AArch32: correct dot-product RTL patterns.

The previous fix for this problem was wrong due to a subtle difference between
where NEON expects the RMW values and where intrinsics expects them.

The insn pattern is modeled after the intrinsics and so needs an expand for
the vectorizer optab to switch the RTL.

However operand[3] is not expected to be written to so the current pattern is
bogus.

Instead we use the expand to shuffle around the RTL.

The vectorizer expects operands[3] and operands[0] to be
the same but the aarch64 intrinsics expanders expect operands[0] and
operands[1] to be the same.

This also fixes some issues with big-endian, each dot product performs 4 8-byte
multiplications.  However compared to AArch64 we don't enter lanes in GCC
lane indexed in AArch32 aside from loads/stores.  This means no lane remappings
are done in arm-builtins.c and so none should be done at the instruction side.

There are some other instructions that need inspections as I think there are
more incorrect ones.

Third there was a bug in the ACLE specication for dot product which has now been
fixed[1].  This means some intrinsics were missing and are added by this patch.

Bootstrapped and regtested on arm-none-linux-gnueabihf and no issues.

Ok for master? and active branches after some stew?

[1] https://github.com/ARM-software/acle/releases/tag/r2021Q3

gcc/ChangeLog:

	* config/arm/arm_neon.h (vdot_laneq_u32, vdotq_laneq_u32,
	vdot_laneq_s32, vdotq_laneq_s32): New.
	* config/arm/arm_neon_builtins.def (sdot_laneq, udot_laneq): New.
	* config/arm/neon.md (neon_<sup>dot<vsi2qi>): New.
	(<sup>dot_prod<vsi2qi>): Re-order rtl.
	(neon_<sup>dot_lane<vsi2qi>): Fix rtl order and endiannes.
	(neon_<sup>dot_laneq<vsi2qi>): New.

gcc/testsuite/ChangeLog:

	* gcc.target/arm/simd/vdot-compile.c: Add new cases.
	* gcc.target/arm/simd/vdot-exec.c: Likewise.
This commit is contained in:
Tamar Christina 2022-02-07 12:54:42 +00:00
parent db95441cf5
commit 12aae3b93a
5 changed files with 146 additions and 62 deletions

View File

@ -18243,6 +18243,35 @@ vdotq_lane_s32 (int32x4_t __r, int8x16_t __a, int8x8_t __b, const int __index)
return __builtin_neon_sdot_lanev16qi (__r, __a, __b, __index);
}
__extension__ extern __inline uint32x2_t
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vdot_laneq_u32 (uint32x2_t __r, uint8x8_t __a, uint8x16_t __b, const int __index)
{
return __builtin_neon_udot_laneqv8qi_uuuus (__r, __a, __b, __index);
}
__extension__ extern __inline uint32x4_t
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vdotq_laneq_u32 (uint32x4_t __r, uint8x16_t __a, uint8x16_t __b,
const int __index)
{
return __builtin_neon_udot_laneqv16qi_uuuus (__r, __a, __b, __index);
}
__extension__ extern __inline int32x2_t
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vdot_laneq_s32 (int32x2_t __r, int8x8_t __a, int8x16_t __b, const int __index)
{
return __builtin_neon_sdot_laneqv8qi (__r, __a, __b, __index);
}
__extension__ extern __inline int32x4_t
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vdotq_laneq_s32 (int32x4_t __r, int8x16_t __a, int8x16_t __b, const int __index)
{
return __builtin_neon_sdot_laneqv16qi (__r, __a, __b, __index);
}
#pragma GCC pop_options
#endif

View File

@ -342,6 +342,8 @@ VAR2 (TERNOP, sdot, v8qi, v16qi)
VAR2 (UTERNOP, udot, v8qi, v16qi)
VAR2 (MAC_LANE, sdot_lane, v8qi, v16qi)
VAR2 (UMAC_LANE, udot_lane, v8qi, v16qi)
VAR2 (MAC_LANE, sdot_laneq, v8qi, v16qi)
VAR2 (UMAC_LANE, udot_laneq, v8qi, v16qi)
VAR1 (USTERNOP, usdot, v8qi)
VAR2 (USMAC_LANE_QUADTUP, usdot_lane, v8qi, v16qi)

View File

@ -2866,20 +2866,49 @@
})
;; These instructions map to the __builtins for the Dot Product operations.
(define_insn "neon_<sup>dot<vsi2qi>"
;; These map to the auto-vectorizer Dot Product optab.
;; The auto-vectorizer expects a dot product builtin that also does an
;; accumulation into the provided register.
;; Given the following pattern
;;
;; for (i=0; i<len; i++) {
;; c = a[i] * b[i];
;; r += c;
;; }
;; return result;
;;
;; This can be auto-vectorized to
;; r = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
;;
;; given enough iterations. However the vectorizer can keep unrolling the loop
;; r += a[4]*b[4] + a[5]*b[5] + a[6]*b[6] + a[7]*b[7];
;; r += a[8]*b[8] + a[9]*b[9] + a[10]*b[10] + a[11]*b[11];
;; ...
;;
;; and so the vectorizer provides r, in which the result has to be accumulated.
(define_insn "<sup>dot_prod<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand" "=w")
(plus:VCVTI (match_operand:VCVTI 1 "register_operand" "0")
(unspec:VCVTI [(match_operand:<VSI2QI> 2
"register_operand" "w")
(match_operand:<VSI2QI> 3
"register_operand" "w")]
DOTPROD)))]
(plus:VCVTI
(unspec:VCVTI [(match_operand:<VSI2QI> 1 "register_operand" "w")
(match_operand:<VSI2QI> 2 "register_operand" "w")]
DOTPROD)
(match_operand:VCVTI 3 "register_operand" "0")))]
"TARGET_DOTPROD"
"v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>2, %<V_reg>3"
"v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>1, %<V_reg>2"
[(set_attr "type" "neon_dot<q>")]
)
;; These instructions map to the __builtins for the Dot Product operations
(define_expand "neon_<sup>dot<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand" "=w")
(plus:VCVTI
(unspec:VCVTI [(match_operand:<VSI2QI> 2 "register_operand")
(match_operand:<VSI2QI> 3 "register_operand")]
DOTPROD)
(match_operand:VCVTI 1 "register_operand")))]
"TARGET_DOTPROD"
)
;; These instructions map to the __builtins for the Dot Product operations.
(define_insn "neon_usdot<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand" "=w")
@ -2898,17 +2927,40 @@
;; indexed operations.
(define_insn "neon_<sup>dot_lane<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand" "=w")
(plus:VCVTI (match_operand:VCVTI 1 "register_operand" "0")
(unspec:VCVTI [(match_operand:<VSI2QI> 2
"register_operand" "w")
(plus:VCVTI
(unspec:VCVTI [(match_operand:<VSI2QI> 2 "register_operand" "w")
(match_operand:V8QI 3 "register_operand" "t")
(match_operand:SI 4 "immediate_operand" "i")]
DOTPROD)))]
DOTPROD)
(match_operand:VCVTI 1 "register_operand" "0")))]
"TARGET_DOTPROD"
"v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>2, %P3[%c4]";
[(set_attr "type" "neon_dot<q>")]
)
;; These instructions map to the __builtins for the Dot Product
;; indexed operations.
(define_insn "neon_<sup>dot_laneq<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand" "=w")
(plus:VCVTI
(unspec:VCVTI [(match_operand:<VSI2QI> 2 "register_operand" "w")
(match_operand:V16QI 3 "register_operand" "t")
(match_operand:SI 4 "immediate_operand" "i")]
DOTPROD)
(match_operand:VCVTI 1 "register_operand" "0")))]
"TARGET_DOTPROD"
{
operands[4]
= GEN_INT (NEON_ENDIAN_LANE_N (V8QImode, INTVAL (operands[4])));
return "v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>2, %P3[%c4]";
int lane = INTVAL (operands[4]);
if (lane > GET_MODE_NUNITS (V2SImode) - 1)
{
operands[4] = GEN_INT (lane - GET_MODE_NUNITS (V2SImode));
return "v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>2, %f3[%c4]";
}
else
{
operands[4] = GEN_INT (lane);
return "v<sup>dot.<opsuffix>\\t%<V_reg>0, %<V_reg>2, %e3[%c4]";
}
}
[(set_attr "type" "neon_dot<q>")]
)
@ -2932,43 +2984,6 @@
[(set_attr "type" "neon_dot<q>")]
)
;; These expands map to the Dot Product optab the vectorizer checks for.
;; The auto-vectorizer expects a dot product builtin that also does an
;; accumulation into the provided register.
;; Given the following pattern
;;
;; for (i=0; i<len; i++) {
;; c = a[i] * b[i];
;; r += c;
;; }
;; return result;
;;
;; This can be auto-vectorized to
;; r = a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3];
;;
;; given enough iterations. However the vectorizer can keep unrolling the loop
;; r += a[4]*b[4] + a[5]*b[5] + a[6]*b[6] + a[7]*b[7];
;; r += a[8]*b[8] + a[9]*b[9] + a[10]*b[10] + a[11]*b[11];
;; ...
;;
;; and so the vectorizer provides r, in which the result has to be accumulated.
(define_expand "<sup>dot_prod<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand")
(plus:VCVTI (unspec:VCVTI [(match_operand:<VSI2QI> 1
"register_operand")
(match_operand:<VSI2QI> 2
"register_operand")]
DOTPROD)
(match_operand:VCVTI 3 "register_operand")))]
"TARGET_DOTPROD"
{
emit_insn (
gen_neon_<sup>dot<vsi2qi> (operands[3], operands[3], operands[1],
operands[2]));
emit_insn (gen_rtx_SET (operands[0], operands[3]));
DONE;
})
;; Auto-vectorizer pattern for usdot
(define_expand "usdot_prod<vsi2qi>"
[(set (match_operand:VCVTI 0 "register_operand")

View File

@ -49,8 +49,28 @@ int32x4_t sfooq_lane (int32x4_t r, int8x16_t x, int8x8_t y)
return vdotq_lane_s32 (r, x, y, 0);
}
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\td[0-9]+, d[0-9]+, d[0-9]+} 4 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\tq[0-9]+, q[0-9]+, q[0-9]+} 2 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\td[0-9]+, d[0-9]+, d[0-9]+\[#?[0-9]\]} 2 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\tq[0-9]+, q[0-9]+, d[0-9]+\[#?[0-9]\]} 2 } } */
int32x2_t sfoo_laneq1 (int32x2_t r, int8x8_t x, int8x16_t y)
{
return vdot_laneq_s32 (r, x, y, 0);
}
int32x4_t sfooq_lane1 (int32x4_t r, int8x16_t x, int8x16_t y)
{
return vdotq_laneq_s32 (r, x, y, 0);
}
int32x2_t sfoo_laneq2 (int32x2_t r, int8x8_t x, int8x16_t y)
{
return vdot_laneq_s32 (r, x, y, 2);
}
int32x4_t sfooq_lane2 (int32x4_t r, int8x16_t x, int8x16_t y)
{
return vdotq_laneq_s32 (r, x, y, 2);
}
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\td[0-9]+, d[0-9]+, d[0-9]+} 6 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\tq[0-9]+, q[0-9]+, q[0-9]+} 2 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\td[0-9]+, d[0-9]+, d[0-9]+\[#?[0-9]\]} 4 } } */
/* { dg-final { scan-assembler-times {v[us]dot\.[us]8\tq[0-9]+, q[0-9]+, d[0-9]+\[#?[0-9]\]} 4 } } */

View File

@ -10,7 +10,7 @@ extern void abort();
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define ORDER(x, y) y
#else
# define ORDER(x, y) x - y
# define ORDER(x, y) (x - y)
#endif
#define P(n1,n2) n1,n1,n1,n1,n2,n2,n2,n2
@ -33,7 +33,20 @@ extern void abort();
t3 f##_##rx1 = {0}; \
f##_##rx1 = f (f##_##rx1, f##_##x, f##_##y, ORDER (1, 1)); \
if (f##_##rx1[0] != n3 || f##_##rx1[1] != n4) \
abort ();
#define P2(n1,n2) n1,n1,n1,n1,n2,n2,n2,n2,n1,n1,n1,n1,n2,n2,n2,n2
#define TEST_LANEQ(t1, t2, t3, f, r1, r2, n1, n2, n3, n4) \
ARR(f, x, t1, r1); \
ARR(f, y, t2, r2); \
t3 f##_##rx = {0}; \
f##_##rx = f (f##_##rx, f##_##x, f##_##y, ORDER (3, 2)); \
if (f##_##rx[0] != n1 || f##_##rx[1] != n2) \
abort (); \
t3 f##_##rx1 = {0}; \
f##_##rx1 = f (f##_##rx1, f##_##x, f##_##y, ORDER (3, 3)); \
if (f##_##rx1[0] != n3 || f##_##rx1[1] != n4) \
abort ();
int
main()
@ -45,11 +58,16 @@ main()
TEST (int8x16_t, int8x16_t, int32x4_t, vdotq_s32, P(1,2), P(-2,-3), -8, -24);
TEST_LANE (uint8x8_t, uint8x8_t, uint32x2_t, vdot_lane_u32, P(1,2), P(2,3), 8, 16, 12, 24);
TEST_LANE (int8x8_t, int8x8_t, int32x2_t, vdot_lane_s32, P(1,2), P(-2,-3), -8, -16, -12, -24);
TEST_LANE (uint8x16_t, uint8x8_t, uint32x4_t, vdotq_lane_u32, P(1,2), P(2,3), 8, 16, 12, 24);
TEST_LANE (int8x16_t, int8x8_t, int32x4_t, vdotq_lane_s32, P(1,2), P(-2,-3), -8, -16, -12, -24);
TEST_LANEQ (uint8x8_t, uint8x16_t, uint32x2_t, vdot_laneq_u32, P(1,2), P2(2,3), 8, 16, 12, 24);
TEST_LANEQ (int8x8_t, int8x16_t, int32x2_t, vdot_laneq_s32, P(1,2), P2(-2,-3), -8, -16, -12, -24);
TEST_LANEQ (uint8x16_t, uint8x16_t, uint32x4_t, vdotq_laneq_u32, P2(1,2), P2(2,3), 8, 16, 12, 24);
TEST_LANEQ (int8x16_t, int8x16_t, int32x4_t, vdotq_laneq_s32, P2(1,2), P2(-2,-3), -8, -16, -12, -24);
return 0;
}