i386.c (x86_double_with_add): Turn off for Pentium and PPro.

* i386.c (x86_double_with_add): Turn off for Pentium and PPro.
	(small_shift_operand, output_ashlsi3): New functions.
	* i386.h (small_shift_operand, output_ashlsi3): Declare.
	* i386.md (ashlsi3): Simplify ahlsi3 patterns.  Remove splitters
	that are no longer needed.

From-SVN: r26189
This commit is contained in:
Jeffrey A Law 1999-04-05 03:52:19 +00:00 committed by Jeff Law
parent b5d9b9ab00
commit 0a726ef13b
4 changed files with 124 additions and 199 deletions

View File

@ -1,12 +1,16 @@
Mon Apr 5 04:47:14 1999 Jeffrey A Law (law@cygnus.com)
* i386.c (x86_double_with_add): Turn off for Pentium and PPro.
(small_shift_operand, output_ashlsi3): New functions.
* i386.h (small_shift_operand, output_ashlsi3): Declare.
* i386.md (ashlsi3): Simplify ahlsi3 patterns. Remove splitters
that are no longer needed.
Sun Apr 4 04:05:04 1999 Jeffrey A Law (law@cygnus.com) Sun Apr 4 04:05:04 1999 Jeffrey A Law (law@cygnus.com)
* stmt.c (expand_loop_end): When copying the loop exit test, * stmt.c (expand_loop_end): When copying the loop exit test,
do not walk into a nested loop. do not walk into a nested loop.
Sun Apr 4 01:15:04 PST 1999 Jeff Law (law@cygnus.com)
* version.c: Bump for snapshot.
Sun Apr 4 00:14:54 1999 Jeffrey A Law (law@cygnus.com) Sun Apr 4 00:14:54 1999 Jeffrey A Law (law@cygnus.com)
* fixinc/hackshell.tpl: Skip links to directories, to avoid * fixinc/hackshell.tpl: Skip links to directories, to avoid

View File

@ -123,7 +123,7 @@ const int x86_use_leave = m_386 | m_K6;
const int x86_push_memory = m_386 | m_K6; const int x86_push_memory = m_386 | m_K6;
const int x86_zero_extend_with_and = m_486 | m_PENT; const int x86_zero_extend_with_and = m_486 | m_PENT;
const int x86_movx = m_386 | m_PPRO | m_K6; const int x86_movx = m_386 | m_PPRO | m_K6;
const int x86_double_with_add = ~m_386; const int x86_double_with_add = ~(m_386 | m_PENT | m_PPRO);
const int x86_use_bit_test = m_386; const int x86_use_bit_test = m_386;
const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO; const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO;
const int x86_use_q_reg = m_PENT | m_PPRO | m_K6; const int x86_use_q_reg = m_PENT | m_PPRO | m_K6;
@ -1687,6 +1687,17 @@ symbolic_operand (op, mode)
} }
} }
/* Return nonzero if OP is a constant shift count small enough to
encode into an lea instruction. */
int
small_shift_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT && INTVAL (op) > 0 && INTVAL (op) < 4);
}
/* Test for a valid operand for a call instruction. /* Test for a valid operand for a call instruction.
Don't allow the arg pointer register or virtual regs Don't allow the arg pointer register or virtual regs
since they may change into reg + const, which the patterns since they may change into reg + const, which the patterns
@ -5595,3 +5606,89 @@ x86_adjust_cost (insn, link, dep_insn, cost)
return cost; return cost;
} }
/* Output assembly code for a left shift.
Always use "sal" when shifting a memory operand or for a non constant
shift count.
When optimizing for size, we know that src == dest, and we should always
use "sal". If src != dest, then copy src to dest and use "sal".
Pentium and PPro (speed):
When src == dest, use "add" for a shift counts of one, else use
"sal". If we modeled Pentium AGI stalls and U/V pipelining better we
would want to generate lea for some shifts on the Pentium.
When src != dest, use "lea" for small shift counts. Otherwise,
copy src to dest and use the normal shifting code. Exception for
TARGET_DOUBLE_WITH_ADD. */
char *
output_ashlsi3 (operands)
rtx *operands;
{
/* Handle case where srcreg != dstreg. */
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
if (TARGET_DOUBLE_WITH_ADD && INTVAL (operands[2]) == 1)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
return AS2 (add%L0,%1,%0);
}
else
{
CC_STATUS_INIT;
/* This should be extremely rare (impossible?). We can not encode a
shift of the stack pointer using an lea instruction. So copy the
stack pointer into the destination register and use an lea. */
if (operands[1] == stack_pointer_rtx)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
operands[1] = operands[0];
}
/* For shifts up to and including 3 bits, use lea. */
operands[1] = gen_rtx_MULT (SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
}
/* Source and destination match. */
/* Handle variable shift. */
if (REG_P (operands[2]))
return AS2 (sal%L0,%b2,%0);
/* Always perform shift by 1 using an add instruction. */
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%L0,%0,%0);
#if 0
/* ??? Currently disabled. reg-stack currently stomps on the mode of
each insn. Thus, we can not easily detect when we should use lea to
improve issue characteristics. Until reg-stack is fixed, fall back to
sal instruction for Pentiums to avoid AGI stall. */
/* Shift reg by 2 or 3 use an lea instruction for Pentium if this is
insn is expected to issue into the V pipe (the insn's mode will be
TImode for a U pipe, and !TImode for a V pipe instruction). */
if (! optimize_size
&& REG_P (operands[0])
&& GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 3
&& (int)ix86_cpu == (int)PROCESSOR_PENTIUM
&& GET_MODE (insn) != TImode)
{
CC_STATUS_INIT;
operands[1] = gen_rtx_MULT (SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
#endif
/* Otherwise use a shift instruction. */
return AS2 (sal%L0,%2,%0);
}

View File

@ -2765,6 +2765,8 @@ extern int reg_mentioned_in_mem ();
extern char *output_int_conditional_move (); extern char *output_int_conditional_move ();
extern char *output_fp_conditional_move (); extern char *output_fp_conditional_move ();
extern int ix86_can_use_return_insn_p (); extern int ix86_can_use_return_insn_p ();
extern int small_shift_operand ();
extern char *output_ashlsi3 ();
#ifdef NOTYET #ifdef NOTYET
extern struct rtx_def *copy_all_rtx (); extern struct rtx_def *copy_all_rtx ();

View File

@ -4753,205 +4753,27 @@ byte_xor_operation:
"" ""
"") "")
;; Optimizing for code size: ;; Pattern for shifts which can be encoded into an lea instruction.
;; For regsiter destinations: ;; This is kept as a separate pattern so that regmove can optimize cases
;; add == 2 bytes, move == 2 bytes, shift == 3 bytes, lea == 7 bytes ;; where we know the source and destination must match.
;; ;;
;; lea loses when optimizing for size ;; Do not expose this pattern when optimizing for size since we never want
;; ;; to use lea when optimizing for size since mov+sal is smaller than lea.
;; Do the math. If the count is 1, using add, else using sal will (define_insn ""
;; produce the smallest possible code, even when the source and [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r")
;; dest do not match. For a memory destination, sal is the only (ashift:SI (match_operand:SI 1 "nonimmediate_operand" "0,r")
;; choice. (match_operand:SI 2 "small_shift_operand" "M,M")))]
;; "! optimize_size"
;; Do not try to handle case where src and dest do not match. Let regmove "* return output_ashlsi3 (operands);")
;; and reload handle them. A mov followed by this insn will generate the
;; desired size optimized results. ;; Generic left shift pattern to catch all cases not handled by the
;; shift pattern above.
(define_insn "" (define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=rm") [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
(ashift:SI (match_operand:SI 1 "nonimmediate_operand" "0") (ashift:SI (match_operand:SI 1 "nonimmediate_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "cI")))] (match_operand:SI 2 "nonmemory_operand" "cI")))]
"optimize_size" ""
"* "* return output_ashlsi3 (operands);")
{
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%L0,%0,%0);
if (REG_P (operands[2]))
return AS2 (sal%L0,%b2,%0);
return AS2 (sal%L0,%2,%0);
}")
;; For Pentium/Pentium MMX:
;;
;; We want to optimize for pairability, but avoid generating AGI stalls.
;;
;; If this insn is expected to issue in the U pipe, then prefer sal,
;; else prefer lea for small shifts when srcreg == dstreg.
;;
;; For PPro/PII
;;
;; There's more than one approach to optimizing for this family; it is
;; unclear which approach is best. For now, we will try to minimize
;; uops. Note that sal and lea have the same characteristics, so we
;; prefer sal as it takes less space.
;;
;; We can actually share code for these two cases since the basic techniques
;; for generating good code on these chips is the same, even if the final
;; code sequences are different.
;;
;; I do not know what is most appropriate for the AMD or Cyrix chips.
;;
;; srcreg == dstreg, constant shift count:
;;
;; For a shift count of one, use "add".
;; For a shift count of two or three, use "sal"/"lea" for Pentium and
;; Pentium MMX depending on which pipe the insn will execute.
;; All others use "sar".
;;
;; srcreg != dstreg, constant shift count:
;;
;; For shift counts of one to three, use "lea".
;; All others use "lea" for the first shift into the destination reg,
;; then fall back on the srcreg == dstreg for the residual shifts.
;;
;; memory destinations or nonconstant shift count:
;;
;; Use "sal".
;;
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=rm,r")
(ashift:SI (match_operand:SI 1 "nonimmediate_operand" "0,r")
(match_operand:SI 2 "nonmemory_operand" "cI,I")))]
"! optimize_size
&& ((int)ix86_cpu == (int)PROCESSOR_PENTIUM
|| (int)ix86_cpu == (int)PROCESSOR_PENTIUMPRO)"
"*
{
/* This should be extremely rare (impossible?). We can not encode a shift
of the stack pointer using an lea instruction. So copy the stack pointer
into the destination register and fall into the srcreg == dstreg shifting
support. */
if (operands[1] == stack_pointer_rtx)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
operands[1] = operands[0];
}
/* Handle case where srcreg != dstreg. */
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
/* For counts > 3, it is easiest to split into component insns. */
if (INTVAL (operands[2]) > 3)
return \"#\";
/* For shifts up to and including 3 bits, use lea. */
operands[1] = gen_rtx_MULT (SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
/* Source and destination match. */
/* Handle variable shift. */
if (REG_P (operands[2]))
return AS2 (sal%L0,%b2,%0);
/* Always perform shift by 1 using an add instruction. */
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%L0,%0,%0);
#if 0
/* ??? Currently disabled. reg-stack currently stomps on the mode of
each insn. Thus, we can not easily detect when we should use lea to
improve issue characteristics. Until reg-stack is fixed, fall back to
sal instruction for Pentiums to avoid AGI stall. */
/* Shift reg by 2 or 3 use an lea instruction for Pentium if this is
insn is expected to issue into the V pipe (the insn's mode will be
TImode for a U pipe, and !TImode for a V pipe instruction). */
if (REG_P (operands[0])
&& GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 3
&& (int)ix86_cpu == (int)PROCESSOR_PENTIUM
&& GET_MODE (insn) != TImode)
{
operands[1] = gen_rtx_MULT (SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
#endif
/* Otherwise use a shift instruction. */
return AS2 (sal%L0,%2,%0);
}")
;; Pentium/PPro/PII Splitter used when srcreg != destreg and shift
;; count is > 3. In each case we use lea to perform the first three
;; shifts into the destination register, then we fall back to the
;; normal shifting code for the residual shifts.
(define_split
[(set (match_operand:SI 0 "register_operand" "=r")
(ashift:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "I")))]
"reload_completed
&& ! optimize_size
&& ((int)ix86_cpu == (int)PROCESSOR_PENTIUM
|| (int)ix86_cpu == (int)PROCESSOR_PENTIUMPRO)
&& GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) > 3
&& true_regnum (operands[0]) != true_regnum (operands[1])"
[(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (ashift:SI (match_dup 0) (match_dup 3)))]
"
{
operands[3] = GEN_INT (INTVAL (operands[2]) - 3);
operands[2] = GEN_INT (3);
}")
;; On i386 and i486, "addl reg,reg" is faster than "sall $1,reg"
;; On i486, movl/sall appears slightly faster than leal, but the leal
;; is smaller - use leal for now unless the shift count is 1.
;;
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=rm,r")
(ashift:SI (match_operand:SI 1 "nonimmediate_operand" "0,r")
(match_operand:SI 2 "nonmemory_operand" "cI,M")))]
"! optimize_size
&& ! ((int)ix86_cpu == (int)PROCESSOR_PENTIUM
|| (int)ix86_cpu == (int)PROCESSOR_PENTIUMPRO)"
"*
{
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
if (TARGET_DOUBLE_WITH_ADD && INTVAL (operands[2]) == 1)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
return AS2 (add%L0,%1,%0);
}
else
{
CC_STATUS_INIT;
if (operands[1] == stack_pointer_rtx)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
operands[1] = operands[0];
}
operands[1] = gen_rtx_MULT (SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
}
if (REG_P (operands[2]))
return AS2 (sal%L0,%b2,%0);
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%L0,%0,%0);
return AS2 (sal%L0,%2,%0);
}")
(define_insn "ashlhi3" (define_insn "ashlhi3"
[(set (match_operand:HI 0 "nonimmediate_operand" "=rm") [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")