Field.java (toString): Don't rely on Class.toString.

* java/lang/reflect/Field.java (toString): Don't rely on
	Class.toString.

From-SVN: r36341
This commit is contained in:
Tom Tromey 2000-09-11 22:49:29 +00:00 committed by Tom Tromey
parent c82fd9b858
commit 14203c9cac
3 changed files with 421 additions and 8 deletions

View File

@ -1,3 +1,8 @@
2000-09-11 Tom Tromey <tromey@cygnus.com>
* java/lang/reflect/Field.java (toString): Don't rely on
Class.toString.
2000-09-08 Tom Tromey <tromey@cygnus.com>
* gnu/gcj/convert/BytesToUnicode.java (getDefaultDecoder): Let

View File

@ -1,4 +1,4 @@
/* Copyright (C) 1998, 1999 Free Software Foundation
/* Copyright (C) 1998, 1999, 2000 Free Software Foundation
This file is part of libgcj.
@ -8,17 +8,26 @@ details. */
package java.io;
/**
* @author Warren Levy <warrenl@cygnus.com>
* @date October 20, 1998.
*/
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
* "The Java Language Specification", ISBN 0-201-63451-1
* plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
* Status: Believed complete and correct.
*/
/**
* This subclass of <code>FilteredInputStream</code> implements the
* <code>DataInput</code> interface that provides method for reading primitive
* Java data types from a stream.
*
* @see DataInput
*
* @version 0.0
*
* @author Warren Levy <warrenl@cygnus.com>
* @author Aaron M. Renn (arenn@urbanophile.com)
* @date October 20, 1998.
*/
public class DataInputStream extends FilterInputStream implements DataInput
{
// readLine() hack to ensure that an '\r' not followed by an '\n' is
@ -26,16 +35,51 @@ public class DataInputStream extends FilterInputStream implements DataInput
// if that char is a '\n'
boolean ignoreInitialNewline = false;
/**
* This constructor initializes a new <code>DataInputStream</code>
* to read from the specified subordinate stream.
*
* @param in The subordinate <code>InputStream</code> to read from
*/
public DataInputStream(InputStream in)
{
super(in);
}
/**
* This method reads bytes from the underlying stream into the specified
* byte array buffer. It will attempt to fill the buffer completely, but
* may return a short count if there is insufficient data remaining to be
* read to fill the buffer.
*
* @param b The buffer into which bytes will be read.
*
* @return The actual number of bytes read, or -1 if end of stream reached
* before reading any bytes.
*
* @exception IOException If an error occurs.
*/
public final int read(byte[] b) throws IOException
{
return super.read(b, 0, b.length);
}
/**
* This method reads bytes from the underlying stream into the specified
* byte array buffer. It will attempt to read <code>len</code> bytes and
* will start storing them at position <code>off</code> into the buffer.
* This method can return a short count if there is insufficient data
* remaining to be read to complete the desired read length.
*
* @param b The buffer into which bytes will be read.
* @param off The offset into the buffer to start storing bytes.
* @param len The requested number of bytes to read.
*
* @return The actual number of bytes read, or -1 if end of stream reached
* before reading any bytes.
*
* @exception IOException If an error occurs.
*/
public final int read(byte[] b, int off, int len) throws IOException
{
if (off < 0 || len < 0 || off + len > b.length)
@ -44,11 +88,42 @@ public class DataInputStream extends FilterInputStream implements DataInput
return super.read(b, off, len);
}
/**
* This method reads a Java boolean value from an input stream. It does
* so by reading a single byte of data. If that byte is zero, then the
* value returned is <code>false</code>. If the byte is non-zero, then
* the value returned is <code>true</code>.
* <p>
* This method can read a <code>boolean</code> written by an object
* implementing the <code>writeBoolean()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>boolean</code> value read
*
* @exception EOFException If end of file is reached before reading
* the boolean
* @exception IOException If any other error occurs
*/
public final boolean readBoolean() throws IOException
{
return (readByte() != 0);
}
/**
* This method reads a Java byte value from an input stream. The value
* is in the range of -128 to 127.
* <p>
* This method can read a <code>byte</code> written by an object
* implementing the <code>writeByte()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>byte</code> value read
*
* @exception EOFException If end of file is reached before reading the byte
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final byte readByte() throws IOException
{
int i = read();
@ -58,26 +133,118 @@ public class DataInputStream extends FilterInputStream implements DataInput
return (byte) i;
}
/**
* This method reads a Java <code>char</code> value from an input stream.
* It operates by reading two bytes from the stream and converting them to
* a single 16-bit Java <code>char</code>. The two bytes are stored most
* significant byte first (i.e., "big endian") regardless of the native
* host byte ordering.
* <p>
* As an example, if <code>byte1</code> and <code>byte2</code>
* represent the first and second byte read from the stream
* respectively, they will be transformed to a <code>char</code> in
* the following manner:
* <p>
* <code>(char)(((byte1 & 0xFF) << 8) | (byte2 & 0xFF)</code>
* <p>
* This method can read a <code>char</code> written by an object
* implementing the <code>writeChar()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>char</code> value read
*
* @exception EOFException If end of file is reached before reading the char
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final char readChar() throws IOException
{
return (char) ((readByte() << 8) | readUnsignedByte());
}
/**
* This method reads a Java double value from an input stream. It operates
* by first reading a <code>long</code> value from the stream by calling the
* <code>readLong()</code> method in this interface, then converts
* that <code>long</code> to a <code>double</code> using the
* <code>longBitsToDouble</code> method in the class
* <code>java.lang.Double</code>
* <p>
* This method can read a <code>double</code> written by an object
* implementing the <code>writeDouble()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>double</code> value read
*
* @exception EOFException If end of file is reached before reading
* the double
* @exception IOException If any other error occurs
*
* @see java.lang.Double
* @see DataOutput
*/
public final double readDouble() throws IOException
{
return Double.longBitsToDouble(readLong());
}
/**
* This method reads a Java float value from an input stream. It
* operates by first reading an <code>int</code> value from the
* stream by calling the <code>readInt()</code> method in this
* interface, then converts that <code>int</code> to a
* <code>float</code> using the <code>intBitsToFloat</code> method
* in the class <code>java.lang.Float</code>
* <p>
* This method can read a <code>float</code> written by an object
* implementing the * <code>writeFloat()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>float</code> value read
*
* @exception EOFException If end of file is reached before reading the float
* @exception IOException If any other error occurs
*
* @see java.lang.Float
* @see DataOutput */
public final float readFloat() throws IOException
{
return Float.intBitsToFloat(readInt());
}
/**
* This method reads raw bytes into the passed array until the array is
* full. Note that this method blocks until the data is available and
* throws an exception if there is not enough data left in the stream to
* fill the buffer
*
* @param b The buffer into which to read the data
*
* @exception EOFException If end of file is reached before filling
* the buffer
* @exception IOException If any other error occurs */
public final void readFully(byte[] b) throws IOException
{
readFully(b, 0, b.length);
}
/**
* This method reads raw bytes into the passed array
* <code>buf</code> starting <code>offset</code> bytes into the
* buffer. The number of bytes read will be exactly
* <code>len</code> Note that this method blocks until the data is
* available and * throws an exception if there is not enough data
* left in the stream to read <code>len</code> bytes.
*
* @param buf The buffer into which to read the data
* @param offset The offset into the buffer to start storing data
* @param len The number of bytes to read into the buffer
*
* @exception EOFException If end of file is reached before filling
* the buffer
* @exception IOException If any other error occurs
*/
public final void readFully(byte[] b, int off, int len) throws IOException
{
if (off < 0 || len < 0 || off + len > b.length)
@ -94,6 +261,33 @@ public class DataInputStream extends FilterInputStream implements DataInput
}
}
/**
* This method reads a Java <code>int</code> value from an input
* stream It operates by reading four bytes from the stream and
* converting them to a single Java <code>int</code> The bytes are
* stored most significant byte first (i.e., "big endian")
* regardless of the native host byte ordering.
* <p>
* As an example, if <code>byte1</code> through <code>byte4</code>
* represent the first four bytes read from the stream, they will be
* transformed to an <code>int</code> in the following manner:
* <p>
* <code>(int)(((byte1 & 0xFF) << 24) + ((byte2 & 0xFF) << 16) +
* ((byte3 & 0xFF) << 8) + (byte4 & 0xFF)))</code>
* <p>
* The value returned is in the range of 0 to 65535.
* <p>
* This method can read an <code>int</code> written by an object
* implementing the <code>writeInt()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>int</code> value read
*
* @exception EOFException If end of file is reached before reading the int
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final int readInt() throws IOException
{
int retval = 0;
@ -103,7 +297,32 @@ public class DataInputStream extends FilterInputStream implements DataInput
return retval;
}
// Deprecated as of JDK 1.1
/**
* This method reads the next line of text data from an input
* stream. It operates by reading bytes and converting those bytes
* to <code>char</code> values by treating the byte read as the low
* eight bits of the <code>char</code> and using 0 as the high eight
* bits. Because of this, it does not support the full 16-bit
* Unicode character set.
* <p>
* The reading of bytes ends when either the end of file or a line
* terminator is encountered. The bytes read are then returned as a
* <code>String</code> A line terminator is a byte sequence
* consisting of either <code>\r</code>, <code>\n</code> or
* <code>\r\n</code>. These termination charaters are discarded and
* are not returned as part of the string.
* <p>
* This method can read data that was written by an object implementing the
* <code>writeLine()</code> method in <code>DataOutput</code>.
*
* @return The line read as a <code>String</code>
*
* @exception IOException If an error occurs
*
* @see DataOutput
*
* @deprecated
*/
public final String readLine() throws IOException
{
StringBuffer strb = new StringBuffer();
@ -191,6 +410,35 @@ public class DataInputStream extends FilterInputStream implements DataInput
return strb.length() > 0 ? strb.toString() : "";
}
/**
* This method reads a Java long value from an input stream
* It operates by reading eight bytes from the stream and converting them to
* a single Java <code>long</code> The bytes are stored most
* significant byte first (i.e., "big endian") regardless of the native
* host byte ordering.
* <p>
* As an example, if <code>byte1</code> through <code>byte8</code>
* represent the first eight bytes read from the stream, they will
* be transformed to an <code>long</code> in the following manner:
* <p>
* <code>(long)((((long)byte1 & 0xFF) << 56) + (((long)byte2 & 0xFF) << 48) +
* (((long)byte3 & 0xFF) << 40) + (((long)byte4 & 0xFF) << 32) +
* (((long)byte5 & 0xFF) << 24) + (((long)byte6 & 0xFF) << 16) +
* (((long)byte7 & 0xFF) << 8) + ((long)byte9 & 0xFF)))</code>
* <p>
* The value returned is in the range of 0 to 65535.
* <p>
* This method can read an <code>long</code> written by an object
* implementing the <code>writeLong()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>long</code> value read
*
* @exception EOFException If end of file is reached before reading the long
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final long readLong() throws IOException
{
long retval = 0L;
@ -200,11 +448,54 @@ public class DataInputStream extends FilterInputStream implements DataInput
return retval;
}
/**
* This method reads a signed 16-bit value into a Java in from the
* stream. It operates by reading two bytes from the stream and
* converting them to a single 16-bit Java <code>short</code>. The
* two bytes are stored most significant byte first (i.e., "big
* endian") regardless of the native host byte ordering.
* <p>
* As an example, if <code>byte1</code> and <code>byte2</code>
* represent the first and second byte read from the stream
* respectively, they will be transformed to a <code>short</code>. in
* the following manner:
* <p>
* <code>(short)(((byte1 & 0xFF) << 8) | (byte2 & 0xFF)</code>
* <p>
* The value returned is in the range of -32768 to 32767.
* <p>
* This method can read a <code>short</code> written by an object
* implementing the <code>writeShort()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The <code>short</code> value read
*
* @exception EOFException If end of file is reached before reading the value
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final short readShort() throws IOException
{
return (short) ((readByte() << 8) | readUnsignedByte());
}
/**
* This method reads 8 unsigned bits into a Java <code>int</code>
* value from the stream. The value returned is in the range of 0 to
* 255.
* <p>
* This method can read an unsigned byte written by an object
* implementing the <code>writeUnsignedByte()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The unsigned bytes value read as a Java <code>int</code>.
*
* @exception EOFException If end of file is reached before reading the value
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final int readUnsignedByte() throws IOException
{
int i = read();
@ -214,16 +505,121 @@ public class DataInputStream extends FilterInputStream implements DataInput
return (i & 0xFF);
}
/**
* This method reads 16 unsigned bits into a Java int value from the stream.
* It operates by reading two bytes from the stream and converting them to
* a single Java <code>int</code> The two bytes are stored most
* significant byte first (i.e., "big endian") regardless of the native
* host byte ordering.
* <p>
* As an example, if <code>byte1</code> and code{byte2</code>
* represent the first and second byte read from the stream
* respectively, they will be transformed to an <code>int</code> in
* the following manner:
* <p>
* <code>(int)(((byte1 & 0xFF) << 8) + (byte2 & 0xFF))</code>
* <p>
* The value returned is in the range of 0 to 65535.
* <p>
* This method can read an unsigned short written by an object
* implementing the <code>writeUnsignedShort()</code> method in the
* <code>DataOutput</code> interface.
*
* @return The unsigned short value read as a Java <code>int</code>
*
* @exception EOFException If end of file is reached before reading the value
* @exception IOException If any other error occurs
*/
public final int readUnsignedShort() throws IOException
{
return (readUnsignedByte() << 8) | readUnsignedByte();
}
/**
* This method reads a <code>String</code> from an input stream that
* is encoded in a modified UTF-8 format. This format has a leading
* two byte sequence that contains the remaining number of bytes to
* read. This two byte sequence is read using the
* <code>readUnsignedShort()</code> method of this interface.
* <p>
* After the number of remaining bytes have been determined, these
* bytes are read an transformed into <code>char</code> values.
* These <code>char</code> values are encoded in the stream using
* either a one, two, or three byte format. The particular format
* in use can be determined by examining the first byte read.
* <p>
* If the first byte has a high order bit of 0, then that character
* consists on only one byte. This character value consists of
* seven bits that are at positions 0 through 6 of the byte. As an
* example, if <code>byte1</code> is the byte read from the stream,
* it would be converted to a <code>char</code> like so:
* <p>
* <code>(char)byte1</code>
* <p>
* If the first byte has 110 as its high order bits, then the
* character consists of two bytes. The bits that make up the character
* value are in positions 0 through 4 of the first byte and bit positions
* 0 through 5 of the second byte. (The second byte should have
* 10 as its high order bits). These values are in most significant
* byte first (i.e., "big endian") order.
* <p>
* As an example, if <code>byte1</code> and <code>byte2</code> are
* the first two bytes read respectively, and the high order bits of
* them match the patterns which indicate a two byte character
* encoding, then they would be converted to a Java
* <code>char</code> like so:
* <p>
* <code>(char)(((byte1 & 0x1F) << 6) | (byte2 & 0x3F))</code>
* <p>
* If the first byte has a 1110 as its high order bits, then the
* character consists of three bytes. The bits that make up the character
* value are in positions 0 through 3 of the first byte and bit positions
* 0 through 5 of the other two bytes. (The second and third bytes should
* have 10 as their high order bits). These values are in most
* significant byte first (i.e., "big endian") order.
* <p>
* As an example, if <code>byte1</code> <code>byte2</code> and
* <code>byte3</code> are the three bytes read, and the high order
* bits of them match the patterns which indicate a three byte
* character encoding, then they would be converted to a Java
* <code>char</code> like so:
* <p>
* <code>(char)(((byte1 & 0x0F) << 12) | ((byte2 & 0x3F) << 6) | (byte3 & 0x3F))</code>
* <p>
* Note that all characters are encoded in the method that requires
* the fewest number of bytes with the exception of the character
* with the value of <code>&#92;u0000</code> which is encoded as two
* bytes. This is a modification of the UTF standard used to
* prevent C language style <code>NUL</code> values from appearing
* in the byte stream.
* <p>
* This method can read data that was written by an object implementing the
* <code>writeUTF()</code> method in <code>DataOutput</code>
*
* @returns The <code>String</code> read
*
* @exception EOFException If end of file is reached before reading
* the String
* @exception UTFDataFormatException If the data is not in UTF-8 format
* @exception IOException If any other error occurs
*
* @see DataOutput
*/
public final String readUTF() throws IOException
{
return readUTF(this);
}
/**
* This method reads a String encoded in UTF-8 format from the
* specified <code>DataInput</code> source.
*
* @param in The <code>DataInput</code> source to read from
*
* @return The String read from the source
*
* @exception IOException If an error occurs
*/
public final static String readUTF(DataInput in) throws IOException
{
final int UTFlen = in.readUnsignedShort();
@ -265,6 +661,18 @@ public class DataInputStream extends FilterInputStream implements DataInput
return strbuf.toString();
}
/**
* This method attempts to skip and discard the specified number of bytes
* in the input stream. It may actually skip fewer bytes than requested.
* The actual number of bytes skipped is returned. This method will not
* skip any bytes if passed a negative number of bytes to skip.
*
* @param n The requested number of bytes to skip.
*
* @return The number of bytes actually skipped.
*
* @exception IOException If an error occurs.
*/
public final int skipBytes(int n) throws IOException
{
// The contract in the Java Lang. Spec. says that this never

View File

@ -257,7 +257,7 @@ public final class Field extends AccessibleObject implements Member
Modifier.toString(mods, sbuf);
sbuf.append(' ');
}
sbuf.append(getType());
sbuf.append(getType().getName());
sbuf.append(' ');
sbuf.append(getDeclaringClass().getName());
sbuf.append('.');