tree-ssa-loop-niter.c (number_of_iterations_lt_to_ne): Clean up by removing computation of may_be_zero.

* tree-ssa-loop-niter.c (number_of_iterations_lt_to_ne): Clean up
	by removing computation of may_be_zero.

From-SVN: r238585
This commit is contained in:
Bin Cheng 2016-07-21 10:44:33 +00:00 committed by Bin Cheng
parent a1b01d3403
commit 106d07f8d2
2 changed files with 33 additions and 77 deletions

View File

@ -1,3 +1,8 @@
2016-07-21 Bin Cheng <bin.cheng@arm.com>
* tree-ssa-loop-niter.c (number_of_iterations_lt_to_ne): Clean up
by removing computation of may_be_zero.
2016-07-21 Jakub Jelinek <jakub@redhat.com>
* tree-object-size.c (unknown): Use HOST_WIDE_INT_M1U instead of -1.

View File

@ -1072,12 +1072,8 @@ number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
tree niter_type = TREE_TYPE (step);
tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
tree tmod;
mpz_t mmod;
tree assumption = boolean_true_node, bound, noloop;
bool ret = false, fv_comp_no_overflow;
tree type1 = type;
if (POINTER_TYPE_P (type))
type1 = sizetype;
tree assumption = boolean_true_node, bound;
tree type1 = (POINTER_TYPE_P (type)) ? sizetype : type;
if (TREE_CODE (mod) != INTEGER_CST)
return false;
@ -1085,96 +1081,51 @@ number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
tmod = fold_convert (type1, mod);
mpz_init (mmod);
wi::to_mpz (mod, mmod, UNSIGNED);
mpz_neg (mmod, mmod);
/* If the induction variable does not overflow and the exit is taken,
then the computation of the final value does not overflow. This is
also obviously the case if the new final value is equal to the
current one. Finally, we postulate this for pointer type variables,
as the code cannot rely on the object to that the pointer points being
placed at the end of the address space (and more pragmatically,
TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
if (integer_zerop (mod) || POINTER_TYPE_P (type))
fv_comp_no_overflow = true;
else if (!exit_must_be_taken)
fv_comp_no_overflow = false;
else
fv_comp_no_overflow =
(iv0->no_overflow && integer_nonzerop (iv0->step))
|| (iv1->no_overflow && integer_nonzerop (iv1->step));
if (integer_nonzerop (iv0->step))
then the computation of the final value does not overflow. There
are three cases:
1) The case if the new final value is equal to the current one.
2) Induction varaible has pointer type, as the code cannot rely
on the object to that the pointer points being placed at the
end of the address space (and more pragmatically,
TYPE_{MIN,MAX}_VALUE is not defined for pointers).
3) EXIT_MUST_BE_TAKEN is true, note it implies that the induction
variable does not overflow. */
if (!integer_zerop (mod) && !POINTER_TYPE_P (type) && !exit_must_be_taken)
{
/* The final value of the iv is iv1->base + MOD, assuming that this
computation does not overflow, and that
iv0->base <= iv1->base + MOD. */
if (!fv_comp_no_overflow)
if (integer_nonzerop (iv0->step))
{
/* The final value of the iv is iv1->base + MOD, assuming
that this computation does not overflow, and that
iv0->base <= iv1->base + MOD. */
bound = fold_build2 (MINUS_EXPR, type1,
TYPE_MAX_VALUE (type1), tmod);
assumption = fold_build2 (LE_EXPR, boolean_type_node,
iv1->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else if (POINTER_TYPE_P (type))
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv0->base,
fold_build_pointer_plus (iv1->base, tmod));
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
iv0->base,
fold_build2 (PLUS_EXPR, type1,
iv1->base, tmod));
}
else
{
/* The final value of the iv is iv0->base - MOD, assuming that this
computation does not overflow, and that
iv0->base - MOD <= iv1->base. */
if (!fv_comp_no_overflow)
{
/* The final value of the iv is iv0->base - MOD, assuming
that this computation does not overflow, and that
iv0->base - MOD <= iv1->base. */
bound = fold_build2 (PLUS_EXPR, type1,
TYPE_MIN_VALUE (type1), tmod);
assumption = fold_build2 (GE_EXPR, boolean_type_node,
iv0->base, bound);
if (integer_zerop (assumption))
goto end;
}
if (mpz_cmp (mmod, bnds->below) < 0)
noloop = boolean_false_node;
else if (POINTER_TYPE_P (type))
noloop = fold_build2 (GT_EXPR, boolean_type_node,
fold_build_pointer_plus (iv0->base,
fold_build1 (NEGATE_EXPR,
type1, tmod)),
iv1->base);
else
noloop = fold_build2 (GT_EXPR, boolean_type_node,
fold_build2 (MINUS_EXPR, type1,
iv0->base, tmod),
iv1->base);
if (integer_zerop (assumption))
return false;
else if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions, assumption);
}
if (!integer_nonzerop (assumption))
niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter->assumptions,
assumption);
if (!integer_zerop (noloop))
niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
niter->may_be_zero,
noloop);
/* Since we are transforming LT to NE and DELTA is constant, there
is no need to compute may_be_zero because this loop must roll. */
bounds_add (bnds, wi::to_widest (mod), type);
*delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
ret = true;
end:
mpz_clear (mmod);
return ret;
return true;
}
/* Add assertions to NITER that ensure that the control variable of the loop