Reverting 'AsyncI/O patch committed' as it is breaking bare-metal builds.

2018-07-31  Andre Vieira  <andre.simoesdiasvieira@arm.com>

	Revert 'AsyncI/O patch committed'
	2018-07-25  Nicolas Koenig  <koenigni@gcc.gnu.org>
		Thomas Koenig <tkoenig@gcc.gnu.org>

	PR fortran/25829
	* gfortran.texi: Add description of asynchronous I/O.
	* trans-decl.c (gfc_finish_var_decl): Treat asynchronous variables
	as volatile.
	* trans-io.c (gfc_build_io_library_fndecls): Rename st_wait to
	st_wait_async and change argument spec from ".X" to ".w".
	(gfc_trans_wait): Pass ID argument via reference.

2018-07-31  Andre Vieira  <andre.simoesdiasvieira@arm.com>

	Revert 'AsyncI/O patch committed'
	2018-07-25  Nicolas Koenig  <koenigni@gcc.gnu.org>
		Thomas Koenig <tkoenig@gcc.gnu.org>

	PR fortran/25829
	* gfortran.dg/f2003_inquire_1.f03: Add write statement.
	* gfortran.dg/f2003_io_1.f03: Add wait statement.

2018-07-31  Andre Vieira  <andre.simoesdiasvieira@arm.com>

	Revert 'AsyncI/O patch committed'
	2018-07-25  Nicolas Koenig  <koenigni@gcc.gnu.org>
		Thomas Koenig <tkoenig@gcc.gnu.org>

	PR fortran/25829
	* Makefile.am: Add async.c to gfor_io_src.
	Add async.h to gfor_io_headers.
	* Makefile.in: Regenerated.
	* gfortran.map: Add _gfortran_st_wait_async.
	* io/async.c: New file.
	* io/async.h: New file.
	* io/close.c: Include async.h.
	(st_close): Call async_wait for an asynchronous unit.
	* io/file_pos.c (st_backspace): Likewise.
	(st_endfile): Likewise.
	(st_rewind): Likewise.
	(st_flush): Likewise.
	* io/inquire.c: Add handling for asynchronous PENDING
	and ID arguments.
	* io/io.h (st_parameter_dt): Add async bit.
	(st_parameter_wait): Correct.
	(gfc_unit): Add au pointer.
	(st_wait_async): Add prototype.
	(transfer_array_inner): Likewise.
	(st_write_done_worker): Likewise.
	* io/open.c: Include async.h.
	(new_unit): Initialize asynchronous unit.
	* io/transfer.c (async_opt): New struct.
	(wrap_scalar_transfer): New function.
	(transfer_integer): Call wrap_scalar_transfer to do the work.
	(transfer_real): Likewise.
	(transfer_real_write): Likewise.
	(transfer_character): Likewise.
	(transfer_character_wide): Likewise.
	(transfer_complex): Likewise.
	(transfer_array_inner): New function.
	(transfer_array): Call transfer_array_inner.
	(transfer_derived): Call wrap_scalar_transfer.
	(data_transfer_init): Check for asynchronous I/O.
	Perform a wait operation on any pending asynchronous I/O
	if the data transfer is synchronous. Copy PDT and enqueue
	thread for data transfer.
	(st_read_done_worker): New function.
	(st_read_done): Enqueue transfer or call st_read_done_worker.
	(st_write_done_worker): New function.
	(st_write_done): Enqueue transfer or call st_read_done_worker.
	(st_wait): Document as no-op for compatibility reasons.
	(st_wait_async): New function.
	* io/unit.c (insert_unit): Use macros LOCK, UNLOCK and TRYLOCK;
	add NOTE where necessary.
	(get_gfc_unit): Likewise.
	(init_units): Likewise.
	(close_unit_1): Likewise. Call async_close if asynchronous.
	(close_unit): Use macros LOCK and UNLOCK.
	(finish_last_advance_record): Likewise.
	(newunit_alloc): Likewise.
	* io/unix.c (find_file): Likewise.
	(flush_all_units_1): Likewise.
	(flush_all_units): Likewise.
	* libgfortran.h (generate_error_common): Add prototype.
	* runtime/error.c: Include io.h and async.h.
	(generate_error_common): New function.

2018-07-31  Andre Vieira  <andre.simoesdiasvieira@arm.com>

	Revert 'AsyncI/O patch committed'.
	2018-07-25  Nicolas Koenig  <koenigni@gcc.gnu.org>
		Thomas Koenig <tkoenig@gcc.gnu.org>

	PR fortran/25829
	* testsuite/libgomp.fortran/async_io_1.f90: New test.
	* testsuite/libgomp.fortran/async_io_2.f90: New test.
	* testsuite/libgomp.fortran/async_io_3.f90: New test.
	* testsuite/libgomp.fortran/async_io_4.f90: New test.
	* testsuite/libgomp.fortran/async_io_5.f90: New test.
	* testsuite/libgomp.fortran/async_io_6.f90: New test.
	* testsuite/libgomp.fortran/async_io_7.f90: New test.

From-SVN: r263082
This commit is contained in:
Andre Vieira 2018-07-31 08:42:21 +00:00 committed by Andre Vieira
parent 58691d4a04
commit 1d4a51cf50
32 changed files with 254 additions and 1768 deletions

View File

@ -1,3 +1,17 @@
2018-07-31 Andre Vieira <andre.simoesdiasvieira@arm.com>
Revert 'AsyncI/O patch committed'
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/25829
* gfortran.texi: Add description of asynchronous I/O.
* trans-decl.c (gfc_finish_var_decl): Treat asynchronous variables
as volatile.
* trans-io.c (gfc_build_io_library_fndecls): Rename st_wait to
st_wait_async and change argument spec from ".X" to ".w".
(gfc_trans_wait): Pass ID argument via reference.
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>

View File

@ -879,7 +879,8 @@ than @code{(/.../)}. Type-specification for array constructors like
@item Extensions to the specification and initialization expressions,
including the support for intrinsics with real and complex arguments.
@item Support for the asynchronous input/output.
@item Support for the asynchronous input/output syntax; however, the
data transfer is currently always synchronously performed.
@item
@cindex @code{FLUSH} statement
@ -1182,7 +1183,6 @@ might in some way or another become visible to the programmer.
* Files opened without an explicit ACTION= specifier::
* File operations on symbolic links::
* File format of unformatted sequential files::
* Asynchronous I/O::
@end menu
@ -1486,20 +1486,6 @@ program main
end program main
@end smallexample
@node Asynchronous I/O
@section Asynchronous I/O
@cindex input/output, asynchronous
@cindex asynchronous I/O
Asynchronous I/O is supported if the program is linked against the
POSIX thread library. If that is not the case, all I/O is performed
as synchronous.
On some systems, such as Darwin or Solaris, the POSIX thread library
is always linked in, so asynchronous I/O is always performed. On other
sytems, such as Linux, it is necessary to specify @option{-pthread},
@option{-lpthread} or @option{-fopenmp} during the linking step.
@c ---------------------------------------------------------------------
@c Extensions
@c ---------------------------------------------------------------------

View File

@ -698,8 +698,7 @@ gfc_finish_var_decl (tree decl, gfc_symbol * sym)
&& CLASS_DATA (sym)->ts.u.derived->attr.has_dtio_procs)))
TREE_STATIC (decl) = 1;
/* Treat asynchronous variables the same as volatile, for now. */
if (sym->attr.volatile_ || sym->attr.asynchronous)
if (sym->attr.volatile_)
{
TREE_THIS_VOLATILE (decl) = 1;
TREE_SIDE_EFFECTS (decl) = 1;

View File

@ -438,9 +438,10 @@ gfc_build_io_library_fndecls (void)
get_identifier (PREFIX("st_iolength")), ".w",
void_type_node, 1, dt_parm_type);
/* TODO: Change when asynchronous I/O is implemented. */
parm_type = build_pointer_type (st_parameter[IOPARM_ptype_wait].type);
iocall[IOCALL_WAIT] = gfc_build_library_function_decl_with_spec (
get_identifier (PREFIX("st_wait_async")), ".w",
get_identifier (PREFIX("st_wait")), ".X",
void_type_node, 1, parm_type);
parm_type = build_pointer_type (st_parameter[IOPARM_ptype_filepos].type);
@ -1526,7 +1527,7 @@ gfc_trans_wait (gfc_code * code)
mask |= IOPARM_common_err;
if (p->id)
mask |= set_parameter_ref (&block, &post_block, var, IOPARM_wait_id, p->id);
mask |= set_parameter_value (&block, var, IOPARM_wait_id, p->id);
set_parameter_const (&block, var, IOPARM_common_flags, mask);

View File

@ -1,3 +1,13 @@
2018-07-31 Andre Vieira <andre.simoesdiasvieira@arm.com>
Revert 'AsyncI/O patch committed'
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/25829
* gfortran.dg/f2003_inquire_1.f03: Add write statement.
* gfortran.dg/f2003_io_1.f03: Add wait statement.
2018-07-30 Segher Boessenkool <segher@kernel.crashing.org>
PR rtl-optimization/85160

View File

@ -7,12 +7,10 @@ logical :: vpending
open(10, file='mydata_f2003_inquire_1', asynchronous="yes", blank="null", &
& decimal="comma", encoding="utf-8", sign="plus")
write (10,*, asynchronous="yes", id=vid) 'asdf'
wait (10)
inquire(unit=10, round=sround, sign=ssign, size=vsize, id=vid, &
& pending=vpending, asynchronous=sasynchronous, decimal=sdecimal, &
& encoding=sencoding)
if (ssign.ne."PLUS") STOP 1
if (sasynchronous.ne."YES") STOP 2
if (sdecimal.ne."COMMA") STOP 3

View File

@ -13,7 +13,6 @@ open(10, file='mydata_f2003_io_1', asynchronous="yes", blank="null")
write(10,'(10f8.3)', asynchronous="yes", decimal="comma", id=j) a
rewind(10)
read(10,'(10f8.3)', asynchronous="yes", decimal="comma", blank="zero") b
wait(10)
if (any(b.ne.23.45)) STOP 1
c = 3.14
@ -25,7 +24,6 @@ rewind(10)
write(10,'(10f8.3)', asynchronous="yes", decimal="point") a
rewind(10)
read(10,'(10f8.3)', asynchronous="yes", decimal="point") b
wait (10)
if (any(b.ne.23.45)) STOP 3
wait(unit=10, err=25, iostat=istat, iomsg=msg, end=35, id=j)

View File

@ -1,3 +1,68 @@
2018-07-31 Andre Vieira <andre.simoesdiasvieira@arm.com>
Revert 'AsyncI/O patch committed'
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/25829
* Makefile.am: Add async.c to gfor_io_src.
Add async.h to gfor_io_headers.
* Makefile.in: Regenerated.
* gfortran.map: Add _gfortran_st_wait_async.
* io/async.c: New file.
* io/async.h: New file.
* io/close.c: Include async.h.
(st_close): Call async_wait for an asynchronous unit.
* io/file_pos.c (st_backspace): Likewise.
(st_endfile): Likewise.
(st_rewind): Likewise.
(st_flush): Likewise.
* io/inquire.c: Add handling for asynchronous PENDING
and ID arguments.
* io/io.h (st_parameter_dt): Add async bit.
(st_parameter_wait): Correct.
(gfc_unit): Add au pointer.
(st_wait_async): Add prototype.
(transfer_array_inner): Likewise.
(st_write_done_worker): Likewise.
* io/open.c: Include async.h.
(new_unit): Initialize asynchronous unit.
* io/transfer.c (async_opt): New struct.
(wrap_scalar_transfer): New function.
(transfer_integer): Call wrap_scalar_transfer to do the work.
(transfer_real): Likewise.
(transfer_real_write): Likewise.
(transfer_character): Likewise.
(transfer_character_wide): Likewise.
(transfer_complex): Likewise.
(transfer_array_inner): New function.
(transfer_array): Call transfer_array_inner.
(transfer_derived): Call wrap_scalar_transfer.
(data_transfer_init): Check for asynchronous I/O.
Perform a wait operation on any pending asynchronous I/O
if the data transfer is synchronous. Copy PDT and enqueue
thread for data transfer.
(st_read_done_worker): New function.
(st_read_done): Enqueue transfer or call st_read_done_worker.
(st_write_done_worker): New function.
(st_write_done): Enqueue transfer or call st_read_done_worker.
(st_wait): Document as no-op for compatibility reasons.
(st_wait_async): New function.
* io/unit.c (insert_unit): Use macros LOCK, UNLOCK and TRYLOCK;
add NOTE where necessary.
(get_gfc_unit): Likewise.
(init_units): Likewise.
(close_unit_1): Likewise. Call async_close if asynchronous.
(close_unit): Use macros LOCK and UNLOCK.
(finish_last_advance_record): Likewise.
(newunit_alloc): Likewise.
* io/unix.c (find_file): Likewise.
(flush_all_units_1): Likewise.
(flush_all_units): Likewise.
* libgfortran.h (generate_error_common): Add prototype.
* runtime/error.c: Include io.h and async.h.
(generate_error_common): New function.
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>

View File

@ -100,8 +100,7 @@ io/transfer128.c \
io/unit.c \
io/unix.c \
io/write.c \
io/fbuf.c \
io/async.c
io/fbuf.c
endif
@ -109,8 +108,7 @@ gfor_io_headers= \
io/io.h \
io/fbuf.h \
io/format.h \
io/unix.h \
io/async.h
io/unix.h
gfor_helper_src= \
intrinsics/associated.c \

View File

@ -70,8 +70,7 @@ target_triplet = @target@
@LIBGFOR_MINIMAL_FALSE@io/unit.c \
@LIBGFOR_MINIMAL_FALSE@io/unix.c \
@LIBGFOR_MINIMAL_FALSE@io/write.c \
@LIBGFOR_MINIMAL_FALSE@io/fbuf.c \
@LIBGFOR_MINIMAL_FALSE@io/async.c
@LIBGFOR_MINIMAL_FALSE@io/fbuf.c
@LIBGFOR_MINIMAL_FALSE@am__append_3 = \
@LIBGFOR_MINIMAL_FALSE@intrinsics/access.c \
@ -353,7 +352,7 @@ am__objects_47 = $(am__objects_4) $(am__objects_5) $(am__objects_6) \
@LIBGFOR_MINIMAL_FALSE@ inquire.lo intrinsics.lo list_read.lo \
@LIBGFOR_MINIMAL_FALSE@ lock.lo open.lo read.lo transfer.lo \
@LIBGFOR_MINIMAL_FALSE@ transfer128.lo unit.lo unix.lo write.lo \
@LIBGFOR_MINIMAL_FALSE@ fbuf.lo async.lo
@LIBGFOR_MINIMAL_FALSE@ fbuf.lo
am__objects_49 = size_from_kind.lo $(am__objects_48)
@LIBGFOR_MINIMAL_FALSE@am__objects_50 = access.lo c99_functions.lo \
@LIBGFOR_MINIMAL_FALSE@ chdir.lo chmod.lo clock.lo cpu_time.lo \
@ -651,8 +650,7 @@ gfor_io_headers = \
io/io.h \
io/fbuf.h \
io/format.h \
io/unix.h \
io/async.h
io/unix.h
gfor_helper_src = intrinsics/associated.c intrinsics/abort.c \
intrinsics/args.c intrinsics/cshift0.c intrinsics/eoshift0.c \
@ -1553,7 +1551,6 @@ distclean-compile:
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/any_l8.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/args.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/associated.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/async.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/backtrace.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_r10.Plo@am__quote@
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_r16.Plo@am__quote@
@ -5817,13 +5814,6 @@ fbuf.lo: io/fbuf.c
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o fbuf.lo `test -f 'io/fbuf.c' || echo '$(srcdir)/'`io/fbuf.c
async.lo: io/async.c
@am__fastdepCC_TRUE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT async.lo -MD -MP -MF $(DEPDIR)/async.Tpo -c -o async.lo `test -f 'io/async.c' || echo '$(srcdir)/'`io/async.c
@am__fastdepCC_TRUE@ $(am__mv) $(DEPDIR)/async.Tpo $(DEPDIR)/async.Plo
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='io/async.c' object='async.lo' libtool=yes @AMDEPBACKSLASH@
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o async.lo `test -f 'io/async.c' || echo '$(srcdir)/'`io/async.c
associated.lo: intrinsics/associated.c
@am__fastdepCC_TRUE@ $(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT associated.lo -MD -MP -MF $(DEPDIR)/associated.Tpo -c -o associated.lo `test -f 'intrinsics/associated.c' || echo '$(srcdir)/'`intrinsics/associated.c
@am__fastdepCC_TRUE@ $(am__mv) $(DEPDIR)/associated.Tpo $(DEPDIR)/associated.Plo

View File

@ -1483,8 +1483,3 @@ GFORTRAN_C99_8 {
y1f;
ynf;
};
GFORTRAN_9 {
global:
_gfortran_st_wait_async;
};

View File

@ -1,483 +0,0 @@
/* Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Nicolas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#define _GTHREAD_USE_COND_INIT_FUNC
#include "../../libgcc/gthr.h"
#include "io.h"
#include "fbuf.h"
#include "format.h"
#include "unix.h"
#include <string.h>
#include <assert.h>
#include <sys/types.h>
#include "async.h"
DEBUG_LINE (__thread const char *aio_prefix = MPREFIX);
DEBUG_LINE (__gthread_mutex_t debug_queue_lock = __GTHREAD_MUTEX_INIT;)
DEBUG_LINE (aio_lock_debug *aio_debug_head = NULL;)
/* Current unit for asynchronous I/O. Needed for error reporting. */
__thread gfc_unit *thread_unit = NULL;
/* Queue entry for the asynchronous I/O entry. */
typedef struct transfer_queue
{
enum aio_do type;
struct transfer_queue *next;
struct st_parameter_dt *new_pdt;
transfer_args arg;
_Bool has_id;
int read_flag;
} transfer_queue;
struct error {
st_parameter_dt *dtp;
int id;
};
/* Helper function to exchange the old vs. a new PDT. */
static void
update_pdt (st_parameter_dt **old, st_parameter_dt *new) {
st_parameter_dt *temp;
NOTE ("Changing pdts, current_unit = %p", (void *) (new->u.p.current_unit));
temp = *old;
*old = new;
if (temp)
free (temp);
}
/* Destroy an adv_cond structure. */
static void
destroy_adv_cond (struct adv_cond *ac)
{
T_ERROR (__gthread_mutex_destroy, &ac->lock);
T_ERROR (__gthread_cond_destroy, &ac->signal);
}
/* Function invoked as start routine for a new asynchronous I/O unit.
Contains the main loop for accepting requests and handling them. */
static void *
async_io (void *arg)
{
DEBUG_LINE (aio_prefix = TPREFIX);
transfer_queue *ctq = NULL, *prev = NULL;
gfc_unit *u = (gfc_unit *) arg;
async_unit *au = u->au;
LOCK (&au->lock);
thread_unit = u;
au->thread = __gthread_self ();
while (true)
{
/* Main loop. At this point, au->lock is always held. */
WAIT_SIGNAL_MUTEX (&au->work, au->tail != NULL, &au->lock);
LOCK (&au->lock);
ctq = au->head;
prev = NULL;
/* Loop over the queue entries until they are finished. */
while (ctq)
{
if (prev)
free (prev);
prev = ctq;
if (!au->error.has_error)
{
UNLOCK (&au->lock);
switch (ctq->type)
{
case AIO_WRITE_DONE:
NOTE ("Finalizing write");
st_write_done_worker (au->pdt);
UNLOCK (&au->io_lock);
break;
case AIO_READ_DONE:
NOTE ("Finalizing read");
st_read_done_worker (au->pdt);
UNLOCK (&au->io_lock);
break;
case AIO_DATA_TRANSFER_INIT:
NOTE ("Data transfer init");
LOCK (&au->io_lock);
update_pdt (&au->pdt, ctq->new_pdt);
data_transfer_init_worker (au->pdt, ctq->read_flag);
break;
case AIO_TRANSFER_SCALAR:
NOTE ("Starting scalar transfer");
ctq->arg.scalar.transfer (au->pdt, ctq->arg.scalar.arg_bt,
ctq->arg.scalar.data,
ctq->arg.scalar.i,
ctq->arg.scalar.s1,
ctq->arg.scalar.s2);
break;
case AIO_TRANSFER_ARRAY:
NOTE ("Starting array transfer");
NOTE ("ctq->arg.array.desc = %p",
(void *) (ctq->arg.array.desc));
transfer_array_inner (au->pdt, ctq->arg.array.desc,
ctq->arg.array.kind,
ctq->arg.array.charlen);
free (ctq->arg.array.desc);
break;
case AIO_CLOSE:
NOTE ("Received AIO_CLOSE");
goto finish_thread;
default:
internal_error (NULL, "Invalid queue type");
break;
}
LOCK (&au->lock);
if (unlikely (au->error.has_error))
au->error.last_good_id = au->id.low - 1;
}
else
{
if (ctq->type == AIO_WRITE_DONE || ctq->type == AIO_READ_DONE)
{
UNLOCK (&au->io_lock);
}
else if (ctq->type == AIO_CLOSE)
{
NOTE ("Received AIO_CLOSE during error condition");
UNLOCK (&au->lock);
goto finish_thread;
}
}
NOTE ("Next ctq, current id: %d", au->id.low);
if (ctq->has_id && au->id.waiting == au->id.low++)
SIGNAL (&au->id.done);
ctq = ctq->next;
}
au->tail = NULL;
au->head = NULL;
au->empty = 1;
UNLOCK (&au->lock);
SIGNAL (&au->emptysignal);
LOCK (&au->lock);
}
finish_thread:
au->tail = NULL;
au->head = NULL;
au->empty = 1;
SIGNAL (&au->emptysignal);
free (ctq);
return NULL;
}
/* Free an asynchronous unit. */
static void
free_async_unit (async_unit *au)
{
if (au->tail)
internal_error (NULL, "Trying to free nonempty asynchronous unit");
destroy_adv_cond (&au->work);
destroy_adv_cond (&au->emptysignal);
destroy_adv_cond (&au->id.done);
T_ERROR (__gthread_mutex_destroy, &au->lock);
free (au);
}
/* Initialize an adv_cond structure. */
static void
init_adv_cond (struct adv_cond *ac)
{
ac->pending = 0;
__GTHREAD_MUTEX_INIT_FUNCTION (&ac->lock);
__gthread_cond_init_function (&ac->signal);
}
/* Initialize an asyncronous unit, returning zero on success,
nonzero on failure. It also sets u->au. */
void
init_async_unit (gfc_unit *u)
{
async_unit *au;
if (!__gthread_active_p ())
{
u->au = NULL;
return;
}
au = (async_unit *) xmalloc (sizeof (async_unit));
u->au = au;
init_adv_cond (&au->work);
init_adv_cond (&au->emptysignal);
__GTHREAD_MUTEX_INIT_FUNCTION (&au->lock);
__GTHREAD_MUTEX_INIT_FUNCTION (&au->io_lock);
LOCK (&au->lock);
T_ERROR (__gthread_create, &au->thread, &async_io, (void *) u);
au->pdt = NULL;
au->head = NULL;
au->tail = NULL;
au->empty = true;
au->id.waiting = -1;
au->id.low = 0;
au->id.high = 0;
au->error.fatal_error = 0;
au->error.has_error = 0;
au->error.last_good_id = 0;
init_adv_cond (&au->id.done);
UNLOCK (&au->lock);
}
/* Enqueue a transfer statement. */
void
enqueue_transfer (async_unit *au, transfer_args *arg, enum aio_do type)
{
transfer_queue *tq = calloc (sizeof (transfer_queue), 1);
tq->arg = *arg;
tq->type = type;
tq->has_id = 0;
LOCK (&au->lock);
if (!au->tail)
au->head = tq;
else
au->tail->next = tq;
au->tail = tq;
REVOKE_SIGNAL (&(au->emptysignal));
au->empty = false;
UNLOCK (&au->lock);
SIGNAL (&au->work);
}
/* Enqueue an st_write_done or st_read_done which contains an ID. */
int
enqueue_done_id (async_unit *au, enum aio_do type)
{
int ret;
transfer_queue *tq = calloc (sizeof (transfer_queue), 1);
tq->type = type;
tq->has_id = 1;
LOCK (&au->lock);
if (!au->tail)
au->head = tq;
else
au->tail->next = tq;
au->tail = tq;
REVOKE_SIGNAL (&(au->emptysignal));
au->empty = false;
ret = au->id.high++;
NOTE ("Enqueue id: %d", ret);
UNLOCK (&au->lock);
SIGNAL (&au->work);
return ret;
}
/* Enqueue an st_write_done or st_read_done without an ID. */
void
enqueue_done (async_unit *au, enum aio_do type)
{
transfer_queue *tq = calloc (sizeof (transfer_queue), 1);
tq->type = type;
tq->has_id = 0;
LOCK (&au->lock);
if (!au->tail)
au->head = tq;
else
au->tail->next = tq;
au->tail = tq;
REVOKE_SIGNAL (&(au->emptysignal));
au->empty = false;
UNLOCK (&au->lock);
SIGNAL (&au->work);
}
/* Enqueue a CLOSE statement. */
void
enqueue_close (async_unit *au)
{
transfer_queue *tq = calloc (sizeof (transfer_queue), 1);
tq->type = AIO_CLOSE;
LOCK (&au->lock);
if (!au->tail)
au->head = tq;
else
au->tail->next = tq;
au->tail = tq;
REVOKE_SIGNAL (&(au->emptysignal));
au->empty = false;
UNLOCK (&au->lock);
SIGNAL (&au->work);
}
/* The asynchronous unit keeps the currently active PDT around.
This function changes that to the current one. */
void
enqueue_data_transfer_init (async_unit *au, st_parameter_dt *dt, int read_flag)
{
st_parameter_dt *new = xmalloc (sizeof (st_parameter_dt));
transfer_queue *tq = xmalloc (sizeof (transfer_queue));
memcpy ((void *) new, (void *) dt, sizeof (st_parameter_dt));
NOTE ("dt->internal_unit_desc = %p", dt->internal_unit_desc);
NOTE ("common.flags & mask = %d", dt->common.flags & IOPARM_LIBRETURN_MASK);
tq->next = NULL;
tq->type = AIO_DATA_TRANSFER_INIT;
tq->read_flag = read_flag;
tq->has_id = 0;
tq->new_pdt = new;
LOCK (&au->lock);
if (!au->tail)
au->head = tq;
else
au->tail->next = tq;
au->tail = tq;
REVOKE_SIGNAL (&(au->emptysignal));
au->empty = 0;
UNLOCK (&au->lock);
SIGNAL (&au->work);
}
/* Collect the errors that may have happened asynchronously. Return true if
an error has been encountered. */
bool
collect_async_errors (st_parameter_common *cmp, async_unit *au)
{
bool has_error = au->error.has_error;
if (has_error)
{
if (generate_error_common (cmp, au->error.family, au->error.message))
{
au->error.has_error = 0;
au->error.cmp = NULL;
}
else
{
/* The program will exit later. */
au->error.fatal_error = true;
}
}
return has_error;
}
/* Perform a wait operation on an asynchronous unit with an ID specified,
which means collecting the errors that may have happened asynchronously.
Return true if an error has been encountered. */
bool
async_wait_id (st_parameter_common *cmp, async_unit *au, int i)
{
bool ret;
if (au == NULL)
return false;
if (cmp == NULL)
cmp = au->error.cmp;
if (au->error.has_error)
{
if (i <= au->error.last_good_id)
return false;
return collect_async_errors (cmp, au);
}
LOCK (&au->lock);
NOTE ("Waiting for id %d", i);
if (au->id.waiting < i)
au->id.waiting = i;
UNLOCK (&au->lock);
SIGNAL (&(au->work));
LOCK (&au->lock);
WAIT_SIGNAL_MUTEX (&(au->id.done),
(au->id.low >= au->id.waiting || au->empty), &au->lock);
LOCK (&au->lock);
ret = collect_async_errors (cmp, au);
UNLOCK (&au->lock);
return ret;
}
/* Perform a wait operation an an asynchronous unit without an ID. */
bool
async_wait (st_parameter_common *cmp, async_unit *au)
{
bool ret;
if (au == NULL)
return false;
if (cmp == NULL)
cmp = au->error.cmp;
SIGNAL (&(au->work));
LOCK (&(au->lock));
if (au->empty)
{
ret = collect_async_errors (cmp, au);
UNLOCK (&au->lock);
return ret;
}
WAIT_SIGNAL_MUTEX (&(au->emptysignal), (au->empty), &au->lock);
ret = collect_async_errors (cmp, au);
return ret;
}
/* Close an asynchronous unit. */
void
async_close (async_unit *au)
{
if (au == NULL)
return;
NOTE ("Closing async unit");
enqueue_close (au);
T_ERROR (__gthread_join, au->thread, NULL);
free_async_unit (au);
}

View File

@ -1,378 +0,0 @@
/* Copyright (C) 2018 Free Software Foundation, Inc.
Contributed by Nicolas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef ASYNC_H
#define ASYNC_H
/* Defining DEBUG_ASYNC will enable somewhat verbose debugging
output for async I/O. */
#define DEBUG_ASYNC
#undef DEBUG_ASYNC
#ifdef DEBUG_ASYNC
/* Define this if you want to use ANSI color escape sequences in your
debugging output. */
#define DEBUG_COLOR
#ifdef DEBUG_COLOR
#define MPREFIX "\033[30;46mM:\033[0m "
#define TPREFIX "\033[37;44mT:\033[0m "
#define RPREFIX "\033[37;41mR:\033[0m "
#define DEBUG_RED "\033[31m"
#define DEBUG_ORANGE "\033[33m"
#define DEBUG_GREEN "\033[32m"
#define DEBUG_DARKRED "\033[31;2m"
#define DEBUG_PURPLE "\033[35m"
#define DEBUG_NORM "\033[0m"
#define DEBUG_REVERSE_RED "\033[41;37m"
#define DEBUG_BLUE "\033[34m"
#else
#define MPREFIX "M: "
#define TPREFIX "T: "
#define RPREFIX ""
#define DEBUG_RED ""
#define DEBUG_ORANGE ""
#define DEBUG_GREEN ""
#define DEBUG_DARKRED ""
#define DEBUG_PURPLE ""
#define DEBUG_NORM ""
#define DEBUG_REVERSE_RED ""
#define DEBUG_BLUE ""
#endif
#define DEBUG_PRINTF(...) fprintf (stderr,__VA_ARGS__)
#define IN_DEBUG_QUEUE(mutex) ({ \
__label__ end; \
aio_lock_debug *curr = aio_debug_head; \
while (curr) { \
if (curr->m == mutex) { \
goto end; \
} \
curr = curr->next; \
} \
end:; \
curr; \
})
#define TAIL_DEBUG_QUEUE ({ \
aio_lock_debug *curr = aio_debug_head; \
while (curr && curr->next) { \
curr = curr->next; \
} \
curr; \
})
#define CHECK_LOCK(mutex, status) do { \
aio_lock_debug *curr; \
INTERN_LOCK (&debug_queue_lock); \
if (__gthread_mutex_trylock (mutex)) { \
if ((curr = IN_DEBUG_QUEUE (mutex))) { \
sprintf (status, DEBUG_RED "%s():%d" DEBUG_NORM, curr->func, curr->line); \
} else \
sprintf (status, DEBUG_RED "unknown" DEBUG_NORM); \
} \
else { \
__gthread_mutex_unlock (mutex); \
sprintf (status, DEBUG_GREEN "unlocked" DEBUG_NORM); \
} \
INTERN_UNLOCK (&debug_queue_lock); \
}while (0)
#define T_ERROR(func, ...) do { \
int t_error_temp; \
t_error_temp = func(__VA_ARGS__); \
if (t_error_temp) \
ERROR (t_error_temp, "args: " #__VA_ARGS__ "\n"); \
} while (0)
#define NOTE(str, ...) do{ \
char note_str[200]; \
sprintf (note_str, "%s" DEBUG_PURPLE "NOTE: " DEBUG_NORM str, aio_prefix, ##__VA_ARGS__); \
DEBUG_PRINTF ("%-90s %20s():%-5d\n", note_str, __FUNCTION__, __LINE__); \
}while (0);
#define ERROR(errnum, str, ...) do{ \
char note_str[200]; \
sprintf (note_str, "%s" DEBUG_REVERSE_RED "ERROR:" DEBUG_NORM " [%d] " str, aio_prefix, \
errnum, ##__VA_ARGS__); \
DEBUG_PRINTF ("%-68s %s():%-5d\n", note_str, __FUNCTION__, __LINE__); \
}while (0)
#define MUTEX_DEBUG_ADD(mutex) do { \
aio_lock_debug *n; \
n = malloc (sizeof(aio_lock_debug)); \
n->prev = TAIL_DEBUG_QUEUE; \
if (n->prev) \
n->prev->next = n; \
n->next = NULL; \
n->line = __LINE__; \
n->func = __FUNCTION__; \
n->m = mutex; \
if (!aio_debug_head) { \
aio_debug_head = n; \
} \
} while (0)
#define UNLOCK(mutex) do { \
aio_lock_debug *curr; \
DEBUG_PRINTF ("%s%-75s %20s():%-5d %18p\n", aio_prefix, DEBUG_GREEN "UNLOCK: " DEBUG_NORM #mutex, \
__FUNCTION__, __LINE__, (void *) mutex); \
INTERN_LOCK (&debug_queue_lock); \
curr = IN_DEBUG_QUEUE (mutex); \
if (curr) \
{ \
if (curr->prev) \
curr->prev->next = curr->next; \
if (curr->next) { \
curr->next->prev = curr->prev; \
if (curr == aio_debug_head) \
aio_debug_head = curr->next; \
} else { \
if (curr == aio_debug_head) \
aio_debug_head = NULL; \
} \
free (curr); \
} \
INTERN_UNLOCK (&debug_queue_lock); \
INTERN_UNLOCK (mutex); \
}while (0)
#define TRYLOCK(mutex) ({ \
char status[200]; \
int res; \
aio_lock_debug *curr; \
res = __gthread_mutex_trylock (mutex); \
INTERN_LOCK (&debug_queue_lock); \
if (res) { \
if ((curr = IN_DEBUG_QUEUE (mutex))) { \
sprintf (status, DEBUG_RED "%s():%d" DEBUG_NORM, curr->func, curr->line); \
} else \
sprintf (status, DEBUG_RED "unknown" DEBUG_NORM); \
} \
else { \
sprintf (status, DEBUG_GREEN "unlocked" DEBUG_NORM); \
MUTEX_DEBUG_ADD (mutex); \
} \
DEBUG_PRINTF ("%s%-44s prev: %-35s %20s():%-5d %18p\n", aio_prefix, \
DEBUG_DARKRED "TRYLOCK: " DEBUG_NORM #mutex, status, __FUNCTION__, __LINE__, \
(void *) mutex); \
INTERN_UNLOCK (&debug_queue_lock); \
res; \
})
#define LOCK(mutex) do { \
char status[200]; \
CHECK_LOCK (mutex, status); \
DEBUG_PRINTF ("%s%-42s prev: %-35s %20s():%-5d %18p\n", aio_prefix, \
DEBUG_RED "LOCK: " DEBUG_NORM #mutex, status, __FUNCTION__, __LINE__, (void *) mutex); \
INTERN_LOCK (mutex); \
INTERN_LOCK (&debug_queue_lock); \
MUTEX_DEBUG_ADD (mutex); \
INTERN_UNLOCK (&debug_queue_lock); \
DEBUG_PRINTF ("%s" DEBUG_RED "ACQ:" DEBUG_NORM " %-30s %78p\n", aio_prefix, #mutex, mutex); \
} while (0)
#define DEBUG_LINE(...) __VA_ARGS__
#else
#define DEBUG_PRINTF(...) {}
#define CHECK_LOCK(au, mutex, status) {}
#define NOTE(str, ...) {}
#define DEBUG_LINE(...)
#define T_ERROR(func, ...) func(__VA_ARGS__)
#define LOCK(mutex) INTERN_LOCK (mutex)
#define UNLOCK(mutex) INTERN_UNLOCK (mutex)
#define TRYLOCK(mutex) (__gthread_mutex_trylock (mutex))
#endif
#define INTERN_LOCK(mutex) T_ERROR (__gthread_mutex_lock, mutex);
#define INTERN_UNLOCK(mutex) T_ERROR (__gthread_mutex_unlock, mutex);
#define SIGNAL(advcond) do{ \
INTERN_LOCK (&(advcond)->lock); \
(advcond)->pending = 1; \
DEBUG_PRINTF ("%s%-75s %20s():%-5d %18p\n", aio_prefix, DEBUG_ORANGE "SIGNAL: " DEBUG_NORM \
#advcond, __FUNCTION__, __LINE__, (void *) advcond); \
T_ERROR (__gthread_cond_broadcast, &(advcond)->signal); \
INTERN_UNLOCK (&(advcond)->lock); \
} while (0)
#define WAIT_SIGNAL_MUTEX(advcond, condition, mutex) do{ \
__label__ finish; \
INTERN_LOCK (&((advcond)->lock)); \
DEBUG_PRINTF ("%s%-75s %20s():%-5d %18p\n", aio_prefix, DEBUG_BLUE "WAITING: " DEBUG_NORM \
#advcond, __FUNCTION__, __LINE__, (void *) advcond); \
if ((advcond)->pending || (condition)){ \
UNLOCK (mutex); \
goto finish; \
} \
UNLOCK (mutex); \
while (!__gthread_cond_wait(&(advcond)->signal, &(advcond)->lock)) { \
{ int cond; \
LOCK (mutex); cond = condition; UNLOCK (mutex); \
if (cond){ \
DEBUG_PRINTF ("%s%-75s %20s():%-5d %18p\n", aio_prefix, DEBUG_ORANGE "REC: " DEBUG_NORM \
#advcond, __FUNCTION__, __LINE__, (void *)advcond); \
break; \
} \
} \
} \
finish: \
(advcond)->pending = 0; \
INTERN_UNLOCK (&((advcond)->lock)); \
} while (0)
#define REVOKE_SIGNAL(advcond) do{ \
INTERN_LOCK (&(advcond)->lock); \
(advcond)->pending = 0; \
INTERN_UNLOCK (&(advcond)->lock); \
} while (0)
DEBUG_LINE (extern __thread const char *aio_prefix);
DEBUG_LINE (typedef struct aio_lock_debug{
__gthread_mutex_t *m;
int line;
const char *func;
struct aio_lock_debug *next;
struct aio_lock_debug *prev;
} aio_lock_debug;)
DEBUG_LINE (extern aio_lock_debug *aio_debug_head;)
DEBUG_LINE (extern __gthread_mutex_t debug_queue_lock;)
/* Thread - local storage of the current unit we are looking at. Needed for
error reporting. */
extern __thread gfc_unit *thread_unit;
enum aio_do {
AIO_INVALID = 0,
AIO_DATA_TRANSFER_INIT,
AIO_TRANSFER_SCALAR,
AIO_TRANSFER_ARRAY,
AIO_WRITE_DONE,
AIO_READ_DONE,
AIO_CLOSE
};
typedef union transfer_args
{
struct
{
void (*transfer) (struct st_parameter_dt *, bt, void *, int, size_t, size_t);
bt arg_bt;
void *data;
int i;
size_t s1;
size_t s2;
} scalar;
struct
{
gfc_array_char *desc;
int kind;
gfc_charlen_type charlen;
} array;
} transfer_args;
struct adv_cond
{
int pending;
__gthread_mutex_t lock;
__gthread_cond_t signal;
};
typedef struct async_unit
{
pthread_mutex_t lock; /* Lock for manipulating the queue structure. */
pthread_mutex_t io_lock; /* Lock for doing actual I/O. */
struct adv_cond work;
struct adv_cond emptysignal;
struct st_parameter_dt *pdt;
pthread_t thread;
struct transfer_queue *head;
struct transfer_queue *tail;
struct
{
int waiting;
int low;
int high;
struct adv_cond done;
} id;
bool empty;
struct {
const char *message;
st_parameter_common *cmp;
bool has_error;
int last_good_id;
int family;
bool fatal_error;
} error;
} async_unit;
void init_async_unit (gfc_unit *);
internal_proto (init_async_unit);
bool async_wait (st_parameter_common *, async_unit *);
internal_proto (async_wait);
bool async_wait_id (st_parameter_common *, async_unit *, int);
internal_proto (async_wait_id);
bool collect_async_errors (st_parameter_common *, async_unit *);
internal_proto (collect_async_errors);
void async_close (async_unit *);
internal_proto (async_close);
void enqueue_transfer (async_unit * au, transfer_args * arg, enum aio_do);
internal_proto (enqueue_transfer);
void enqueue_done (async_unit *, enum aio_do type);
internal_proto (enqueue_done);
int enqueue_done_id (async_unit *, enum aio_do type);
internal_proto (enqueue_done_id);
void enqueue_init (async_unit *);
internal_proto (enqueue_init);
void enqueue_data_transfer_init (async_unit *, st_parameter_dt *, int);
internal_proto (enqueue_data_transfer_init);
void enqueue_close (async_unit *);
internal_proto (enqueue_close);
#endif

View File

@ -24,7 +24,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "io.h"
#include "unix.h"
#include "async.h"
#include <limits.h>
typedef enum
@ -58,21 +57,13 @@ st_close (st_parameter_close *clp)
find_option (&clp->common, clp->status, clp->status_len,
status_opt, "Bad STATUS parameter in CLOSE statement");
u = find_unit (clp->common.unit);
if (u && u->au)
if (async_wait (&(clp->common), u->au))
{
library_end ();
return;
}
if ((clp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
{
library_end ();
return;
}
u = find_unit (clp->common.unit);
if (u != NULL)
{
if (close_share (u) < 0)

View File

@ -25,7 +25,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "io.h"
#include "fbuf.h"
#include "unix.h"
#include "async.h"
#include <string.h>
/* file_pos.c-- Implement the file positioning statements, i.e. BACKSPACE,
@ -188,7 +187,6 @@ void
st_backspace (st_parameter_filepos *fpp)
{
gfc_unit *u;
bool needs_unlock = false;
library_start (&fpp->common);
@ -216,17 +214,6 @@ st_backspace (st_parameter_filepos *fpp)
goto done;
}
if (u->au)
{
if (async_wait (&(fpp->common), u->au))
return;
else
{
needs_unlock = true;
LOCK (&u->au->io_lock);
}
}
/* Make sure format buffer is flushed and reset. */
if (u->flags.form == FORM_FORMATTED)
{
@ -280,12 +267,7 @@ st_backspace (st_parameter_filepos *fpp)
done:
if (u != NULL)
{
unlock_unit (u);
if (u->au && needs_unlock)
UNLOCK (&u->au->io_lock);
}
unlock_unit (u);
library_end ();
}
@ -298,7 +280,6 @@ void
st_endfile (st_parameter_filepos *fpp)
{
gfc_unit *u;
bool needs_unlock = false;
library_start (&fpp->common);
@ -313,17 +294,6 @@ st_endfile (st_parameter_filepos *fpp)
goto done;
}
if (u->au)
{
if (async_wait (&(fpp->common), u->au))
return;
else
{
needs_unlock = true;
LOCK (&u->au->io_lock);
}
}
if (u->flags.access == ACCESS_SEQUENTIAL
&& u->endfile == AFTER_ENDFILE)
{
@ -406,11 +376,8 @@ st_endfile (st_parameter_filepos *fpp)
}
}
done:
if (u->au && needs_unlock)
UNLOCK (&u->au->io_lock);
unlock_unit (u);
done:
unlock_unit (u);
library_end ();
}
@ -423,7 +390,6 @@ void
st_rewind (st_parameter_filepos *fpp)
{
gfc_unit *u;
bool needs_unlock = true;
library_start (&fpp->common);
@ -435,17 +401,6 @@ st_rewind (st_parameter_filepos *fpp)
"Cannot REWIND a file opened for DIRECT access");
else
{
if (u->au)
{
if (async_wait (&(fpp->common), u->au))
return;
else
{
needs_unlock = true;
LOCK (&u->au->io_lock);
}
}
/* If there are previously written bytes from a write with ADVANCE="no",
add a record marker before performing the ENDFILE. */
@ -481,10 +436,6 @@ st_rewind (st_parameter_filepos *fpp)
}
/* Update position for INQUIRE. */
u->flags.position = POSITION_REWIND;
if (u->au && needs_unlock)
UNLOCK (&u->au->io_lock);
unlock_unit (u);
}
@ -499,24 +450,12 @@ void
st_flush (st_parameter_filepos *fpp)
{
gfc_unit *u;
bool needs_unlock = false;
library_start (&fpp->common);
u = find_unit (fpp->common.unit);
if (u != NULL)
{
if (u->au)
{
if (async_wait (&(fpp->common), u->au))
return;
else
{
needs_unlock = true;
LOCK (&u->au->io_lock);
}
}
/* Make sure format buffer is flushed. */
if (u->flags.form == FORM_FORMATTED)
fbuf_flush (u, u->mode);
@ -530,8 +469,5 @@ st_flush (st_parameter_filepos *fpp)
generate_error (&fpp->common, LIBERROR_BAD_OPTION,
"Specified UNIT in FLUSH is not connected");
if (needs_unlock)
UNLOCK (&u->au->io_lock);
library_end ();
}

View File

@ -26,7 +26,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
/* Implement the non-IOLENGTH variant of the INQUIRY statement */
#include "io.h"
#include "async.h"
#include "unix.h"
#include <string.h>
@ -282,6 +281,12 @@ inquire_via_unit (st_parameter_inquire *iqp, gfc_unit *u)
{
GFC_INTEGER_4 cf2 = iqp->flags2;
if ((cf2 & IOPARM_INQUIRE_HAS_PENDING) != 0)
*iqp->pending = 0;
if ((cf2 & IOPARM_INQUIRE_HAS_ID) != 0)
*iqp->id = 0;
if ((cf2 & IOPARM_INQUIRE_HAS_ENCODING) != 0)
{
if (u == NULL || u->flags.form != FORM_FORMATTED)
@ -327,41 +332,19 @@ inquire_via_unit (st_parameter_inquire *iqp, gfc_unit *u)
if (u == NULL)
p = undefined;
else
switch (u->flags.async)
{
switch (u->flags.async)
{
case ASYNC_YES:
p = yes;
break;
case ASYNC_NO:
p = no;
break;
default:
internal_error (&iqp->common, "inquire_via_unit(): Bad async");
}
case ASYNC_YES:
p = yes;
break;
case ASYNC_NO:
p = no;
break;
default:
internal_error (&iqp->common, "inquire_via_unit(): Bad async");
}
cf_strcpy (iqp->asynchronous, iqp->asynchronous_len, p);
}
if ((cf2 & IOPARM_INQUIRE_HAS_PENDING) != 0)
{
if (u->au == NULL)
*(iqp->pending) = 0;
else
{
LOCK (&(u->au->lock));
if ((cf2 & IOPARM_INQUIRE_HAS_ID) != 0)
{
int id;
id = *(iqp->id);
*(iqp->pending) = id > u->au->id.low;
}
else
{
*(iqp->pending) = ! u->au->empty;
}
UNLOCK (&(u->au->lock));
}
cf_strcpy (iqp->asynchronous, iqp->asynchronous_len, p);
}
if ((cf2 & IOPARM_INQUIRE_HAS_SIGN) != 0)

View File

@ -531,9 +531,7 @@ typedef struct st_parameter_dt
/* A flag used to identify when a non-standard expanded namelist read
has occurred. */
unsigned expanded_read : 1;
/* Flag to indicate if the statement has async="YES". */
unsigned async : 1;
/* 12 unused bits. */
/* 13 unused bits. */
int child_saved_iostat;
int nml_delim;
@ -592,7 +590,7 @@ extern char check_st_parameter_dt[sizeof (((st_parameter_dt *) 0)->u.pad)
typedef struct
{
st_parameter_common common;
GFC_INTEGER_4 *id;
CHARACTER1 (id);
}
st_parameter_wait;
@ -661,9 +659,6 @@ typedef struct gfc_unit
int continued;
/* Contains the pointer to the async unit. */
struct async_unit *au;
__gthread_mutex_t lock;
/* Number of threads waiting to acquire this unit's lock.
When non-zero, close_unit doesn't only removes the unit
@ -820,18 +815,11 @@ extern void next_record (st_parameter_dt *, int);
internal_proto(next_record);
extern void st_wait (st_parameter_wait *);
export_proto (st_wait);
extern void st_wait_async (st_parameter_wait *);
export_proto (st_wait_async);
export_proto(st_wait);
extern void hit_eof (st_parameter_dt *);
internal_proto(hit_eof);
extern void transfer_array_inner (st_parameter_dt *, gfc_array_char *, int,
gfc_charlen_type);
internal_proto (transfer_array_inner);
/* read.c */
extern void set_integer (void *, GFC_INTEGER_LARGEST, int);
@ -1000,14 +988,3 @@ memset4 (gfc_char4_t *p, gfc_char4_t c, int k)
#endif
extern void
st_write_done_worker (st_parameter_dt *);
internal_proto (st_write_done_worker);
extern void
st_read_done_worker (st_parameter_dt *);
internal_proto (st_read_done_worker);
extern void
data_transfer_init_worker (st_parameter_dt *, int);
internal_proto (data_transfer_init_worker);

View File

@ -26,7 +26,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "io.h"
#include "fbuf.h"
#include "unix.h"
#include "async.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
@ -652,12 +651,8 @@ new_unit (st_parameter_open *opp, gfc_unit *u, unit_flags *flags)
else
u->fbuf = NULL;
/* Check if asynchrounous. */
if (flags->async == ASYNC_YES)
init_async_unit (u);
else
u->au = NULL;
return u;
cleanup:

View File

@ -30,7 +30,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include "async.h"
typedef unsigned char uchar;
@ -43,7 +42,6 @@ typedef unsigned char uchar;
void
set_integer (void *dest, GFC_INTEGER_LARGEST value, int length)
{
NOTE ("set_integer: %lld %p", (long long int) value, dest);
switch (length)
{
#ifdef HAVE_GFC_INTEGER_16

View File

@ -31,7 +31,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "fbuf.h"
#include "format.h"
#include "unix.h"
#include "async.h"
#include <string.h>
#include <errno.h>
@ -185,12 +184,6 @@ static const st_option pad_opt[] = {
{NULL, 0}
};
static const st_option async_opt[] = {
{"yes", ASYNC_YES},
{"no", ASYNC_NO},
{NULL, 0}
};
typedef enum
{ FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
@ -1601,8 +1594,7 @@ formatted_transfer_scalar_read (st_parameter_dt *dtp, bt type, void *p, int kind
read_f (dtp, f, p, kind);
break;
default:
internal_error (&dtp->common,
"formatted_transfer (): Bad type");
internal_error (&dtp->common, "formatted_transfer(): Bad type");
}
break;
@ -2074,7 +2066,7 @@ formatted_transfer_scalar_write (st_parameter_dt *dtp, bt type, void *p, int kin
break;
default:
internal_error (&dtp->common,
"formatted_transfer (): Bad type");
"formatted_transfer(): Bad type");
}
break;
@ -2289,38 +2281,6 @@ formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
}
}
/* Wrapper function for I/O of scalar types. If this should be an async I/O
request, queue it. For a synchronous write on an async unit, perform the
wait operation and return an error. For all synchronous writes, call the
right transfer function. */
static void
wrap_scalar_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
size_t size, size_t n_elem)
{
if (dtp->u.p.current_unit && dtp->u.p.current_unit->au)
{
if (dtp->u.p.async)
{
transfer_args args;
args.scalar.transfer = dtp->u.p.transfer;
args.scalar.arg_bt = type;
args.scalar.data = p;
args.scalar.i = kind;
args.scalar.s1 = size;
args.scalar.s2 = n_elem;
enqueue_transfer (dtp->u.p.current_unit->au, &args,
AIO_TRANSFER_SCALAR);
return;
}
}
/* Come here if there was no asynchronous I/O to be scheduled. */
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
dtp->u.p.transfer (dtp, type, p, kind, size, 1);
}
/* Data transfer entry points. The type of the data entity is
implicit in the subroutine call. This prevents us from having to
@ -2329,7 +2289,9 @@ wrap_scalar_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
void
transfer_integer (st_parameter_dt *dtp, void *p, int kind)
{
wrap_scalar_transfer (dtp, BT_INTEGER, p, kind, kind, 1);
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
}
void
@ -2345,7 +2307,7 @@ transfer_real (st_parameter_dt *dtp, void *p, int kind)
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
size = size_from_real_kind (kind);
wrap_scalar_transfer (dtp, BT_REAL, p, kind, size, 1);
dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
}
void
@ -2357,7 +2319,9 @@ transfer_real_write (st_parameter_dt *dtp, void *p, int kind)
void
transfer_logical (st_parameter_dt *dtp, void *p, int kind)
{
wrap_scalar_transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
}
void
@ -2381,7 +2345,7 @@ transfer_character (st_parameter_dt *dtp, void *p, gfc_charlen_type len)
p = empty_string;
/* Set kind here to 1. */
wrap_scalar_transfer (dtp, BT_CHARACTER, p, 1, len, 1);
dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
}
void
@ -2405,7 +2369,7 @@ transfer_character_wide (st_parameter_dt *dtp, void *p, gfc_charlen_type len, in
p = empty_string;
/* Here we pass the actual kind value. */
wrap_scalar_transfer (dtp, BT_CHARACTER, p, kind, len, 1);
dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
}
void
@ -2421,7 +2385,7 @@ transfer_complex (st_parameter_dt *dtp, void *p, int kind)
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
size = size_from_complex_kind (kind);
wrap_scalar_transfer (dtp, BT_COMPLEX, p, kind, size, 1);
dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
}
void
@ -2431,8 +2395,8 @@ transfer_complex_write (st_parameter_dt *dtp, void *p, int kind)
}
void
transfer_array_inner (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
gfc_charlen_type charlen)
transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
gfc_charlen_type charlen)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
@ -2443,7 +2407,7 @@ transfer_array_inner (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
bt iotype;
/* Adjust item_count before emitting error message. */
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
@ -2506,36 +2470,6 @@ transfer_array_inner (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
}
}
void
transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
gfc_charlen_type charlen)
{
if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
return;
if (dtp->u.p.current_unit && dtp->u.p.current_unit->au)
{
if (dtp->u.p.async)
{
transfer_args args;
size_t sz = sizeof (gfc_array_char)
+ sizeof (descriptor_dimension)
* GFC_DESCRIPTOR_RANK (desc);
args.array.desc = xmalloc (sz);
NOTE ("desc = %p", (void *) args.array.desc);
memcpy (args.array.desc, desc, sz);
args.array.kind = kind;
args.array.charlen = charlen;
enqueue_transfer (dtp->u.p.current_unit->au, &args,
AIO_TRANSFER_ARRAY);
return;
}
}
/* Come here if there was no asynchronous I/O to be scheduled. */
transfer_array_inner (dtp, desc, kind, charlen);
}
void
transfer_array_write (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
gfc_charlen_type charlen)
@ -2558,7 +2492,7 @@ transfer_derived (st_parameter_dt *parent, void *dtio_source, void *dtio_proc)
else
parent->u.p.fdtio_ptr = (formatted_dtio) dtio_proc;
}
wrap_scalar_transfer (parent, BT_CLASS, dtio_source, 0, 0, 1);
parent->u.p.transfer (parent, BT_CLASS, dtio_source, 0, 0, 1);
}
@ -2733,9 +2667,6 @@ data_transfer_init (st_parameter_dt *dtp, int read_flag)
unit_flags u_flags; /* Used for creating a unit if needed. */
GFC_INTEGER_4 cf = dtp->common.flags;
namelist_info *ionml;
async_unit *au;
NOTE ("data_transfer_init");
ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
@ -2762,9 +2693,9 @@ data_transfer_init (st_parameter_dt *dtp, int read_flag)
}
else if (dtp->u.p.current_unit->s == NULL)
{ /* Open the unit with some default flags. */
st_parameter_open opp;
unit_convert conv;
NOTE ("Open the unit with some default flags.");
st_parameter_open opp;
unit_convert conv;
memset (&u_flags, '\0', sizeof (u_flags));
u_flags.access = ACCESS_SEQUENTIAL;
u_flags.action = ACTION_READWRITE;
@ -2839,42 +2770,6 @@ data_transfer_init (st_parameter_dt *dtp, int read_flag)
else if (dtp->u.p.current_unit->internal_unit_kind > 0)
dtp->u.p.unit_is_internal = 1;
if ((cf & IOPARM_DT_HAS_ASYNCHRONOUS) != 0)
{
int f;
f = find_option (&dtp->common, dtp->asynchronous, dtp->asynchronous_len,
async_opt, "Bad ASYNCHRONOUS in data transfer "
"statement");
if (f == ASYNC_YES && dtp->u.p.current_unit->flags.async != ASYNC_YES)
{
generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
"ASYNCHRONOUS transfer without "
"ASYHCRONOUS='YES' in OPEN");
return;
}
dtp->u.p.async = f == ASYNC_YES;
}
au = dtp->u.p.current_unit->au;
if (au)
{
if (dtp->u.p.async)
{
/* If this is an asynchronous I/O statement, collect errors and
return if there are any. */
if (collect_async_errors (&dtp->common, au))
return;
}
else
{
/* Synchronous statement: Perform a wait operation for any pending
asynchronous I/O. This needs to be done before all other error
checks. See F2008, 9.6.4.1. */
if (async_wait (&(dtp->common), au))
return;
}
}
/* Check the action. */
if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
@ -3114,57 +3009,6 @@ data_transfer_init (st_parameter_dt *dtp, int read_flag)
if (dtp->u.p.current_unit->pad_status == PAD_UNSPECIFIED)
dtp->u.p.current_unit->pad_status = dtp->u.p.current_unit->flags.pad;
/* Set up the subroutine that will handle the transfers. */
if (read_flag)
{
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
dtp->u.p.transfer = unformatted_read;
else
{
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
dtp->u.p.transfer = list_formatted_read;
else
dtp->u.p.transfer = formatted_transfer;
}
}
else
{
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
dtp->u.p.transfer = unformatted_write;
else
{
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
dtp->u.p.transfer = list_formatted_write;
else
dtp->u.p.transfer = formatted_transfer;
}
}
if (au)
{
NOTE ("enqueue_data_transfer");
enqueue_data_transfer_init (au, dtp, read_flag);
}
else
{
NOTE ("invoking data_transfer_init_worker");
data_transfer_init_worker (dtp, read_flag);
}
}
void
data_transfer_init_worker (st_parameter_dt *dtp, int read_flag)
{
GFC_INTEGER_4 cf = dtp->common.flags;
NOTE ("starting worker...");
if (read_flag && dtp->u.p.current_unit->flags.form != FORM_UNFORMATTED
&& ((cf & IOPARM_DT_LIST_FORMAT) != 0)
&& dtp->u.p.current_unit->child_dtio == 0)
dtp->u.p.current_unit->last_char = EOF - 1;
/* Check to see if we might be reading what we wrote before */
if (dtp->u.p.mode != dtp->u.p.current_unit->mode
@ -3291,6 +3135,38 @@ data_transfer_init_worker (st_parameter_dt *dtp, int read_flag)
pre_position (dtp);
/* Set up the subroutine that will handle the transfers. */
if (read_flag)
{
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
dtp->u.p.transfer = unformatted_read;
else
{
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
{
if (dtp->u.p.current_unit->child_dtio == 0)
dtp->u.p.current_unit->last_char = EOF - 1;
dtp->u.p.transfer = list_formatted_read;
}
else
dtp->u.p.transfer = formatted_transfer;
}
}
else
{
if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
dtp->u.p.transfer = unformatted_write;
else
{
if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
dtp->u.p.transfer = list_formatted_write;
else
dtp->u.p.transfer = formatted_transfer;
}
}
/* Make sure that we don't do a read after a nonadvancing write. */
if (read_flag)
@ -4223,7 +4099,7 @@ extern void st_read_done (st_parameter_dt *);
export_proto(st_read_done);
void
st_read_done_worker (st_parameter_dt *dtp)
st_read_done (st_parameter_dt *dtp)
{
finalize_transfer (dtp);
@ -4251,30 +4127,6 @@ st_read_done_worker (st_parameter_dt *dtp)
free_format_data (dtp->u.p.fmt);
free_format (dtp);
}
}
}
void
st_read_done (st_parameter_dt *dtp)
{
if (dtp->u.p.current_unit)
{
if (dtp->u.p.current_unit->au)
{
if (dtp->common.flags & IOPARM_DT_HAS_ID)
*dtp->id = enqueue_done_id (dtp->u.p.current_unit->au, AIO_READ_DONE);
else
{
enqueue_done (dtp->u.p.current_unit->au, AIO_READ_DONE);
/* An asynchronous unit without ASYNCHRONOUS="YES" - make this
synchronous by performing a wait operation. */
if (!dtp->u.p.async)
async_wait (&dtp->common, dtp->u.p.current_unit->au);
}
}
else
st_read_done_worker (dtp);
unlock_unit (dtp->u.p.current_unit);
}
@ -4282,7 +4134,7 @@ st_read_done (st_parameter_dt *dtp)
}
extern void st_write (st_parameter_dt *);
export_proto (st_write);
export_proto(st_write);
void
st_write (st_parameter_dt *dtp)
@ -4291,9 +4143,11 @@ st_write (st_parameter_dt *dtp)
data_transfer_init (dtp, 0);
}
extern void st_write_done (st_parameter_dt *);
export_proto(st_write_done);
void
st_write_done_worker (st_parameter_dt *dtp)
st_write_done (st_parameter_dt *dtp)
{
finalize_transfer (dtp);
@ -4342,65 +4196,16 @@ st_write_done_worker (st_parameter_dt *dtp)
free_format_data (dtp->u.p.fmt);
free_format (dtp);
}
}
}
extern void st_write_done (st_parameter_dt *);
export_proto(st_write_done);
void
st_write_done (st_parameter_dt *dtp)
{
if (dtp->u.p.current_unit)
{
if (dtp->u.p.current_unit->au)
{
if (dtp->common.flags & IOPARM_DT_HAS_ID)
*dtp->id = enqueue_done_id (dtp->u.p.current_unit->au,
AIO_WRITE_DONE);
else
{
enqueue_done (dtp->u.p.current_unit->au, AIO_WRITE_DONE);
/* An asynchronous unit without ASYNCHRONOUS="YES" - make this
synchronous by performing a wait operation. */
if (!dtp->u.p.async)
async_wait (&dtp->common, dtp->u.p.current_unit->au);
}
}
else
st_write_done_worker (dtp);
unlock_unit (dtp->u.p.current_unit);
}
library_end ();
}
/* Wait operation. We need to keep around the do-nothing version
of st_wait for compatibility with previous versions, which had marked
the argument as unused (and thus liable to be removed).
TODO: remove at next bump in version number. */
/* F2003: This is a stub for the runtime portion of the WAIT statement. */
void
st_wait (st_parameter_wait *wtp __attribute__((unused)))
{
return;
}
void
st_wait_async (st_parameter_wait *wtp)
{
gfc_unit *u = find_unit (wtp->common.unit);
if (u->au)
{
if (wtp->common.flags & IOPARM_WAIT_HAS_ID)
async_wait_id (&(wtp->common), u->au, *wtp->id);
else
async_wait (&(wtp->common), u->au);
}
unlock_unit (u);
}

View File

@ -27,7 +27,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "fbuf.h"
#include "format.h"
#include "unix.h"
#include "async.h"
#include <string.h>
#include <assert.h>
@ -241,7 +240,7 @@ insert_unit (int n)
#else
__GTHREAD_MUTEX_INIT_FUNCTION (&u->lock);
#endif
LOCK (&u->lock);
__gthread_mutex_lock (&u->lock);
u->priority = pseudo_random ();
unit_root = insert (u, unit_root);
return u;
@ -328,9 +327,7 @@ get_gfc_unit (int n, int do_create)
gfc_unit *p;
int c, created = 0;
NOTE ("Unit n=%d, do_create = %d", n, do_create);
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
retry:
for (c = 0; c < CACHE_SIZE; c++)
if (unit_cache[c] != NULL && unit_cache[c]->unit_number == n)
@ -369,7 +366,7 @@ retry:
{
/* Newly created units have their lock held already
from insert_unit. Just unlock UNIT_LOCK and return. */
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
return p;
}
@ -377,10 +374,10 @@ found:
if (p != NULL && (p->child_dtio == 0))
{
/* Fast path. */
if (! TRYLOCK (&p->lock))
if (! __gthread_mutex_trylock (&p->lock))
{
/* assert (p->closed == 0); */
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
return p;
}
@ -388,15 +385,15 @@ found:
}
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
if (p != NULL && (p->child_dtio == 0))
{
LOCK (&p->lock);
__gthread_mutex_lock (&p->lock);
if (p->closed)
{
LOCK (&unit_lock);
UNLOCK (&p->lock);
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&p->lock);
if (predec_waiting_locked (p) == 0)
destroy_unit_mutex (p);
goto retry;
@ -643,7 +640,7 @@ init_units (void)
fbuf_init (u, 0);
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
}
if (options.stdout_unit >= 0)
@ -674,7 +671,7 @@ init_units (void)
fbuf_init (u, 0);
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
}
if (options.stderr_unit >= 0)
@ -705,13 +702,13 @@ init_units (void)
fbuf_init (u, 256); /* 256 bytes should be enough, probably not doing
any kind of exotic formatting to stderr. */
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
}
/* The default internal units. */
u = insert_unit (GFC_INTERNAL_UNIT);
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
u = insert_unit (GFC_INTERNAL_UNIT4);
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
}
@ -720,9 +717,6 @@ close_unit_1 (gfc_unit *u, int locked)
{
int i, rc;
if (u->au)
async_close (u->au);
/* If there are previously written bytes from a write with ADVANCE="no"
Reposition the buffer before closing. */
if (u->previous_nonadvancing_write)
@ -732,7 +726,7 @@ close_unit_1 (gfc_unit *u, int locked)
u->closed = 1;
if (!locked)
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
for (i = 0; i < CACHE_SIZE; i++)
if (unit_cache[i] == u)
@ -750,7 +744,7 @@ close_unit_1 (gfc_unit *u, int locked)
newunit_free (u->unit_number);
if (!locked)
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
/* If there are any threads waiting in find_unit for this unit,
avoid freeing the memory, the last such thread will free it
@ -759,7 +753,7 @@ close_unit_1 (gfc_unit *u, int locked)
destroy_unit_mutex (u);
if (!locked)
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
return rc;
}
@ -767,9 +761,7 @@ close_unit_1 (gfc_unit *u, int locked)
void
unlock_unit (gfc_unit *u)
{
NOTE ("unlock_unit = %d", u->unit_number);
UNLOCK (&u->lock);
NOTE ("unlock_unit done");
__gthread_mutex_unlock (&u->lock);
}
/* close_unit()-- Close a unit. The stream is closed, and any memory
@ -793,10 +785,10 @@ close_unit (gfc_unit *u)
void
close_units (void)
{
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
while (unit_root != NULL)
close_unit_1 (unit_root, 1);
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
free (newunits);
@ -903,7 +895,7 @@ finish_last_advance_record (gfc_unit *u)
int
newunit_alloc (void)
{
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
if (!newunits)
{
newunits = xcalloc (16, 1);
@ -917,7 +909,7 @@ newunit_alloc (void)
{
newunits[ii] = true;
newunit_lwi = ii + 1;
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
return -ii + NEWUNIT_START;
}
}
@ -930,7 +922,7 @@ newunit_alloc (void)
memset (newunits + old_size, 0, old_size);
newunits[old_size] = true;
newunit_lwi = old_size + 1;
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
return -old_size + NEWUNIT_START;
}

View File

@ -27,7 +27,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "io.h"
#include "unix.h"
#include "async.h"
#include <limits.h>
#ifdef HAVE_UNISTD_H
@ -1743,7 +1742,7 @@ find_file (const char *file, gfc_charlen_type file_len)
id = id_from_path (path);
#endif
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
retry:
u = find_file0 (unit_root, FIND_FILE0_ARGS);
if (u != NULL)
@ -1752,20 +1751,20 @@ retry:
if (! __gthread_mutex_trylock (&u->lock))
{
/* assert (u->closed == 0); */
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
goto done;
}
inc_waiting_locked (u);
}
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
if (u != NULL)
{
LOCK (&u->lock);
__gthread_mutex_lock (&u->lock);
if (u->closed)
{
LOCK (&unit_lock);
UNLOCK (&u->lock);
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
if (predec_waiting_locked (u) == 0)
free (u);
goto retry;
@ -1795,7 +1794,7 @@ flush_all_units_1 (gfc_unit *u, int min_unit)
return u;
if (u->s)
sflush (u->s);
UNLOCK (&u->lock);
__gthread_mutex_unlock (&u->lock);
}
u = u->right;
}
@ -1808,31 +1807,31 @@ flush_all_units (void)
gfc_unit *u;
int min_unit = 0;
LOCK (&unit_lock);
__gthread_mutex_lock (&unit_lock);
do
{
u = flush_all_units_1 (unit_root, min_unit);
if (u != NULL)
inc_waiting_locked (u);
UNLOCK (&unit_lock);
__gthread_mutex_unlock (&unit_lock);
if (u == NULL)
return;
LOCK (&u->lock);
__gthread_mutex_lock (&u->lock);
min_unit = u->unit_number + 1;
if (u->closed == 0)
{
sflush (u->s);
LOCK (&unit_lock);
UNLOCK (&u->lock);
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
(void) predec_waiting_locked (u);
}
else
{
LOCK (&unit_lock);
UNLOCK (&u->lock);
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
if (predec_waiting_locked (u) == 0)
free (u);
}

View File

@ -738,9 +738,6 @@ internal_proto(translate_error);
extern void generate_error (st_parameter_common *, int, const char *);
iexport_proto(generate_error);
extern bool generate_error_common (st_parameter_common *, int, const char *);
iexport_proto(generate_error_common);
extern void generate_warning (st_parameter_common *, const char *);
internal_proto(generate_warning);
@ -1746,7 +1743,5 @@ void cshift1_16_c16 (gfc_array_c16 * const restrict,
internal_proto(cshift1_16_c16);
#endif
/* Define this if we support asynchronous I/O on this platform. This
currently requires weak symbols. */
#endif /* LIBGFOR_H */

View File

@ -24,9 +24,6 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
#include "libgfortran.h"
#include "io.h"
#include "async.h"
#include <assert.h>
#include <string.h>
#include <errno.h>
@ -529,38 +526,24 @@ translate_error (int code)
}
/* Worker function for generate_error and generate_error_async. Return true
if a straight return is to be done, zero if the program should abort. */
/* generate_error()-- Come here when an error happens. This
* subroutine is called if it is possible to continue on after the error.
* If an IOSTAT or IOMSG variable exists, we set it. If IOSTAT or
* ERR labels are present, we return, otherwise we terminate the program
* after printing a message. The error code is always required but the
* message parameter can be NULL, in which case a string describing
* the most recent operating system error is used. */
bool
generate_error_common (st_parameter_common *cmp, int family, const char *message)
void
generate_error (st_parameter_common *cmp, int family, const char *message)
{
char errmsg[STRERR_MAXSZ];
gfc_unit *u;
NOTE ("Entering generate_error_common");
u = thread_unit;
if (u && u->au)
{
if (u->au->error.has_error)
return true;
if (__gthread_equal (u->au->thread, __gthread_self ()))
{
u->au->error.has_error = 1;
u->au->error.cmp = cmp;
u->au->error.family = family;
u->au->error.message = message;
return true;
}
}
/* If there was a previous error, don't mask it with another
error message, EOF or EOR condition. */
if ((cmp->flags & IOPARM_LIBRETURN_MASK) == IOPARM_LIBRETURN_ERROR)
return true;
return;
/* Set the error status. */
if ((cmp->flags & IOPARM_HAS_IOSTAT))
@ -579,56 +562,36 @@ generate_error_common (st_parameter_common *cmp, int family, const char *message
switch (family)
{
case LIBERROR_EOR:
cmp->flags |= IOPARM_LIBRETURN_EOR; NOTE("EOR");
cmp->flags |= IOPARM_LIBRETURN_EOR;
if ((cmp->flags & IOPARM_EOR))
return true;
return;
break;
case LIBERROR_END:
cmp->flags |= IOPARM_LIBRETURN_END; NOTE("END");
cmp->flags |= IOPARM_LIBRETURN_END;
if ((cmp->flags & IOPARM_END))
return true;
return;
break;
default:
cmp->flags |= IOPARM_LIBRETURN_ERROR; NOTE("ERROR");
cmp->flags |= IOPARM_LIBRETURN_ERROR;
if ((cmp->flags & IOPARM_ERR))
return true;
return;
break;
}
/* Return if the user supplied an iostat variable. */
if ((cmp->flags & IOPARM_HAS_IOSTAT))
return true;
return;
/* Return code, caller is responsible for terminating
the program if necessary. */
/* Terminate the program */
recursion_check ();
show_locus (cmp);
estr_write ("Fortran runtime error: ");
estr_write (message);
estr_write ("\n");
return false;
}
/* generate_error()-- Come here when an error happens. This
* subroutine is called if it is possible to continue on after the error.
* If an IOSTAT or IOMSG variable exists, we set it. If IOSTAT or
* ERR labels are present, we return, otherwise we terminate the program
* after printing a message. The error code is always required but the
* message parameter can be NULL, in which case a string describing
* the most recent operating system error is used.
* If the error is for an asynchronous unit and if the program is currently
* executing the asynchronous thread, just mark the error and return. */
void
generate_error (st_parameter_common *cmp, int family, const char *message)
{
if (generate_error_common (cmp, family, message))
return;
exit_error(2);
exit_error (2);
}
iexport(generate_error);

View File

@ -1,3 +1,18 @@
2018-07-31 Andre Vieira <andre.simoesdiasvieira@arm.com>
Revert 'AsyncI/O patch committed'.
2018-07-25 Nicolas Koenig <koenigni@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>
PR fortran/25829
* testsuite/libgomp.fortran/async_io_1.f90: New test.
* testsuite/libgomp.fortran/async_io_2.f90: New test.
* testsuite/libgomp.fortran/async_io_3.f90: New test.
* testsuite/libgomp.fortran/async_io_4.f90: New test.
* testsuite/libgomp.fortran/async_io_5.f90: New test.
* testsuite/libgomp.fortran/async_io_6.f90: New test.
* testsuite/libgomp.fortran/async_io_7.f90: New test.
2018-07-30 Tom de Vries <tdevries@suse.de>
* plugin/plugin-nvptx.c (MIN, MAX): Redefine.

View File

@ -1,48 +0,0 @@
! { dg-do run }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! Check basic functionality of async I/O
program main
implicit none
integer:: i=1, j=2, k, l
real :: a, b, c, d
character(3), parameter:: yes="yes"
character(4) :: str
complex :: cc, dd
integer, dimension(4):: is = [0, 1, 2, 3]
integer, dimension(4):: res
character(10) :: inq
open (10, file='a.dat', asynchronous=yes)
cc = (1.5, 0.5)
inquire (10,asynchronous=inq)
if (inq /= "YES") stop 1
write (10,*,asynchronous=yes) 4, 3
write (10,*,asynchronous=yes) 2, 1
write (10,*,asynchronous=yes) 1.0, 3.0
write (10,'(A)', asynchronous=yes) 'asdf'
write (10,*, asynchronous=yes) cc
close (10)
open (20, file='a.dat', asynchronous=yes)
read (20, *, asynchronous=yes) i, j
read (20, *, asynchronous=yes) k, l
read (20, *, asynchronous=yes) a, b
read (20,'(A4)',asynchronous=yes) str
read (20,*, asynchronous=yes) dd
wait (20)
if (i /= 4 .or. j /= 3) stop 2
if (k /= 2 .or. l /= 1) stop 3
if (a /= 1.0 .or. b /= 3.0) stop 4
if (str /= 'asdf') stop 5
if (cc /= dd) stop 6
close (20,status="delete")
open(10, file='c.dat', asynchronous=yes)
write(10, *, asynchronous=yes) is
close(10)
open(20, file='c.dat', asynchronous=yes)
read(20, *, asynchronous=yes) res
wait (20)
if (any(res /= is)) stop 7
close (20,status="delete")
end program

View File

@ -1,18 +0,0 @@
! { dg-do run }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
program main
implicit none
integer :: i, ios
character(len=100) :: iom
open (10,file="tst.dat")
write (10,'(A4)') 'asdf'
close(10)
i = 234
open(10,file="tst.dat", asynchronous="yes")
read (10,'(I4)',asynchronous="yes") i
iom = ' '
wait (10,iostat=ios,iomsg=iom)
if (iom == ' ') stop 1
close(10,status="delete")
end program main

View File

@ -1,16 +0,0 @@
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! { dg-do run }
program main
integer :: i
open (10,file="tst.dat")
write (10,'(A4)') 'asdf'
close(10)
i = 234
open(10,file="tst.dat", asynchronous="yes")
read (10,'(I4)',asynchronous="yes") i
wait(10)
end program main
! { dg-output "Fortran runtime error: Bad value during integer read" }
! { dg-final { remote_file build delete "tst.dat" } }

View File

@ -1,90 +0,0 @@
! { dg-do run { target fd_truncate } }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! Test BACKSPACE for synchronous and asynchronous I/O
program main
integer i, n, nr
real x(10), y(10)
! PR libfortran/20068
open (20, status='scratch', asynchronous="yes")
write (20,*, asynchronous="yes" ) 1
write (20,*, asynchronous="yes") 2
write (20,*, asynchronous="yes") 3
rewind (20)
i = 41
read (20,*, asynchronous="yes") i
wait (20)
if (i .ne. 1) STOP 1
write (*,*) ' '
backspace (20)
i = 42
read (20,*, asynchronous="yes") i
close (20)
if (i .ne. 1) STOP 2
! PR libfortran/20125
open (20, status='scratch', asynchronous="yes")
write (20,*, asynchronous="yes") 7
backspace (20)
read (20,*, asynchronous="yes") i
wait (20)
if (i .ne. 7) STOP 3
close (20)
open (20, status='scratch', form='unformatted')
write (20) 8
backspace (20)
read (20) i
if (i .ne. 8) STOP 4
close (20)
! PR libfortran/20471
do n = 1, 10
x(n) = sqrt(real(n))
end do
open (3, form='unformatted', status='scratch')
write (3) (x(n),n=1,10)
backspace (3)
rewind (3)
read (3) (y(n),n=1,10)
do n = 1, 10
if (abs(x(n)-y(n)) > 0.00001) STOP 5
end do
close (3)
! PR libfortran/20156
open (3, form='unformatted', status='scratch')
do i = 1, 5
x(1) = i
write (3) n, (x(n),n=1,10)
end do
nr = 0
rewind (3)
20 continue
read (3,end=30,err=90) n, (x(n),n=1,10)
nr = nr + 1
goto 20
30 continue
if (nr .ne. 5) STOP 6
do i = 1, nr+1
backspace (3)
end do
do i = 1, nr
read(3,end=70,err=90) n, (x(n),n=1,10)
if (abs(x(1) - i) .gt. 0.001) STOP 7
end do
close (3)
stop
70 continue
STOP 8
90 continue
STOP 9
end program

View File

@ -1,132 +0,0 @@
! { dg-do run }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! PR55818 Reading a REAL from a file which doesn't end in a new line fails
! Test case from PR reporter.
implicit none
integer :: stat
!integer :: var ! << works
real :: var ! << fails
character(len=10) :: cvar ! << fails
complex :: cval
logical :: lvar
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "1", new_line("")
write(99) "2", new_line("")
write(99) "3"
close(99)
! Test character kind
open(99, file="test.dat")
read (99,*, iostat=stat) cvar
if (stat /= 0 .or. cvar /= "1") STOP 1
read (99,*, iostat=stat) cvar
if (stat /= 0 .or. cvar /= "2") STOP 2
read (99,*, iostat=stat) cvar ! << FAILS: stat /= 0
if (stat /= 0 .or. cvar /= "3") STOP 3 ! << aborts here
! Test real kind
rewind(99)
read (99,*, iostat=stat) var
if (stat /= 0 .or. var /= 1.0) STOP 4
read (99,*, iostat=stat) var
if (stat /= 0 .or. var /= 2.0) STOP 5
read (99,*, iostat=stat) var ! << FAILS: stat /= 0
if (stat /= 0 .or. var /= 3.0) STOP 6
close(99, status="delete")
! Test real kind with exponents
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "1.0e3", new_line("")
write(99) "2.0e-03", new_line("")
write(99) "3.0e2"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) var
if (stat /= 0) STOP 7
read (99,*, iostat=stat) var
if (stat /= 0) STOP 8
read (99,*) var ! << FAILS: stat /= 0
if (stat /= 0) STOP 9
close(99, status="delete")
! Test logical kind
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "Tru", new_line("")
write(99) "fal", new_line("")
write(99) "t"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) lvar
if (stat /= 0 .or. (.not.lvar)) STOP 10
read (99,*, iostat=stat) lvar
if (stat /= 0 .or. lvar) STOP 11
read (99,*) lvar ! << FAILS: stat /= 0
if (stat /= 0 .or. (.not.lvar)) STOP 12
close(99, status="delete")
! Test combinations of Inf and Nan
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "infinity", new_line("")
write(99) "nan", new_line("")
write(99) "infinity"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) var
if (stat /= 0) STOP 13
read (99,*, iostat=stat) var
if (stat /= 0) STOP 14
read (99,*) var ! << FAILS: stat /= 0
if (stat /= 0) STOP 1! << aborts here
close(99, status="delete")
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "infinity", new_line("")
write(99) "inf", new_line("")
write(99) "nan"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) var
if (stat /= 0) STOP 15
read (99,*, iostat=stat) var
if (stat /= 0) STOP 16
read (99,*) var ! << FAILS: stat /= 0
if (stat /= 0) STOP 2! << aborts here
close(99, status="delete")
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "infinity", new_line("")
write(99) "nan", new_line("")
write(99) "inf"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) var
if (stat /= 0) STOP 17
read (99,*, iostat=stat) var
if (stat /= 0) STOP 18
read (99,*) var ! << FAILS: stat /= 0
if (stat /= 0) STOP 3! << aborts here
close(99, status="delete")
! Test complex kind
open(99, file="test.dat", access="stream", form="unformatted", status="new")
write(99) "(1,2)", new_line("")
write(99) "(2,3)", new_line("")
write(99) "(4,5)"
close(99)
open(99, file="test.dat")
read (99,*, iostat=stat) cval
if (stat /= 0 .or. cval /= cmplx(1,2)) STOP 19
read (99,*, iostat=stat) cval
if (stat /= 0 .or. cval /= cmplx(2,3)) STOP 20
read (99,*, iostat=stat) cval ! << FAILS: stat /= 0, value is okay
if (stat /= 0 .or. cval /= cmplx(4,5)) STOP 21
close(99, status="delete")
end

View File

@ -1,30 +0,0 @@
! { dg-do run }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! PR 22390 Implement flush statement
program flush_1
character(len=256) msg
integer ios
open (unit=10, access='SEQUENTIAL', status='SCRATCH')
write (10, *) 42
flush 10
write (10, *) 42
flush(10)
write (10, *) 42
flush(unit=10, iostat=ios)
if (ios /= 0) STOP 1
write (10, *) 42
flush (unit=10, err=20)
goto 30
20 STOP 2
30 continue
call flush(10)
end program flush_1

View File

@ -1,22 +0,0 @@
! { dg-do run }
!TODO: Move these testcases to gfortran testsuite
! once compilation with pthreads is supported there
! PR40008 F2008: Add NEWUNIT= for OPEN statement
! Contributed by Jerry DeLisle <jvdelisle@gcc.gnu.org>
program newunit_1
character(len=25) :: str
integer(1) :: myunit, myunit2
myunit = 25
str = "bad"
open(newunit=myunit, status="scratch")
open(newunit = myunit2, file="newunit_1file")
write(myunit,'(e24.15e2)') 1.0d0
write(myunit2,*) "abcdefghijklmnop"
flush(myunit)
rewind(myunit)
rewind(myunit2)
read(myunit2,'(a)') str
if (str.ne." abcdefghijklmnop") STOP 1
close(myunit)
close(myunit2, status="delete")
end program newunit_1