c++: Fix verify_ctor_sanity ICE [PR96241]

The code added in r10-6437 caused us to create a CONSTRUCTOR when we're
{}-initializing an aggregate.  Then we pass this new CONSTRUCTOR down to
cxx_eval_constant_expression which, if the CONSTRUCTOR isn't TREE_CONSTANT
or reduced_constant_expression_p, calls cxx_eval_bare_aggregate.  In
this case the CONSTRUCTOR wasn't reduced_constant_expression_p because
for r_c_e_p a CONST_DECL isn't good enough so it returns false.  So we
go to cxx_eval_bare_aggregate where we crash, because ctx->ctor wasn't
set up properly.  So my fix is to do so.  Since we're value-initializing,
I'm not setting CONSTRUCTOR_NO_CLEARING.  To avoid keeping a garbage
constructor around, I call free_constructor in case the evaluation did
not use it.

gcc/cp/ChangeLog:

	PR c++/96241
	* constexpr.c (cxx_eval_array_reference): Set up ctx->ctor if we
	are initializing an aggregate.  Call free_constructor on the new
	CONSTRUCTOR if it isn't returned from cxx_eval_constant_expression.

gcc/testsuite/ChangeLog:

	PR c++/96241
	* g++.dg/cpp0x/constexpr-96241.C: New test.
	* g++.dg/cpp1y/constexpr-96241.C: New test.
This commit is contained in:
Marek Polacek 2020-10-15 16:10:45 -04:00
parent 16e2427f50
commit 0df73beea0
3 changed files with 74 additions and 2 deletions

View File

@ -3657,15 +3657,22 @@ cxx_eval_array_reference (const constexpr_ctx *ctx, tree t,
initializer, it's initialized from {}. But use build_value_init initializer, it's initialized from {}. But use build_value_init
directly for non-aggregates to avoid creating a garbage CONSTRUCTOR. */ directly for non-aggregates to avoid creating a garbage CONSTRUCTOR. */
tree val; tree val;
constexpr_ctx new_ctx;
if (CP_AGGREGATE_TYPE_P (elem_type)) if (CP_AGGREGATE_TYPE_P (elem_type))
{ {
tree empty_ctor = build_constructor (init_list_type_node, NULL); tree empty_ctor = build_constructor (init_list_type_node, NULL);
val = digest_init (elem_type, empty_ctor, tf_warning_or_error); val = digest_init (elem_type, empty_ctor, tf_warning_or_error);
new_ctx = *ctx;
new_ctx.ctor = build_constructor (elem_type, NULL);
ctx = &new_ctx;
} }
else else
val = build_value_init (elem_type, tf_warning_or_error); val = build_value_init (elem_type, tf_warning_or_error);
return cxx_eval_constant_expression (ctx, val, lval, non_constant_p, t = cxx_eval_constant_expression (ctx, val, lval, non_constant_p,
overflow_p); overflow_p);
if (CP_AGGREGATE_TYPE_P (elem_type) && t != ctx->ctor)
free_constructor (ctx->ctor);
return t;
} }
/* Subroutine of cxx_eval_constant_expression. /* Subroutine of cxx_eval_constant_expression.

View File

@ -0,0 +1,18 @@
// PR c++/96241
// { dg-do compile { target c++11 } }
template <typename T, T...> struct S {};
template <typename T, T t> using U = S<T, __integer_pack(t)...>;
template <long... N> using f = S<unsigned long, N...>;
template <long N> using V = U<unsigned long, N>;
template <int N> struct A { typedef int type[N]; };
template <int N> struct B { typename A<N>::type k; };
template <typename T, int N, unsigned long... P>
constexpr B<N> bar(T (&arr)[N], f<P...>) {
return {arr[P]...};
}
template <typename T, int N> constexpr B<N> foo(T (&arr)[N]) {
return bar(arr, V<N>{});
}
constexpr char arr[2]{};
B<2> b = foo(arr);

View File

@ -0,0 +1,47 @@
// PR c++/96241
// { dg-do compile { target c++14 } }
#define assert(expr) static_assert (expr, #expr)
enum E { o };
struct S {
int e = o;
};
using T = S[3];
constexpr struct S s[1][1][1] = { };
assert (0 == s[0][0][0].e);
constexpr int
fn0 ()
{
return T{}[0].e;
}
assert(fn0 () == 0);
constexpr int
fn1 ()
{
S d[1];
int x = d[0].e;
return x;
}
assert(fn1 () == 0);
constexpr int
fn2 ()
{
S d[1];
return d[0].e;
}
assert(fn2 () == 0);
constexpr int
fn3 ()
{
struct X { int e = o; } d[1]{};
return d[0].e;
}
assert(fn3 () == 0);