libsupc++: Implement comparison algorithms for C++20

This is incomplete because std::strong_order doesn't support
floating-point types.

The partial_order and weak_order tests use VERIFY instead of
static_assert because of PR 92431.

	* libsupc++/compare (strong_order, weak_order, partial_order)
	(compare_strong_order_fallback, compare_weak_order_fallback)
	(compare_partial_order_fallback): Define customization point objects
	for C++20.
	* testsuite/18_support/comparisons/algorithms/partial_order.cc: New
	test.
	* testsuite/18_support/comparisons/algorithms/strong_order.cc: New
	test.
	* testsuite/18_support/comparisons/algorithms/weak_order.cc: New test.

From-SVN: r278149
This commit is contained in:
Jonathan Wakely 2019-11-13 16:26:18 +00:00 committed by Jonathan Wakely
parent 5d46287769
commit 0ff15d21c8
5 changed files with 641 additions and 10 deletions

View File

@ -1,3 +1,15 @@
2019-11-13 Jonathan Wakely <jwakely@redhat.com>
* libsupc++/compare (strong_order, weak_order, partial_order)
(compare_strong_order_fallback, compare_weak_order_fallback)
(compare_partial_order_fallback): Define customization point objects
for C++20.
* testsuite/18_support/comparisons/algorithms/partial_order.cc: New
test.
* testsuite/18_support/comparisons/algorithms/strong_order.cc: New
test.
* testsuite/18_support/comparisons/algorithms/weak_order.cc: New test.
2019-11-11 Gerald Pfeifer <gerald@pfeifer.com>
* doc/xml/gnu/gpl-3.0.xml: Adjust link to "Why not LGPL".

View File

@ -576,20 +576,346 @@ namespace std
using is_transparent = void;
};
namespace __cmp_cust
{
template<floating_point _Tp>
constexpr weak_ordering
__fp_weak_ordering(_Tp __e, _Tp __f)
{
// Returns an integer with the same sign as the argument, and magnitude
// indicating the classification: zero=1 subnorm=2 norm=3 inf=4 nan=5
auto __cat = [](_Tp __fp) -> int {
const int __sign = __builtin_signbit(__fp) ? -1 : 1;
if (__builtin_isnormal(__fp))
return (__fp == 0 ? 1 : 3) * __sign;
if (__builtin_isnan(__fp))
return 5 * __sign;
if (int __inf = __builtin_isinf_sign(__fp))
return 4 * __inf;
return 2 * __sign;
};
auto __po = __e <=> __f;
if (is_lt(__po))
return weak_ordering::less;
else if (is_gt(__po))
return weak_ordering::greater;
else if (__po == partial_ordering::equivalent)
return weak_ordering::equivalent;
else // unordered, at least one argument is NaN
{
// return -1 for negative nan, +1 for positive nan, 0 otherwise.
auto __isnan_sign = [](_Tp __fp) -> int {
return __builtin_isnan(__fp)
? __builtin_signbit(__fp) ? -1 : 1
: 0;
};
auto __ord = __isnan_sign(__e) <=> __isnan_sign(__f);
if (is_eq(__ord))
return weak_ordering::equivalent;
else if (is_lt(__ord))
return weak_ordering::less;
else
return weak_ordering::greater;
}
}
template<typename _Tp, typename _Up>
concept __adl_strong = requires(_Tp&& __t, _Up&& __u)
{
strong_ordering(strong_order(static_cast<_Tp&&>(__t),
static_cast<_Up&&>(__u)));
};
template<typename _Tp, typename _Up>
concept __adl_weak = requires(_Tp&& __t, _Up&& __u)
{
weak_ordering(weak_order(static_cast<_Tp&&>(__t),
static_cast<_Up&&>(__u)));
};
template<typename _Tp, typename _Up>
concept __adl_partial = requires(_Tp&& __t, _Up&& __u)
{
partial_ordering(partial_order(static_cast<_Tp&&>(__t),
static_cast<_Up&&>(__u)));
};
template<typename _Ord, typename _Tp, typename _Up>
concept __op_cmp = requires(_Tp&& __t, _Up&& __u)
{
_Ord(static_cast<_Tp&&>(__t) <=> static_cast<_Up&&>(__u));
};
template<typename _Tp, typename _Up>
concept __strongly_ordered
= __adl_strong<_Tp, _Up>
// FIXME: || floating_point<remove_reference_t<_Tp>>
|| __op_cmp<strong_ordering, _Tp, _Up>;
class _Strong_order
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (floating_point<decay_t<_Tp>>)
return true;
else if constexpr (__adl_strong<_Tp, _Up>)
return noexcept(strong_ordering(strong_order(std::declval<_Tp>(),
std::declval<_Up>())));
else if constexpr (__op_cmp<strong_ordering, _Tp, _Up>)
return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
}
friend class _Weak_order;
friend class _Strong_fallback;
public:
template<typename _Tp, typename _Up>
requires __strongly_ordered<_Tp, _Up>
constexpr strong_ordering
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
/* FIXME:
if constexpr (floating_point<decay_t<_Tp>>)
return __cmp_cust::__fp_strong_order(__e, __f);
else */ if constexpr (__adl_strong<_Tp, _Up>)
return strong_ordering(strong_order(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f)));
else if constexpr (__op_cmp<strong_ordering, _Tp, _Up>)
return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
}
};
template<typename _Tp, typename _Up>
concept __weakly_ordered
= floating_point<remove_reference_t<_Tp>>
|| __adl_weak<_Tp, _Up>
|| __op_cmp<weak_ordering, _Tp, _Up>
|| __strongly_ordered<_Tp, _Up>;
class _Weak_order
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (floating_point<decay_t<_Tp>>)
return true;
else if constexpr (__adl_weak<_Tp, _Up>)
return noexcept(weak_ordering(weak_order(std::declval<_Tp>(),
std::declval<_Up>())));
else if constexpr (__op_cmp<weak_ordering, _Tp, _Up>)
return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
else if constexpr (__strongly_ordered<_Tp, _Up>)
return _Strong_order::_S_noexcept<_Tp, _Up>();
}
friend class _Partial_order;
friend class _Weak_fallback;
public:
template<typename _Tp, typename _Up>
requires __weakly_ordered<_Tp, _Up>
constexpr weak_ordering
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
if constexpr (floating_point<decay_t<_Tp>>)
return __cmp_cust::__fp_weak_ordering(__e, __f);
else if constexpr (__adl_weak<_Tp, _Up>)
return weak_ordering(weak_order(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f)));
else if constexpr (__op_cmp<weak_ordering, _Tp, _Up>)
return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
else if constexpr (__strongly_ordered<_Tp, _Up>)
return _Strong_order{}(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f));
}
};
template<typename _Tp, typename _Up>
concept __partially_ordered
= __adl_partial<_Tp, _Up>
|| __op_cmp<partial_ordering, _Tp, _Up>
|| __weakly_ordered<_Tp, _Up>;
class _Partial_order
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (__adl_partial<_Tp, _Up>)
return noexcept(partial_ordering(partial_order(std::declval<_Tp>(),
std::declval<_Up>())));
else if constexpr (__op_cmp<partial_ordering, _Tp, _Up>)
return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
else if constexpr (__weakly_ordered<_Tp, _Up>)
return _Weak_order::_S_noexcept<_Tp, _Up>();
}
friend class _Partial_fallback;
public:
template<typename _Tp, typename _Up>
requires __partially_ordered<_Tp, _Up>
constexpr partial_ordering
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
if constexpr (__adl_partial<_Tp, _Up>)
return partial_ordering(partial_order(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f)));
else if constexpr (__op_cmp<partial_ordering, _Tp, _Up>)
return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
else if constexpr (__weakly_ordered<_Tp, _Up>)
return _Weak_order{}(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f));
}
};
template<typename _Tp, typename _Up>
concept __op_eq_lt = requires(_Tp&& __t, _Up&& __u)
{
{ static_cast<_Tp&&>(__t) == static_cast<_Up&&>(__u) }
-> convertible_to<bool>;
{ static_cast<_Tp&&>(__t) < static_cast<_Up&&>(__u) }
-> convertible_to<bool>;
};
class _Strong_fallback
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (__strongly_ordered<_Tp, _Up>)
return _Strong_order::_S_noexcept<_Tp, _Up>();
else
return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
&& noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
}
public:
template<typename _Tp, typename _Up>
requires __strongly_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
constexpr decltype(auto)
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
if constexpr (__strongly_ordered<_Tp, _Up>)
return _Strong_order{}(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f));
else if constexpr (__op_eq_lt<_Tp, _Up>)
return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
? strong_ordering::equal
: static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
? strong_ordering::less
: strong_ordering::greater;
}
};
class _Weak_fallback
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (__weakly_ordered<_Tp, _Up>)
return _Weak_order::_S_noexcept<_Tp, _Up>();
else
return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
&& noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
}
public:
template<typename _Tp, typename _Up>
requires __weakly_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
constexpr decltype(auto)
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
if constexpr (__weakly_ordered<_Tp, _Up>)
return _Weak_order{}(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f));
else if constexpr (__op_eq_lt<_Tp, _Up>)
return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
? weak_ordering::equivalent
: static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
? weak_ordering::less
: weak_ordering::greater;
}
};
class _Partial_fallback
{
template<typename _Tp, typename _Up>
static constexpr bool
_S_noexcept()
{
if constexpr (__partially_ordered<_Tp, _Up>)
return _Partial_order::_S_noexcept<_Tp, _Up>();
else
return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
&& noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
}
public:
template<typename _Tp, typename _Up>
requires __partially_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
constexpr decltype(auto)
operator()(_Tp&& __e, _Up&& __f) const
noexcept(_S_noexcept<_Tp, _Up>())
{
static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
if constexpr (__partially_ordered<_Tp, _Up>)
return _Partial_order{}(static_cast<_Tp&&>(__e),
static_cast<_Up&&>(__f));
else if constexpr (__op_eq_lt<_Tp, _Up>)
return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
? partial_ordering::equivalent
: static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
? partial_ordering::less
: static_cast<_Up&&>(__f) < static_cast<_Tp&&>(__e)
? partial_ordering::greater
: partial_ordering::unordered;
}
};
} // namespace __cmp_cust
// [cmp.alg], comparison algorithms
inline namespace __cmp_alg
{
// TODO
#if 0
inline constexpr unspecified strong_order = unspecified;
inline constexpr unspecified weak_order = unspecified;
inline constexpr unspecified partial_order = unspecified;
inline constexpr unspecified compare_strong_order_fallback = unspecified;
inline constexpr unspecified compare_weak_order_fallback = unspecified;
inline constexpr unspecified compare_partial_order_fallback = unspecified;
#endif
inline constexpr __cmp_cust::_Strong_order strong_order{};
inline constexpr __cmp_cust::_Weak_order weak_order{};
inline constexpr __cmp_cust::_Partial_order partial_order{};
inline constexpr __cmp_cust::_Strong_fallback
compare_strong_order_fallback{};
inline constexpr __cmp_cust::_Weak_fallback
compare_weak_order_fallback{};
inline constexpr __cmp_cust::_Partial_fallback
compare_partial_order_fallback{};
}
#endif
#endif // concepts
} // namespace std
#pragma GCC visibility pop

View File

@ -0,0 +1,118 @@
// Copyright (C) 2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-options "-std=gnu++2a" }
// { dg-do run { target c++2a } }
#include <compare>
#include <limits>
#include <testsuite_hooks.h>
using std::partial_order;
using std::partial_ordering;
void
test01()
{
int one = 1, two = 2;
VERIFY( partial_order(one, two) == partial_ordering::less );
VERIFY( partial_order(one, one) == partial_ordering::equivalent );
VERIFY( partial_order(two, one) == partial_ordering::greater );
static_assert( noexcept(partial_order(1, 1)) );
}
constexpr partial_ordering different_cv_quals(int i, const int j)
{
return partial_order(i, j);
}
void
test02()
{
int fortytwo = 42, nines = 999, lots = 1000;
VERIFY( different_cv_quals(fortytwo, nines) == partial_ordering::less );
VERIFY( different_cv_quals(-nines, -nines) == partial_ordering::equivalent );
VERIFY( different_cv_quals(-nines, -lots) == partial_ordering::greater );
}
void
test03()
{
double zero = 0.0;
VERIFY( partial_order(zero, zero) == partial_ordering::equivalent );
VERIFY( partial_order(-zero, -zero) == partial_ordering::equivalent );
VERIFY( partial_order(-zero, zero) == partial_ordering::equivalent );
VERIFY( partial_order(zero, -zero) == partial_ordering::equivalent );
static_assert( noexcept(partial_order(zero, 1.0)) );
static_assert( partial_order(0.0, 1.0) == std::partial_ordering::less );
double min = std::numeric_limits<double>::lowest();
double max = std::numeric_limits<double>::max();
double nan = std::numeric_limits<double>::quiet_NaN();
double inf = std::numeric_limits<double>::infinity();
double denorm = std::numeric_limits<double>::denorm_min();
double smallest = std::numeric_limits<double>::min();
double epsilon = std::numeric_limits<double>::epsilon();
VERIFY( partial_order(denorm, smallest) == partial_ordering::less );
VERIFY( partial_order(denorm, 0.0) == partial_ordering::greater );
VERIFY( partial_order(0.0, nan) == partial_ordering::unordered );
VERIFY( partial_order(nan, nan) == partial_ordering::unordered );
VERIFY( partial_order(nan, 0.0) == partial_ordering::unordered );
VERIFY( partial_order(-nan, 0.0) == partial_ordering::unordered );
VERIFY( partial_order(-nan, min) == partial_ordering::unordered );
VERIFY( partial_order(-inf, min) == partial_ordering::less );
VERIFY( partial_order(-nan, -inf) == partial_ordering::unordered );
VERIFY( partial_order(-inf, -nan) == partial_ordering::unordered );
VERIFY( partial_order(max, inf) == partial_ordering::less );
VERIFY( partial_order(inf, max) == partial_ordering::greater );
VERIFY( partial_order(inf, nan) == partial_ordering::unordered );
VERIFY( partial_order(1.0, 1.0+epsilon) == partial_ordering::less );
}
namespace N
{
struct X { int i; };
constexpr partial_ordering operator<=>(X l, X r)
{
if (l.i < 0 && r.i < 0)
return partial_ordering::equivalent;
return r.i <=> l.i;
}
}
void
test04()
{
using N::X;
X one{1};
X negone{-1};
VERIFY( partial_order(one, X{1}) == partial_ordering::equivalent );
VERIFY( partial_order(negone, X{-2}) == partial_ordering::equivalent );
VERIFY( partial_order(one, X{2}) == partial_ordering::greater );
static_assert( !noexcept(partial_order(X{1}, X{2})) );
}
int main()
{
test01();
test02();
test03();
test04();
}

View File

@ -0,0 +1,56 @@
// Copyright (C) 2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-options "-std=gnu++2a" }
// { dg-do compile { target c++2a } }
#include <compare>
#include <limits>
using std::strong_order;
using std::strong_ordering;
static_assert( strong_order(1, 2) == strong_ordering::less );
static_assert( strong_order(1, 1) == strong_ordering::equal );
static_assert( strong_order(2, 1) == strong_ordering::greater );
static_assert( noexcept(strong_order(1, 1)) );
constexpr strong_ordering different_cv_quals(int i, const int j)
{
return strong_order(i, j);
}
static_assert( different_cv_quals(42, 999) == strong_ordering::less );
static_assert( different_cv_quals(-999, -999) == strong_ordering::equal );
static_assert( different_cv_quals(-99, -111) == strong_ordering::greater );
namespace N
{
struct X { int i; };
constexpr strong_ordering operator<=>(X l, X r)
{
if (l.i < 0 && r.i < 0)
return strong_ordering::equivalent;
return r.i <=> l.i;
}
}
using N::X;
static_assert( strong_order(X{1}, X{1}) == strong_ordering::equal );
static_assert( strong_order(X{-1}, X{-2}) == strong_ordering::equivalent );
static_assert( strong_order(X{1}, X{2}) == strong_ordering::greater );
static_assert( !noexcept(strong_order(X{1}, X{2})) );

View File

@ -0,0 +1,119 @@
// Copyright (C) 2019 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-options "-std=gnu++2a" }
// { dg-do run { target c++2a } }
#include <compare>
#include <limits>
#include <testsuite_hooks.h>
using std::weak_order;
using std::weak_ordering;
void
test01()
{
int one = 1, two = 2;
VERIFY( weak_order(one, two) == weak_ordering::less );
VERIFY( weak_order(one, one) == weak_ordering::equivalent );
VERIFY( weak_order(two, one) == weak_ordering::greater );
static_assert( noexcept(weak_order(1, 1)) );
}
constexpr weak_ordering different_cv_quals(int i, const int j)
{
return weak_order(i, j);
}
void
test02()
{
int fortytwo = 42, nines = 999, lots = 1000;
VERIFY( different_cv_quals(fortytwo, nines) == weak_ordering::less );
VERIFY( different_cv_quals(-nines, -nines) == weak_ordering::equivalent );
VERIFY( different_cv_quals(-nines, -lots) == weak_ordering::greater );
}
void
test03()
{
double zero = 0.0;
VERIFY( weak_order(zero, zero) == weak_ordering::equivalent );
VERIFY( weak_order(-zero, -zero) == weak_ordering::equivalent );
VERIFY( weak_order(-zero, zero) == weak_ordering::equivalent );
VERIFY( weak_order(zero, -zero) == weak_ordering::equivalent );
double min = std::numeric_limits<double>::lowest();
double max = std::numeric_limits<double>::max();
double nan = std::numeric_limits<double>::quiet_NaN();
double inf = std::numeric_limits<double>::infinity();
double denorm = std::numeric_limits<double>::denorm_min();
double smallest = std::numeric_limits<double>::min();
double epsilon = std::numeric_limits<double>::epsilon();
VERIFY( weak_order(denorm, smallest) == weak_ordering::less );
VERIFY( weak_order(denorm, 0.0) == weak_ordering::greater );
VERIFY( weak_order(0.0, nan) == weak_ordering::less );
VERIFY( weak_order(nan, nan) == weak_ordering::equivalent );
VERIFY( weak_order(nan, -nan) == weak_ordering::greater );
VERIFY( weak_order(-nan, nan) == weak_ordering::less );
VERIFY( weak_order(nan, 0.0) == weak_ordering::greater );
VERIFY( weak_order(-nan, 0.0) == weak_ordering::less );
VERIFY( weak_order(-nan, min) == weak_ordering::less );
VERIFY( weak_order(-inf, min) == weak_ordering::less );
VERIFY( weak_order(-nan, -inf) == weak_ordering::less );
VERIFY( weak_order(-inf, -nan) == weak_ordering::greater );
VERIFY( weak_order(max, inf) == weak_ordering::less );
VERIFY( weak_order(inf, max) == weak_ordering::greater );
VERIFY( weak_order(inf, nan) == weak_ordering::less );
VERIFY( weak_order(1.0, 1.0+epsilon) == weak_ordering::less );
}
namespace N
{
struct X { int i; };
constexpr weak_ordering operator<=>(X l, X r)
{
if (l.i < 0 && r.i < 0)
return weak_ordering::equivalent;
return r.i <=> l.i;
}
}
void
test04()
{
using N::X;
X one{1};
X negone{-1};
VERIFY( weak_order(one, X{1}) == weak_ordering::equivalent );
VERIFY( weak_order(negone, X{-2}) == weak_ordering::equivalent );
VERIFY( weak_order(one, X{2}) == weak_ordering::greater );
static_assert( !noexcept(weak_order(X{1}, X{2})) );
}
int main()
{
test01();
test02();
test03();
test04();
}