), macro))
return true;
break;
default:
break;
}
return false;
}
/* Return a condition that must satisfy both ORIGINAL and EXTRA. If ORIGINAL
has the form "&& ..." (as used in define_insn_and_splits), assume that
EXTRA is already satisfied. Empty strings are treated like "true". */
static const char *
add_condition_to_string (const char *original, const char *extra)
{
char *result;
if (original == 0 || original[0] == 0)
return extra;
if ((original[0] == '&' && original[1] == '&') || extra[0] == 0)
return original;
asprintf (&result, "(%s) && (%s)", original, extra);
return result;
}
/* Like add_condition, but applied to all conditions in rtx X. */
static void
add_condition_to_rtx (rtx x, const char *extra)
{
switch (GET_CODE (x))
{
case DEFINE_INSN:
case DEFINE_EXPAND:
XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
break;
case DEFINE_SPLIT:
case DEFINE_PEEPHOLE:
case DEFINE_PEEPHOLE2:
case DEFINE_COND_EXEC:
XSTR (x, 1) = add_condition_to_string (XSTR (x, 1), extra);
break;
case DEFINE_INSN_AND_SPLIT:
XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
XSTR (x, 4) = add_condition_to_string (XSTR (x, 4), extra);
break;
default:
break;
}
}
/* A htab_traverse callback. Search the EXPR_LIST given by DATA
for rtxes that use the macro in *SLOT. Replace each such rtx
with a list of expansions. */
static int
apply_macro_traverse (void **slot, void *data)
{
struct mapping *macro;
struct map_value *v;
rtx elem, new_elem, original, x;
macro = (struct mapping *) *slot;
for (elem = (rtx) data; elem != 0; elem = XEXP (elem, 1))
if (uses_macro_p (XEXP (elem, 0), macro))
{
original = XEXP (elem, 0);
for (v = macro->values; v != 0; v = v->next)
{
x = apply_macro_to_rtx (original, macro, v->number);
add_condition_to_rtx (x, v->string);
if (v != macro->values)
{
/* Insert a new EXPR_LIST node after ELEM and put the
new expansion there. */
new_elem = rtx_alloc (EXPR_LIST);
XEXP (new_elem, 1) = XEXP (elem, 1);
XEXP (elem, 1) = new_elem;
elem = new_elem;
}
XEXP (elem, 0) = x;
}
}
return 1;
}
/* Add a new "mapping" structure to hashtable TABLE. NAME is the name
of the mapping, GROUP is the group to which it belongs, and INFILE
is the file that defined the mapping. */
static struct mapping *
add_mapping (struct macro_group *group, htab_t table,
const char *name, FILE *infile)
{
struct mapping *m;
void **slot;
m = XNEW (struct mapping);
m->name = xstrdup (name);
m->group = group;
m->index = htab_elements (table);
m->values = 0;
slot = htab_find_slot (table, m, INSERT);
if (*slot != 0)
fatal_with_file_and_line (infile, "`%s' already defined", name);
*slot = m;
return m;
}
/* Add the pair (NUMBER, STRING) to a list of map_value structures.
END_PTR points to the current null terminator for the list; return
a pointer the new null terminator. */
static struct map_value **
add_map_value (struct map_value **end_ptr, int number, const char *string)
{
struct map_value *value;
value = XNEW (struct map_value);
value->next = 0;
value->number = number;
value->string = string;
*end_ptr = value;
return &value->next;
}
/* Do one-time initialization of the mode and code attributes. */
static void
initialize_macros (void)
{
struct mapping *lower, *upper;
struct map_value **lower_ptr, **upper_ptr;
char *copy, *p;
int i;
modes.attrs = htab_create (13, def_hash, def_name_eq_p, 0);
modes.macros = htab_create (13, def_hash, def_name_eq_p, 0);
modes.num_builtins = MAX_MACHINE_MODE;
modes.find_builtin = find_mode;
modes.uses_macro_p = uses_mode_macro_p;
modes.apply_macro = apply_mode_macro;
codes.attrs = htab_create (13, def_hash, def_name_eq_p, 0);
codes.macros = htab_create (13, def_hash, def_name_eq_p, 0);
codes.num_builtins = NUM_RTX_CODE;
codes.find_builtin = find_code;
codes.uses_macro_p = uses_code_macro_p;
codes.apply_macro = apply_code_macro;
lower = add_mapping (&modes, modes.attrs, "mode", 0);
upper = add_mapping (&modes, modes.attrs, "MODE", 0);
lower_ptr = &lower->values;
upper_ptr = &upper->values;
for (i = 0; i < MAX_MACHINE_MODE; i++)
{
copy = xstrdup (GET_MODE_NAME (i));
for (p = copy; *p != 0; p++)
*p = TOLOWER (*p);
upper_ptr = add_map_value (upper_ptr, i, GET_MODE_NAME (i));
lower_ptr = add_map_value (lower_ptr, i, copy);
}
lower = add_mapping (&codes, codes.attrs, "code", 0);
upper = add_mapping (&codes, codes.attrs, "CODE", 0);
lower_ptr = &lower->values;
upper_ptr = &upper->values;
for (i = 0; i < NUM_RTX_CODE; i++)
{
copy = xstrdup (GET_RTX_NAME (i));
for (p = copy; *p != 0; p++)
*p = TOUPPER (*p);
lower_ptr = add_map_value (lower_ptr, i, GET_RTX_NAME (i));
upper_ptr = add_map_value (upper_ptr, i, copy);
}
}
/* Read chars from INFILE until a non-whitespace char
and return that. Comments, both Lisp style and C style,
are treated as whitespace.
@ -398,24 +862,26 @@ atoll (const char *p)
}
#endif
/* Given a constant definition, return a hash code for its name. */
/* Given an object that starts with a char * name field, return a hash
code for its name. */
static hashval_t
def_hash (const void *def)
{
unsigned result, i;
const char *string = ((const struct md_constant *) def)->name;
const char *string = *(const char *const *) def;
for (result = i = 0;*string++ != '\0'; i++)
for (result = i = 0; *string++ != '\0'; i++)
result += ((unsigned char) *string << (i % CHAR_BIT));
return result;
}
/* Given two constant definitions, return true if they have the same name. */
/* Given two objects that start with char * name fields, return true if
they have the same name. */
static int
def_name_eq_p (const void *def1, const void *def2)
{
return ! strcmp (((const struct md_constant *) def1)->name,
((const struct md_constant *) def2)->name);
return ! strcmp (*(const char *const *) def1,
*(const char *const *) def2);
}
/* INFILE is a FILE pointer to read text from. TMP_CHAR is a buffer suitable
@ -504,6 +970,102 @@ validate_const_int (FILE *infile, const char *string)
fatal_with_file_and_line (infile, "invalid decimal constant \"%s\"\n", string);
}
/* Search GROUP for a mode or code called NAME and return its numerical
identifier. INFILE is the file that contained NAME. */
static int
find_macro (struct macro_group *group, const char *name, FILE *infile)
{
struct mapping *m;
m = (struct mapping *) htab_find (group->macros, &name);
if (m != 0)
return m->index + group->num_builtins;
return group->find_builtin (name, infile);
}
/* Finish reading a declaration of the form:
(define... <name> [<value1> ... <valuen>])
from INFILE, where each <valuei> is either a bare symbol name or a
"(<name> <string>)" pair. The "(define..." part has already been read.
Represent the declaration as a "mapping" structure; add it to TABLE
(which belongs to GROUP) and return it. */
static struct mapping *
read_mapping (struct macro_group *group, htab_t table, FILE *infile)
{
char tmp_char[256];
struct mapping *m;
struct map_value **end_ptr;
const char *string;
int number, c;
/* Read the mapping name and create a structure for it. */
read_name (tmp_char, infile);
m = add_mapping (group, table, tmp_char, infile);
c = read_skip_spaces (infile);
if (c != '[')
fatal_expected_char (infile, '[', c);
/* Read each value. */
end_ptr = &m->values;
c = read_skip_spaces (infile);
do
{
if (c != '(')
{
/* A bare symbol name that is implicitly paired to an
empty string. */
ungetc (c, infile);
read_name (tmp_char, infile);
string = "";
}
else
{
/* A "(name string)" pair. */
read_name (tmp_char, infile);
string = read_string (infile, false);
c = read_skip_spaces (infile);
if (c != ')')
fatal_expected_char (infile, ')', c);
}
number = group->find_builtin (tmp_char, infile);
end_ptr = add_map_value (end_ptr, number, string);
c = read_skip_spaces (infile);
}
while (c != ']');
c = read_skip_spaces (infile);
if (c != ')')
fatal_expected_char (infile, ')', c);
return m;
}
/* Check newly-created code macro MACRO to see whether every code has the
same format. Initialize the macro's entry in bellwether_codes. */
static void
check_code_macro (struct mapping *macro, FILE *infile)
{
struct map_value *v;
enum rtx_code bellwether;
bellwether = macro->values->number;
for (v = macro->values->next; v != 0; v = v->next)
if (strcmp (GET_RTX_FORMAT (bellwether), GET_RTX_FORMAT (v->number)) != 0)
fatal_with_file_and_line (infile, "code macro `%s' combines "
"different rtx formats", macro->name);
bellwether_codes = XRESIZEVEC (enum rtx_code, bellwether_codes,
macro->index + 1);
bellwether_codes[macro->index] = bellwether;
}
/* Read an rtx in printed representation from INFILE
and return an actual rtx in core constructed accordingly.
read_rtx is not used in the compiler proper, but rather in
@ -512,8 +1074,42 @@ validate_const_int (FILE *infile, const char *string)
rtx
read_rtx (FILE *infile)
{
int i, j;
RTX_CODE tmp_code;
static rtx queue_head, queue_next;
rtx return_rtx;
/* Do one-time initialization. */
if (queue_head == 0)
{
initialize_macros ();
obstack_init (&string_obstack);
queue_head = rtx_alloc (EXPR_LIST);
}
if (queue_next == 0)
{
queue_next = queue_head;
XEXP (queue_next, 0) = read_rtx_1 (infile);
XEXP (queue_next, 1) = 0;
htab_traverse (modes.macros, apply_macro_traverse, queue_next);
htab_traverse (codes.macros, apply_macro_traverse, queue_next);
}
return_rtx = XEXP (queue_next, 0);
queue_next = XEXP (queue_next, 1);
return return_rtx;
}
/* Subroutine of read_rtx that reads one construct from INFILE but
doesn't apply any macros. */
static rtx
read_rtx_1 (FILE *infile)
{
int i;
RTX_CODE real_code, bellwether_code;
const char *format_ptr;
/* tmp_char is a buffer used for reading decimal integers
and names of rtx types and machine modes.
@ -524,8 +1120,6 @@ read_rtx (FILE *infile)
int tmp_int;
HOST_WIDE_INT tmp_wide;
static int initialized;
/* Linked list structure for making RTXs: */
struct rtx_list
{
@ -533,51 +1127,52 @@ read_rtx (FILE *infile)
rtx value; /* Value of this node. */
};
if (!initialized)
{
obstack_init (&string_obstack);
initialized = 1;
}
again:
again:
c = read_skip_spaces (infile); /* Should be open paren. */
if (c != '(')
fatal_expected_char (infile, '(', c);
read_name (tmp_char, infile);
tmp_code = UNKNOWN;
for (i = 0; i < NUM_RTX_CODE; i++)
if (! strcmp (tmp_char, GET_RTX_NAME (i)))
{
tmp_code = (RTX_CODE) i; /* get value for name */
break;
}
if (tmp_code == UNKNOWN)
if (strcmp (tmp_char, "nil") == 0)
{
/* (nil) stands for an expression that isn't there. */
if (! strcmp (tmp_char, "nil"))
{
/* Discard the closeparen. */
c = read_skip_spaces (infile);
if (c != ')')
fatal_expected_char (infile, ')', c);
return 0;
}
/* (define_constants ...) has special syntax. */
else if (! strcmp (tmp_char, "define_constants"))
{
read_constants (infile, tmp_char);
goto again;
}
else
fatal_with_file_and_line (infile, "unknown rtx code `%s'", tmp_char);
c = read_skip_spaces (infile);
if (c != ')')
fatal_expected_char (infile, ')', c);
return 0;
}
if (strcmp (tmp_char, "define_constants") == 0)
{
read_constants (infile, tmp_char);
goto again;
}
if (strcmp (tmp_char, "define_mode_attr") == 0)
{
read_mapping (&modes, modes.attrs, infile);
goto again;
}
if (strcmp (tmp_char, "define_mode_macro") == 0)
{
read_mapping (&modes, modes.macros, infile);
goto again;
}
if (strcmp (tmp_char, "define_code_attr") == 0)
{
read_mapping (&codes, codes.attrs, infile);
goto again;
}
if (strcmp (tmp_char, "define_code_macro") == 0)
{
check_code_macro (read_mapping (&codes, codes.macros, infile), infile);
goto again;
}
real_code = find_macro (&codes, tmp_char, infile);
bellwether_code = BELLWETHER_CODE (real_code);
/* If we end up with an insn expression then we free this space below. */
return_rtx = rtx_alloc (tmp_code);
format_ptr = GET_RTX_FORMAT (GET_CODE (return_rtx));
return_rtx = rtx_alloc (bellwether_code);
format_ptr = GET_RTX_FORMAT (bellwether_code);
PUT_CODE (return_rtx, real_code);
/* If what follows is `: mode ', read it and
store the mode in the rtx. */
@ -586,14 +1181,7 @@ again:
if (i == ':')
{
read_name (tmp_char, infile);
for (j = 0; j < NUM_MACHINE_MODES; j++)
if (! strcmp (GET_MODE_NAME (j), tmp_char))
break;
if (j == MAX_MACHINE_MODE)
fatal_with_file_and_line (infile, "unknown mode `%s'", tmp_char);
PUT_MODE (return_rtx, (enum machine_mode) j);
PUT_MODE (return_rtx, find_macro (&modes, tmp_char, infile));
}
else
ungetc (i, infile);
@ -608,7 +1196,7 @@ again:
case 'e':
case 'u':
XEXP (return_rtx, i) = read_rtx (infile);
XEXP (return_rtx, i) = read_rtx_1 (infile);
break;
case 'V':
@ -640,7 +1228,7 @@ again:
{
ungetc (c, infile);
list_counter++;
obstack_ptr_grow (&vector_stack, read_rtx (infile));
obstack_ptr_grow (&vector_stack, read_rtx_1 (infile));
}
if (list_counter > 0)
{