eval_fat.adb: (Eps_Model,Eps_Denorm): Remove, no longer used.
* eval_fat.adb: (Eps_Model,Eps_Denorm): Remove, no longer used. (Succ): Re-implement using Scaling, Exponent and Ceiling attributes. (Pred): Implement in terms of Succ. * trans.c (convert_with_check): Reimplement conversion of float to integer. From-SVN: r92834
This commit is contained in:
parent
c5e12904bc
commit
050d31e815
@ -38,14 +38,14 @@ package body Eval_Fat is
|
||||
-- case of anyone ever having to adjust this code for another value,
|
||||
-- and for documentation purposes.
|
||||
|
||||
-- Another assumption is that the range of the floating-point type
|
||||
-- is symmetric around zero.
|
||||
|
||||
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
|
||||
|
||||
Radix_Powers : constant Radix_Power_Table :=
|
||||
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
|
||||
|
||||
function Float_Radix return T renames Ureal_2;
|
||||
-- Radix expressed in real form
|
||||
|
||||
-----------------------
|
||||
-- Local Subprograms --
|
||||
-----------------------
|
||||
@ -74,12 +74,6 @@ package body Eval_Fat is
|
||||
-- even, a floor operation or a ceiling operation depending on the setting
|
||||
-- of Mode (see corresponding descriptions in Urealp).
|
||||
|
||||
function Eps_Model (RT : R) return T;
|
||||
-- Return the smallest model number of R.
|
||||
|
||||
function Eps_Denorm (RT : R) return T;
|
||||
-- Return the smallest denormal of type R.
|
||||
|
||||
function Machine_Emin (RT : R) return Int;
|
||||
-- Return value of the Machine_Emin attribute
|
||||
|
||||
@ -91,10 +85,8 @@ package body Eval_Fat is
|
||||
begin
|
||||
if Towards = X then
|
||||
return X;
|
||||
|
||||
elsif Towards > X then
|
||||
return Succ (RT, X);
|
||||
|
||||
else
|
||||
return Pred (RT, X);
|
||||
end if;
|
||||
@ -106,14 +98,11 @@ package body Eval_Fat is
|
||||
|
||||
function Ceiling (RT : R; X : T) return T is
|
||||
XT : constant T := Truncation (RT, X);
|
||||
|
||||
begin
|
||||
if UR_Is_Negative (X) then
|
||||
return XT;
|
||||
|
||||
elsif X = XT then
|
||||
return X;
|
||||
|
||||
else
|
||||
return XT + Ureal_1;
|
||||
end if;
|
||||
@ -382,10 +371,10 @@ package body Eval_Fat is
|
||||
Calculate_Fraction_And_Exponent : begin
|
||||
Uintp_Mark := Mark;
|
||||
|
||||
-- Determine correct rounding based on the remainder
|
||||
-- which is in N and the divisor D. The rounding is
|
||||
-- performed on the absolute value of X, so Ceiling
|
||||
-- and Floor need to check for the sign of X explicitly.
|
||||
-- Determine correct rounding based on the remainder which is in
|
||||
-- N and the divisor D. The rounding is performed on the absolute
|
||||
-- value of X, so Ceiling and Floor need to check for the sign of
|
||||
-- X explicitly.
|
||||
|
||||
case Mode is
|
||||
when Round_Even =>
|
||||
@ -440,25 +429,6 @@ package body Eval_Fat is
|
||||
end Calculate_Fraction_And_Exponent;
|
||||
end Decompose_Int;
|
||||
|
||||
----------------
|
||||
-- Eps_Denorm --
|
||||
----------------
|
||||
|
||||
function Eps_Denorm (RT : R) return T is
|
||||
begin
|
||||
return Float_Radix ** UI_From_Int
|
||||
(Machine_Emin (RT) - Machine_Mantissa (RT));
|
||||
end Eps_Denorm;
|
||||
|
||||
---------------
|
||||
-- Eps_Model --
|
||||
---------------
|
||||
|
||||
function Eps_Model (RT : R) return T is
|
||||
begin
|
||||
return Float_Radix ** UI_From_Int (Machine_Emin (RT));
|
||||
end Eps_Model;
|
||||
|
||||
--------------
|
||||
-- Exponent --
|
||||
--------------
|
||||
@ -735,37 +705,8 @@ package body Eval_Fat is
|
||||
----------
|
||||
|
||||
function Pred (RT : R; X : T) return T is
|
||||
Result_F : UI;
|
||||
Result_X : UI;
|
||||
|
||||
begin
|
||||
if abs X < Eps_Model (RT) then
|
||||
if Denorm_On_Target then
|
||||
return X - Eps_Denorm (RT);
|
||||
|
||||
elsif X > Ureal_0 then
|
||||
|
||||
-- Target does not support denorms, so predecessor is 0.0
|
||||
|
||||
return Ureal_0;
|
||||
|
||||
else
|
||||
-- Target does not support denorms, and X is 0.0
|
||||
-- or at least bigger than -Eps_Model (RT)
|
||||
|
||||
return -Eps_Model (RT);
|
||||
end if;
|
||||
|
||||
else
|
||||
Decompose_Int (RT, X, Result_F, Result_X, Ceiling);
|
||||
return UR_From_Components
|
||||
(Num => Result_F - 1,
|
||||
Den => Machine_Mantissa (RT) - Result_X,
|
||||
Rbase => Radix,
|
||||
Negative => False);
|
||||
-- Result_F may be false, but this is OK as UR_From_Components
|
||||
-- handles that situation.
|
||||
end if;
|
||||
return -Succ (RT, -X);
|
||||
end Pred;
|
||||
|
||||
---------------
|
||||
@ -892,35 +833,38 @@ package body Eval_Fat is
|
||||
----------
|
||||
|
||||
function Succ (RT : R; X : T) return T is
|
||||
Result_F : UI;
|
||||
Result_X : UI;
|
||||
Emin : constant UI := UI_From_Int (Machine_Emin (RT));
|
||||
Mantissa : constant UI := UI_From_Int (Machine_Mantissa (RT));
|
||||
Exp : UI := UI_Max (Emin, Exponent (RT, X));
|
||||
Frac : T;
|
||||
New_Frac : T;
|
||||
|
||||
begin
|
||||
if abs X < Eps_Model (RT) then
|
||||
if Denorm_On_Target then
|
||||
return X + Eps_Denorm (RT);
|
||||
|
||||
elsif X < Ureal_0 then
|
||||
-- Target does not support denorms, so successor is 0.0
|
||||
return Ureal_0;
|
||||
|
||||
else
|
||||
-- Target does not support denorms, and X is 0.0
|
||||
-- or at least smaller than Eps_Model (RT)
|
||||
|
||||
return Eps_Model (RT);
|
||||
end if;
|
||||
|
||||
else
|
||||
Decompose_Int (RT, X, Result_F, Result_X, Floor);
|
||||
return UR_From_Components
|
||||
(Num => Result_F + 1,
|
||||
Den => Machine_Mantissa (RT) - Result_X,
|
||||
Rbase => Radix,
|
||||
Negative => False);
|
||||
-- Result_F may be false, but this is OK as UR_From_Components
|
||||
-- handles that situation.
|
||||
if UR_Is_Zero (X) then
|
||||
Exp := Emin;
|
||||
end if;
|
||||
|
||||
-- Set exponent such that the radix point will be directly
|
||||
-- following the mantissa after scaling
|
||||
|
||||
if Denorm_On_Target or Exp /= Emin then
|
||||
Exp := Exp - Mantissa;
|
||||
else
|
||||
Exp := Exp - 1;
|
||||
end if;
|
||||
|
||||
Frac := Scaling (RT, X, -Exp);
|
||||
New_Frac := Ceiling (RT, Frac);
|
||||
|
||||
if New_Frac = Frac then
|
||||
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
|
||||
New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
|
||||
else
|
||||
New_Frac := New_Frac + Ureal_1;
|
||||
end if;
|
||||
end if;
|
||||
|
||||
return Scaling (RT, New_Frac, Exp);
|
||||
end Succ;
|
||||
|
||||
----------------
|
||||
@ -929,7 +873,6 @@ package body Eval_Fat is
|
||||
|
||||
function Truncation (RT : R; X : T) return T is
|
||||
pragma Warnings (Off, RT);
|
||||
|
||||
begin
|
||||
return UR_From_Uint (UR_Trunc (X));
|
||||
end Truncation;
|
||||
|
@ -165,9 +165,6 @@ static tree maybe_implicit_deref (tree);
|
||||
static tree gnat_stabilize_reference_1 (tree, bool);
|
||||
static void annotate_with_node (tree, Node_Id);
|
||||
|
||||
/* Constants for +0.5 and -0.5 for float-to-integer rounding. */
|
||||
static REAL_VALUE_TYPE dconstp5;
|
||||
static REAL_VALUE_TYPE dconstmp5;
|
||||
|
||||
/* This is the main program of the back-end. It sets up all the table
|
||||
structures and then generates code. */
|
||||
@ -288,9 +285,6 @@ gnat_init_stmt_group ()
|
||||
set_stack_check_libfunc (gen_rtx_SYMBOL_REF (Pmode, "_gnat_stack_check"));
|
||||
|
||||
gcc_assert (Exception_Mechanism != Front_End_ZCX);
|
||||
|
||||
REAL_ARITHMETIC (dconstp5, RDIV_EXPR, dconst1, dconst2);
|
||||
REAL_ARITHMETIC (dconstmp5, RDIV_EXPR, dconstm1, dconst2);
|
||||
}
|
||||
|
||||
/* Subroutine of gnat_to_gnu to translate gnat_node, an N_Identifier,
|
||||
@ -5195,17 +5189,60 @@ convert_with_check (Entity_Id gnat_type, tree gnu_expr, bool overflowp,
|
||||
if (INTEGRAL_TYPE_P (gnu_ada_base_type) && FLOAT_TYPE_P (gnu_in_basetype)
|
||||
&& !truncatep)
|
||||
{
|
||||
tree gnu_point_5 = build_real (gnu_in_basetype, dconstp5);
|
||||
tree gnu_minus_point_5 = build_real (gnu_in_basetype, dconstmp5);
|
||||
tree gnu_zero = convert (gnu_in_basetype, integer_zero_node);
|
||||
tree gnu_saved_result = save_expr (gnu_result);
|
||||
tree gnu_comp = build2 (GE_EXPR, integer_type_node,
|
||||
gnu_saved_result, gnu_zero);
|
||||
tree gnu_adjust = build3 (COND_EXPR, gnu_in_basetype, gnu_comp,
|
||||
gnu_point_5, gnu_minus_point_5);
|
||||
REAL_VALUE_TYPE half_minus_pred_half, pred_half;
|
||||
tree gnu_conv, gnu_zero, gnu_comp, gnu_saved_result, calc_type;
|
||||
tree gnu_pred_half, gnu_add_pred_half, gnu_subtract_pred_half;
|
||||
const struct real_format *fmt;
|
||||
|
||||
gnu_result
|
||||
= build2 (PLUS_EXPR, gnu_in_basetype, gnu_saved_result, gnu_adjust);
|
||||
/* The following calculations depend on proper rounding to even
|
||||
of each arithmetic operation. In order to prevent excess
|
||||
precision from spoiling this property, use the widest hardware
|
||||
floating-point type.
|
||||
|
||||
FIXME: For maximum efficiency, this should only be done for machines
|
||||
and types where intermediates may have extra precision. */
|
||||
|
||||
calc_type = longest_float_type_node;
|
||||
/* FIXME: Should not have padding in the first place */
|
||||
if (TREE_CODE (calc_type) == RECORD_TYPE
|
||||
&& TYPE_IS_PADDING_P (calc_type))
|
||||
calc_type = TREE_TYPE (TYPE_FIELDS (calc_type));
|
||||
|
||||
/* Compute the exact value calc_type'Pred (0.5) at compile time. */
|
||||
fmt = REAL_MODE_FORMAT (TYPE_MODE (calc_type));
|
||||
real_2expN (&half_minus_pred_half, -(fmt->p) - 1);
|
||||
REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf,
|
||||
half_minus_pred_half);
|
||||
gnu_pred_half = build_real (calc_type, pred_half);
|
||||
|
||||
/* If the input is strictly negative, subtract this value
|
||||
and otherwise add it from the input. For 0.5, the result
|
||||
is exactly between 1.0 and the machine number preceding 1.0
|
||||
(for calc_type). Since the last bit of 1.0 is even, this 0.5
|
||||
will round to 1.0, while all other number with an absolute
|
||||
value less than 0.5 round to 0.0. For larger numbers exactly
|
||||
halfway between integers, rounding will always be correct as
|
||||
the true mathematical result will be closer to the higher
|
||||
integer compared to the lower one. So, this constant works
|
||||
for all floating-point numbers.
|
||||
|
||||
The reason to use the same constant with subtract/add instead
|
||||
of a positive and negative constant is to allow the comparison
|
||||
to be scheduled in parallel with retrieval of the constant and
|
||||
conversion of the input to the calc_type (if necessary).
|
||||
*/
|
||||
|
||||
gnu_zero = convert (gnu_in_basetype, integer_zero_node);
|
||||
gnu_saved_result = save_expr (gnu_result);
|
||||
gnu_conv = convert (calc_type, gnu_saved_result);
|
||||
gnu_comp = build2 (GE_EXPR, integer_type_node,
|
||||
gnu_saved_result, gnu_zero);
|
||||
gnu_add_pred_half
|
||||
= build2 (PLUS_EXPR, calc_type, gnu_conv, gnu_pred_half);
|
||||
gnu_subtract_pred_half
|
||||
= build2 (MINUS_EXPR, calc_type, gnu_conv, gnu_pred_half);
|
||||
gnu_result = build3 (COND_EXPR, calc_type, gnu_comp,
|
||||
gnu_add_pred_half, gnu_subtract_pred_half);
|
||||
}
|
||||
|
||||
if (TREE_CODE (gnu_ada_base_type) == INTEGER_TYPE
|
||||
|
Loading…
Reference in New Issue
Block a user