diff --git a/gcc/ChangeLog b/gcc/ChangeLog index 86e14233c59..73bf46a508f 100644 --- a/gcc/ChangeLog +++ b/gcc/ChangeLog @@ -1,3 +1,14 @@ +2007-08-06 Chao-ying Fu + + * fixed-value.h: New file. + * fixed-value.c: New file. + * Makefile.in (OBJS-common): Add fixed-value.o. + (fixed-value.o): New rule. + (GTFILES): Add fixed-value.h. + * double-int.c (double_int_scmp): We should use unsigned HOST_WIDE_INT + to compare a.low and b.low. + * gengtype.c (main): Handle FIXED_VALUE_TYPE type as scalar typedef. + 2007-08-06 H.J. Lu Daniel Jacobowitz diff --git a/gcc/Makefile.in b/gcc/Makefile.in index baf50d73ab8..fe059d08fe5 100644 --- a/gcc/Makefile.in +++ b/gcc/Makefile.in @@ -1028,6 +1028,7 @@ OBJS-common = \ expmed.o \ expr.o \ final.o \ + fixed-value.o \ fold-const.o \ function.o \ fwprop.o \ @@ -2413,6 +2414,8 @@ real.o : real.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \ toplev.h $(TM_P_H) $(REAL_H) dfp.o : dfp.c dfp.h $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \ toplev.h $(TM_P_H) $(REAL_H) $(DECNUM_H) +fixed-value.o: fixed-value.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \ + $(TREE_H) fixed-value.h $(REAL_H) toplev.h integrate.o : integrate.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \ $(RTL_H) $(TREE_H) $(FLAGS_H) debug.h $(INTEGRATE_H) insn-config.h \ $(EXPR_H) $(REAL_H) $(REGS_H) intl.h $(FUNCTION_H) output.h $(RECOG_H) \ @@ -3038,6 +3041,7 @@ GTFILES = $(srcdir)/input.h $(srcdir)/coretypes.h \ $(srcdir)/coverage.c $(srcdir)/rtl.h \ $(srcdir)/optabs.h $(srcdir)/tree.h $(srcdir)/function.h $(srcdir)/libfuncs.h $(SYMTAB_H) \ $(srcdir)/real.h $(srcdir)/varray.h $(srcdir)/insn-addr.h $(srcdir)/hwint.h \ + $(srcdir)/fixed-value.h \ $(srcdir)/ipa-reference.h $(srcdir)/output.h $(srcdir)/cfgloop.h \ $(srcdir)/cselib.h $(srcdir)/basic-block.h $(srcdir)/cgraph.h \ $(srcdir)/reload.h $(srcdir)/caller-save.c \ diff --git a/gcc/double-int.c b/gcc/double-int.c index f8dd0b519d8..2ab505584f8 100644 --- a/gcc/double-int.c +++ b/gcc/double-int.c @@ -362,9 +362,9 @@ double_int_scmp (double_int a, double_int b) return -1; if (a.high > b.high) return 1; - if ((HOST_WIDE_INT) a.low < (HOST_WIDE_INT) b.low) + if (a.low < b.low) return -1; - if ((HOST_WIDE_INT) a.low > (HOST_WIDE_INT) b.low) + if (a.low > b.low) return 1; return 0; diff --git a/gcc/fixed-value.c b/gcc/fixed-value.c new file mode 100644 index 00000000000..705f4ca3de7 --- /dev/null +++ b/gcc/fixed-value.c @@ -0,0 +1,1140 @@ +/* Fixed-point arithmetic support. + Copyright (C) 2006, 2007 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "toplev.h" +#include "fixed-value.h" + +/* Compare two fixed objects for bitwise identity. */ + +bool +fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b) +{ + return (a->mode == b->mode + && a->data.high == b->data.high + && a->data.low == b->data.low); +} + +/* Calculate a hash value. */ + +unsigned int +fixed_hash (const FIXED_VALUE_TYPE *f) +{ + return (unsigned int) (f->data.low ^ f->data.high); +} + +/* Define the enum code for the range of the fixed-point value. */ +enum fixed_value_range_code { + FIXED_OK, /* The value is within the range. */ + FIXED_UNDERFLOW, /* The value is less than the minimum. */ + FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal + to the maximum plus the epsilon. */ + FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */ +}; + +/* Check REAL_VALUE against the range of the fixed-point mode. + Return FIXED_OK, if it is within the range. + FIXED_UNDERFLOW, if it is less than the minimum. + FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to + the maximum plus the epsilon. + FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */ + +static enum fixed_value_range_code +check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode) +{ + REAL_VALUE_TYPE max_value, min_value, epsilon_value; + + real_2expN (&max_value, GET_MODE_IBIT (mode)); + real_2expN (&epsilon_value, -GET_MODE_FBIT (mode)); + + if (SIGNED_FIXED_POINT_MODE_P (mode)) + min_value = REAL_VALUE_NEGATE (max_value); + else + real_from_string (&min_value, "0.0"); + + if (real_compare (LT_EXPR, real_value, &min_value)) + return FIXED_UNDERFLOW; + if (real_compare (EQ_EXPR, real_value, &max_value)) + return FIXED_MAX_EPS; + real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value); + if (real_compare (GT_EXPR, real_value, &max_value)) + return FIXED_GT_MAX_EPS; + return FIXED_OK; +} + +/* Initialize from a decimal or hexadecimal string. */ + +void +fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode) +{ + REAL_VALUE_TYPE real_value, fixed_value, base_value; + unsigned int fbit; + enum fixed_value_range_code temp; + + f->mode = mode; + fbit = GET_MODE_FBIT (mode); + + real_from_string (&real_value, str); + temp = check_real_for_fixed_mode (&real_value, f->mode); + /* We don't want to warn the case when the _Fract value is 1.0. */ + if (temp == FIXED_UNDERFLOW + || temp == FIXED_GT_MAX_EPS + || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode))) + warning (OPT_Woverflow, + "large fixed-point constant implicitly truncated to fixed-point type"); + real_2expN (&base_value, fbit); + real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value); + real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, + &fixed_value); + + if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode)) + { + /* From the spec, we need to evaluate 1 to the maximal value. */ + f->data.low = -1; + f->data.high = -1; + f->data = double_int_ext (f->data, + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), 1); + } + else + f->data = double_int_ext (f->data, + SIGNED_FIXED_POINT_MODE_P (f->mode) + + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + UNSIGNED_FIXED_POINT_MODE_P (f->mode)); +} + +/* Render F as a decimal floating point constant. */ + +void +fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig, + size_t buf_size) +{ + REAL_VALUE_TYPE real_value, base_value, fixed_value; + + real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode)); + real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high, + UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode)); + real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value); + real_to_decimal (str, &fixed_value, buf_size, 0, 1); +} + +/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on + the machine mode MODE. + Do not modify *F otherwise. + This function assumes the width of double_int is greater than the width + of the fixed-point value (the sum of a possible sign bit, possible ibits, + and fbits). + Return true, if !SAT_P and overflow. */ + +static bool +fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f, + bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); + int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); + + if (unsigned_p) /* Unsigned type. */ + { + double_int max; + max.low = -1; + max.high = -1; + max = double_int_ext (max, i_f_bits, 1); + if (double_int_cmp (a, max, 1) == 1) + { + if (sat_p) + *f = max; + else + overflow_p = true; + } + } + else /* Signed type. */ + { + double_int max, min; + max.high = -1; + max.low = -1; + max = double_int_ext (max, i_f_bits, 1); + min.high = 0; + min.low = 1; + lshift_double (min.low, min.high, i_f_bits, + 2 * HOST_BITS_PER_WIDE_INT, + &min.low, &min.high, 1); + min = double_int_ext (min, 1 + i_f_bits, 0); + if (double_int_cmp (a, max, 0) == 1) + { + if (sat_p) + *f = max; + else + overflow_p = true; + } + else if (double_int_cmp (a, min, 0) == -1) + { + if (sat_p) + *f = min; + else + overflow_p = true; + } + } + return overflow_p; +} + +/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and + save to *F based on the machine mode MODE. + Do not modify *F otherwise. + This function assumes the width of two double_int is greater than the width + of the fixed-point value (the sum of a possible sign bit, possible ibits, + and fbits). + Return true, if !SAT_P and overflow. */ + +static bool +fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low, + double_int *f, bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); + int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); + + if (unsigned_p) /* Unsigned type. */ + { + double_int max_r, max_s; + max_r.high = 0; + max_r.low = 0; + max_s.high = -1; + max_s.low = -1; + max_s = double_int_ext (max_s, i_f_bits, 1); + if (double_int_cmp (a_high, max_r, 1) == 1 + || (double_int_equal_p (a_high, max_r) && + double_int_cmp (a_low, max_s, 1) == 1)) + { + if (sat_p) + *f = max_s; + else + overflow_p = true; + } + } + else /* Signed type. */ + { + double_int max_r, max_s, min_r, min_s; + max_r.high = 0; + max_r.low = 0; + max_s.high = -1; + max_s.low = -1; + max_s = double_int_ext (max_s, i_f_bits, 1); + min_r.high = -1; + min_r.low = -1; + min_s.high = 0; + min_s.low = 1; + lshift_double (min_s.low, min_s.high, i_f_bits, + 2 * HOST_BITS_PER_WIDE_INT, + &min_s.low, &min_s.high, 1); + min_s = double_int_ext (min_s, 1 + i_f_bits, 0); + if (double_int_cmp (a_high, max_r, 0) == 1 + || (double_int_equal_p (a_high, max_r) && + double_int_cmp (a_low, max_s, 1) == 1)) + { + if (sat_p) + *f = max_s; + else + overflow_p = true; + } + else if (double_int_cmp (a_high, min_r, 0) == -1 + || (double_int_equal_p (a_high, min_r) && + double_int_cmp (a_low, min_s, 1) == -1)) + { + if (sat_p) + *f = min_s; + else + overflow_p = true; + } + } + return overflow_p; +} + +/* Return the sign bit based on I_F_BITS. */ + +static inline int +get_fixed_sign_bit (double_int a, int i_f_bits) +{ + if (i_f_bits < HOST_BITS_PER_WIDE_INT) + return (a.low >> i_f_bits) & 1; + else + return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1; +} + +/* Calculate F = A + (SUBTRACT_P ? -B : B). + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +static bool +do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, + const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p) +{ + bool overflow_p = false; + double_int temp = subtract_p ? double_int_neg (b->data) : b->data; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); + int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); + f->mode = a->mode; + f->data = double_int_add (a->data, temp); + if (unsigned_p) /* Unsigned type. */ + { + if (subtract_p) /* Unsigned subtraction. */ + { + if (double_int_cmp (a->data, b->data, 1) == -1) + { + if (sat_p) + { + f->data.high = 0; + f->data.low = 0; + } + else + overflow_p = true; + } + } + else /* Unsigned addition. */ + { + f->data = double_int_ext (f->data, i_f_bits, 1); + if (double_int_cmp (f->data, a->data, 1) == -1 + || double_int_cmp (f->data, b->data, 1) == -1) + { + if (sat_p) + { + f->data.high = -1; + f->data.low = -1; + } + else + overflow_p = true; + } + } + } + else /* Signed type. */ + { + if ((!subtract_p + && (get_fixed_sign_bit (a->data, i_f_bits) + == get_fixed_sign_bit (b->data, i_f_bits)) + && (get_fixed_sign_bit (a->data, i_f_bits) + != get_fixed_sign_bit (f->data, i_f_bits))) + || (subtract_p + && (get_fixed_sign_bit (a->data, i_f_bits) + != get_fixed_sign_bit (b->data, i_f_bits)) + && (get_fixed_sign_bit (a->data, i_f_bits) + != get_fixed_sign_bit (f->data, i_f_bits)))) + { + if (sat_p) + { + f->data.low = 1; + f->data.high = 0; + lshift_double (f->data.low, f->data.high, i_f_bits, + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, 1); + if (get_fixed_sign_bit (a->data, i_f_bits) == 0) + { + double_int one; + one.low = 1; + one.high = 0; + f->data = double_int_add (f->data, double_int_neg (one)); + } + } + else + overflow_p = true; + } + } + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + return overflow_p; +} + +/* Calculate F = A * B. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +static bool +do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, + const FIXED_VALUE_TYPE *b, bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); + int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); + f->mode = a->mode; + if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT) + { + f->data = double_int_mul (a->data, b->data); + lshift_double (f->data.low, f->data.high, + (-GET_MODE_FBIT (f->mode)), + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, !unsigned_p); + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); + } + else + { + /* The result of multiplication expands to two double_int. */ + double_int a_high, a_low, b_high, b_low; + double_int high_high, high_low, low_high, low_low; + double_int r, s, temp1, temp2; + int carry = 0; + + /* Decompose a and b to four double_int. */ + a_high.low = a->data.high; + a_high.high = 0; + a_low.low = a->data.low; + a_low.high = 0; + b_high.low = b->data.high; + b_high.high = 0; + b_low.low = b->data.low; + b_low.high = 0; + + /* Perform four multiplications. */ + low_low = double_int_mul (a_low, b_low); + low_high = double_int_mul (a_low, b_high); + high_low = double_int_mul (a_high, b_low); + high_high = double_int_mul (a_high, b_high); + + /* Accumulate four results to {r, s}. */ + temp1.high = high_low.low; + temp1.low = 0; + s = double_int_add (low_low, temp1); + if (double_int_cmp (s, low_low, 1) == -1 + || double_int_cmp (s, temp1, 1) == -1) + carry ++; /* Carry */ + temp1.high = s.high; + temp1.low = s.low; + temp2.high = low_high.low; + temp2.low = 0; + s = double_int_add (temp1, temp2); + if (double_int_cmp (s, temp1, 1) == -1 + || double_int_cmp (s, temp2, 1) == -1) + carry ++; /* Carry */ + + temp1.low = high_low.high; + temp1.high = 0; + r = double_int_add (high_high, temp1); + temp1.low = low_high.high; + temp1.high = 0; + r = double_int_add (r, temp1); + temp1.low = carry; + temp1.high = 0; + r = double_int_add (r, temp1); + + /* We need to add neg(b) to r, if a < 0. */ + if (!unsigned_p && a->data.high < 0) + r = double_int_add (r, double_int_neg (b->data)); + /* We need to add neg(a) to r, if b < 0. */ + if (!unsigned_p && b->data.high < 0) + r = double_int_add (r, double_int_neg (a->data)); + + /* Shift right the result by FBIT. */ + if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT) + { + s.low = r.low; + s.high = r.high; + if (unsigned_p) + { + r.low = 0; + r.high = 0; + } + else + { + r.low = -1; + r.high = -1; + } + f->data.low = s.low; + f->data.high = s.high; + } + else + { + lshift_double (s.low, s.high, + (-GET_MODE_FBIT (f->mode)), + 2 * HOST_BITS_PER_WIDE_INT, + &s.low, &s.high, 0); + lshift_double (r.low, r.high, + (2 * HOST_BITS_PER_WIDE_INT + - GET_MODE_FBIT (f->mode)), + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, 0); + f->data.low = f->data.low | s.low; + f->data.high = f->data.high | s.high; + s.low = f->data.low; + s.high = f->data.high; + lshift_double (r.low, r.high, + (-GET_MODE_FBIT (f->mode)), + 2 * HOST_BITS_PER_WIDE_INT, + &r.low, &r.high, !unsigned_p); + } + + overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p); + } + + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + return overflow_p; +} + +/* Calculate F = A / B. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +static bool +do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, + const FIXED_VALUE_TYPE *b, bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); + int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); + f->mode = a->mode; + if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT) + { + lshift_double (a->data.low, a->data.high, + GET_MODE_FBIT (f->mode), + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, !unsigned_p); + f->data = double_int_div (f->data, b->data, unsigned_p, TRUNC_DIV_EXPR); + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); + } + else + { + double_int pos_a, pos_b, r, s; + double_int quo_r, quo_s, mod, temp; + int num_of_neg = 0; + int i; + + /* If a < 0, negate a. */ + if (!unsigned_p && a->data.high < 0) + { + pos_a = double_int_neg (a->data); + num_of_neg ++; + } + else + pos_a = a->data; + + /* If b < 0, negate b. */ + if (!unsigned_p && b->data.high < 0) + { + pos_b = double_int_neg (b->data); + num_of_neg ++; + } + else + pos_b = b->data; + + /* Left shift pos_a to {r, s} by FBIT. */ + if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT) + { + r = pos_a; + s.high = 0; + s.low = 0; + } + else + { + lshift_double (pos_a.low, pos_a.high, + GET_MODE_FBIT (f->mode), + 2 * HOST_BITS_PER_WIDE_INT, + &s.low, &s.high, 0); + lshift_double (pos_a.low, pos_a.high, + - (2 * HOST_BITS_PER_WIDE_INT + - GET_MODE_FBIT (f->mode)), + 2 * HOST_BITS_PER_WIDE_INT, + &r.low, &r.high, 0); + } + + /* Divide r by pos_b to quo_r. The remanider is in mod. */ + div_and_round_double (TRUNC_DIV_EXPR, 1, r.low, r.high, pos_b.low, + pos_b.high, &quo_r.low, &quo_r.high, &mod.low, + &mod.high); + + quo_s.high = 0; + quo_s.low = 0; + + for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; i++) + { + /* Record the leftmost bit of mod. */ + int leftmost_mod = (mod.high < 0); + + /* Shift left mod by 1 bit. */ + lshift_double (mod.low, mod.high, 1, 2 * HOST_BITS_PER_WIDE_INT, + &mod.low, &mod.high, 0); + + /* Test the leftmost bit of s to add to mod. */ + if (s.high < 0) + mod.low += 1; + + /* Shift left quo_s by 1 bit. */ + lshift_double (quo_s.low, quo_s.high, 1, 2 * HOST_BITS_PER_WIDE_INT, + &quo_s.low, &quo_s.high, 0); + + /* Try to calculate (mod - pos_b). */ + temp = double_int_add (mod, double_int_neg (pos_b)); + + if (leftmost_mod == 1 || double_int_cmp (mod, pos_b, 1) != -1) + { + quo_s.low += 1; + mod = temp; + } + + /* Shift left s by 1 bit. */ + lshift_double (s.low, s.high, 1, 2 * HOST_BITS_PER_WIDE_INT, + &s.low, &s.high, 0); + + } + + if (num_of_neg == 1) + { + quo_s = double_int_neg (quo_s); + if (quo_s.high == 0 && quo_s.low == 0) + quo_r = double_int_neg (quo_r); + else + { + quo_r.low = ~quo_r.low; + quo_r.high = ~quo_r.high; + } + } + + f->data = quo_s; + overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p); + } + + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + return overflow_p; +} + +/* Calculate F = A << B if LEFT_P. Otherwies, F = A >> B. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +static bool +do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, + const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); + int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); + f->mode = a->mode; + + if (b->data.low == 0) + { + f->data = a->data; + return overflow_p; + } + + if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p)) + { + lshift_double (a->data.low, a->data.high, + left_p ? b->data.low : (-b->data.low), + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, !unsigned_p); + if (left_p) /* Only left shift saturates. */ + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); + } + else /* We need two double_int to store the left-shift result. */ + { + double_int temp_high, temp_low; + if (b->data.low == 2 * HOST_BITS_PER_WIDE_INT) + { + temp_high = a->data; + temp_low.high = 0; + temp_low.low = 0; + } + else + { + lshift_double (a->data.low, a->data.high, + b->data.low, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_low.low, &temp_low.high, !unsigned_p); + /* Logical shift right to temp_high. */ + lshift_double (a->data.low, a->data.high, + b->data.low - 2 * HOST_BITS_PER_WIDE_INT, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_high.low, &temp_high.high, 0); + } + if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */ + temp_high = double_int_ext (temp_high, b->data.low, unsigned_p); + f->data = temp_low; + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, + sat_p); + } + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + return overflow_p; +} + +/* Calculate F = -A. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +static bool +do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p) +{ + bool overflow_p = false; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode); + int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode); + f->mode = a->mode; + f->data = double_int_neg (a->data); + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + + if (unsigned_p) /* Unsigned type. */ + { + if (f->data.low != 0 || f->data.high != 0) + { + if (sat_p) + { + f->data.low = 0; + f->data.high = 0; + } + else + overflow_p = true; + } + } + else /* Signed type. */ + { + if (!(f->data.high == 0 && f->data.low == 0) + && f->data.high == a->data.high && f->data.low == a->data.low ) + { + if (sat_p) + { + /* Saturate to the maximum by subtracting f->data by one. */ + f->data.low = -1; + f->data.high = -1; + f->data = double_int_ext (f->data, i_f_bits, 1); + } + else + overflow_p = true; + } + } + return overflow_p; +} + +/* Perform the binary or unary operation described by CODE. + Note that OP0 and OP1 must have the same mode for binary operators. + For a unary operation, leave OP1 NULL. + Return true, if !SAT_P and overflow. */ + +bool +fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0, + const FIXED_VALUE_TYPE *op1, bool sat_p) +{ + switch (icode) + { + case NEGATE_EXPR: + return do_fixed_neg (f, op0, sat_p); + break; + + case PLUS_EXPR: + gcc_assert (op0->mode == op1->mode); + return do_fixed_add (f, op0, op1, false, sat_p); + break; + + case MINUS_EXPR: + gcc_assert (op0->mode == op1->mode); + return do_fixed_add (f, op0, op1, true, sat_p); + break; + + case MULT_EXPR: + gcc_assert (op0->mode == op1->mode); + return do_fixed_multiply (f, op0, op1, sat_p); + break; + + case TRUNC_DIV_EXPR: + gcc_assert (op0->mode == op1->mode); + return do_fixed_divide (f, op0, op1, sat_p); + break; + + case LSHIFT_EXPR: + return do_fixed_shift (f, op0, op1, true, sat_p); + break; + + case RSHIFT_EXPR: + return do_fixed_shift (f, op0, op1, false, sat_p); + break; + + default: + gcc_unreachable (); + } + return false; +} + +/* Compare fixed-point values by tree_code. + Note that OP0 and OP1 must have the same mode. */ + +bool +fixed_compare (int icode, const FIXED_VALUE_TYPE *op0, + const FIXED_VALUE_TYPE *op1) +{ + enum tree_code code = icode; + gcc_assert (op0->mode == op1->mode); + + switch (code) + { + case NE_EXPR: + return !double_int_equal_p (op0->data, op1->data); + + case EQ_EXPR: + return double_int_equal_p (op0->data, op1->data); + + case LT_EXPR: + return double_int_cmp (op0->data, op1->data, + UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1; + + case LE_EXPR: + return double_int_cmp (op0->data, op1->data, + UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1; + + case GT_EXPR: + return double_int_cmp (op0->data, op1->data, + UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1; + + case GE_EXPR: + return double_int_cmp (op0->data, op1->data, + UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1; + + default: + gcc_unreachable (); + } +} + +/* Extend or truncate to a new mode. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +bool +fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode, + const FIXED_VALUE_TYPE *a, bool sat_p) +{ + bool overflow_p = false; + if (mode == a->mode) + { + *f = *a; + return overflow_p; + } + + if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode)) + { + /* Left shift a to temp_high, temp_low based on a->mode. */ + double_int temp_high, temp_low; + int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode); + lshift_double (a->data.low, a->data.high, + amount, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_low.low, &temp_low.high, + SIGNED_FIXED_POINT_MODE_P (a->mode)); + /* Logical shift right to temp_high. */ + lshift_double (a->data.low, a->data.high, + amount - 2 * HOST_BITS_PER_WIDE_INT, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_high.low, &temp_high.high, 0); + if (SIGNED_FIXED_POINT_MODE_P (a->mode) + && a->data.high < 0) /* Signed-extend temp_high. */ + temp_high = double_int_ext (temp_high, amount, 0); + f->mode = mode; + f->data = temp_low; + if (SIGNED_FIXED_POINT_MODE_P (a->mode) == + SIGNED_FIXED_POINT_MODE_P (f->mode)) + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, + sat_p); + else + { + /* Take care of the cases when converting between signed and + unsigned. */ + if (SIGNED_FIXED_POINT_MODE_P (a->mode)) + { + /* Signed -> Unsigned. */ + if (a->data.high < 0) + { + if (sat_p) + { + f->data.low = 0; /* Set to zero. */ + f->data.high = 0; /* Set to zero. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, + &f->data, sat_p); + } + else + { + /* Unsigned -> Signed. */ + if (temp_high.high < 0) + { + if (sat_p) + { + /* Set to maximum. */ + f->data.low = -1; /* Set to all ones. */ + f->data.high = -1; /* Set to all ones. */ + f->data = double_int_ext (f->data, + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + 1); /* Clear the sign. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, + &f->data, sat_p); + } + } + } + else + { + /* Right shift a to temp based on a->mode. */ + double_int temp; + lshift_double (a->data.low, a->data.high, + GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode), + 2 * HOST_BITS_PER_WIDE_INT, + &temp.low, &temp.high, + SIGNED_FIXED_POINT_MODE_P (a->mode)); + f->mode = mode; + f->data = temp; + if (SIGNED_FIXED_POINT_MODE_P (a->mode) == + SIGNED_FIXED_POINT_MODE_P (f->mode)) + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p); + else + { + /* Take care of the cases when converting between signed and + unsigned. */ + if (SIGNED_FIXED_POINT_MODE_P (a->mode)) + { + /* Signed -> Unsigned. */ + if (a->data.high < 0) + { + if (sat_p) + { + f->data.low = 0; /* Set to zero. */ + f->data.high = 0; /* Set to zero. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, + sat_p); + } + else + { + /* Unsigned -> Signed. */ + if (temp.high < 0) + { + if (sat_p) + { + /* Set to maximum. */ + f->data.low = -1; /* Set to all ones. */ + f->data.high = -1; /* Set to all ones. */ + f->data = double_int_ext (f->data, + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + 1); /* Clear the sign. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, + sat_p); + } + } + } + + f->data = double_int_ext (f->data, + SIGNED_FIXED_POINT_MODE_P (f->mode) + + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + UNSIGNED_FIXED_POINT_MODE_P (f->mode)); + return overflow_p; +} + +/* Convert to a new fixed-point mode from an integer. + If UNSIGNED_P, this integer is unsigned. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +bool +fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode, + double_int a, bool unsigned_p, bool sat_p) +{ + bool overflow_p = false; + /* Left shift a to temp_high, temp_low. */ + double_int temp_high, temp_low; + int amount = GET_MODE_FBIT (mode); + if (amount == 2 * HOST_BITS_PER_WIDE_INT) + { + temp_high = a; + temp_low.low = 0; + temp_low.high = 0; + } + else + { + lshift_double (a.low, a.high, + amount, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_low.low, &temp_low.high, 0); + + /* Logical shift right to temp_high. */ + lshift_double (a.low, a.high, + amount - 2 * HOST_BITS_PER_WIDE_INT, + 2 * HOST_BITS_PER_WIDE_INT, + &temp_high.low, &temp_high.high, 0); + } + if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */ + temp_high = double_int_ext (temp_high, amount, 0); + + f->mode = mode; + f->data = temp_low; + + if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode)) + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data, + sat_p); + else + { + /* Take care of the cases when converting between signed and unsigned. */ + if (!unsigned_p) + { + /* Signed -> Unsigned. */ + if (a.high < 0) + { + if (sat_p) + { + f->data.low = 0; /* Set to zero. */ + f->data.high = 0; /* Set to zero. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, + &f->data, sat_p); + } + else + { + /* Unsigned -> Signed. */ + if (temp_high.high < 0) + { + if (sat_p) + { + /* Set to maximum. */ + f->data.low = -1; /* Set to all ones. */ + f->data.high = -1; /* Set to all ones. */ + f->data = double_int_ext (f->data, + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + 1); /* Clear the sign. */ + } + else + overflow_p = true; + } + else + overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, + &f->data, sat_p); + } + } + f->data = double_int_ext (f->data, + SIGNED_FIXED_POINT_MODE_P (f->mode) + + GET_MODE_FBIT (f->mode) + + GET_MODE_IBIT (f->mode), + UNSIGNED_FIXED_POINT_MODE_P (f->mode)); + return overflow_p; +} + +/* Convert to a new fixed-point mode from a real. + If SAT_P, saturate the result to the max or the min. + Return true, if !SAT_P and overflow. */ + +bool +fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode, + const REAL_VALUE_TYPE *a, bool sat_p) +{ + bool overflow_p = false; + REAL_VALUE_TYPE real_value, fixed_value, base_value; + bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode); + int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode); + unsigned int fbit = GET_MODE_FBIT (mode); + enum fixed_value_range_code temp; + + real_value = *a; + f->mode = mode; + real_2expN (&base_value, fbit); + real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value); + real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value); + temp = check_real_for_fixed_mode (&real_value, mode); + if (temp == FIXED_UNDERFLOW) /* Minimum. */ + { + if (sat_p) + { + if (unsigned_p) + { + f->data.low = 0; + f->data.high = 0; + } + else + { + f->data.low = 1; + f->data.high = 0; + lshift_double (f->data.low, f->data.high, i_f_bits, + 2 * HOST_BITS_PER_WIDE_INT, + &f->data.low, &f->data.high, 1); + f->data = double_int_ext (f->data, 1 + i_f_bits, 0); + } + } + else + overflow_p = true; + } + else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */ + { + if (sat_p) + { + f->data.low = -1; + f->data.high = -1; + f->data = double_int_ext (f->data, i_f_bits, 1); + } + else + overflow_p = true; + } + f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p); + return overflow_p; +} + +/* Convert to a new real mode from a fixed-point. */ + +void +real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode, + const FIXED_VALUE_TYPE *f) +{ + REAL_VALUE_TYPE base_value, fixed_value, real_value; + + real_2expN (&base_value, GET_MODE_FBIT (f->mode)); + real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high, + UNSIGNED_FIXED_POINT_MODE_P (f->mode)); + real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value); + real_convert (r, mode, &real_value); +} + +/* Determine whether a fixed-point value F is negative. */ + +bool +fixed_isneg (const FIXED_VALUE_TYPE *f) +{ + if (SIGNED_FIXED_POINT_MODE_P (f->mode)) + { + int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode); + int sign_bit = get_fixed_sign_bit (f->data, i_f_bits); + if (sign_bit == 1) + return true; + } + + return false; +} diff --git a/gcc/fixed-value.h b/gcc/fixed-value.h new file mode 100644 index 00000000000..69db190e8f1 --- /dev/null +++ b/gcc/fixed-value.h @@ -0,0 +1,100 @@ +/* Fixed-point arithmetic support. + Copyright (C) 2006, 2007 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#ifndef GCC_FIXED_VALUE_H +#define GCC_FIXED_VALUE_H + +#include "machmode.h" +#include "real.h" +#include "double-int.h" + +struct fixed_value GTY(()) +{ + double_int data; /* Store data up to 2 wide integers. */ + unsigned int mode; /* Use machine mode to know IBIT and FBIT. */ +}; + +#define FIXED_VALUE_TYPE struct fixed_value + +#define MAX_FCONST0 18 /* For storing 18 fixed-point zeros per + fract, ufract, accum, and uaccum modes . */ +#define MAX_FCONST1 8 /* For storing 8 fixed-point ones per accum + and uaccum modes. */ +/* Constant fixed-point values 0 and 1. */ +extern FIXED_VALUE_TYPE fconst0[MAX_FCONST0]; +extern FIXED_VALUE_TYPE fconst1[MAX_FCONST1]; + +/* Macros to access fconst0 and fconst1 via machine modes. */ +#define FCONST0(mode) fconst0[mode - QQmode] +#define FCONST1(mode) fconst1[mode - HAmode] + +/* Return a CONST_FIXED with value R and mode M. */ +#define CONST_FIXED_FROM_FIXED_VALUE(r, m) \ + const_fixed_from_fixed_value (r, m) +extern rtx const_fixed_from_fixed_value (FIXED_VALUE_TYPE, enum machine_mode); + +/* Initialize from a decimal or hexadecimal string. */ +extern void fixed_from_string (FIXED_VALUE_TYPE *, const char *, + enum machine_mode); + +/* In tree.c: wrap up a FIXED_VALUE_TYPE in a tree node. */ +extern tree build_fixed (tree, FIXED_VALUE_TYPE); + +/* Extend or truncate to a new mode. */ +extern bool fixed_convert (FIXED_VALUE_TYPE *, enum machine_mode, + const FIXED_VALUE_TYPE *, bool); + +/* Convert to a fixed-point mode from an integer. */ +extern bool fixed_convert_from_int (FIXED_VALUE_TYPE *, enum machine_mode, + double_int, bool, bool); + +/* Convert to a fixed-point mode from a real. */ +extern bool fixed_convert_from_real (FIXED_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *, bool); + +/* Convert to a real mode from a fixed-point. */ +extern void real_convert_from_fixed (REAL_VALUE_TYPE *, enum machine_mode, + const FIXED_VALUE_TYPE *); + +/* Compare two fixed-point objects for bitwise identity. */ +extern bool fixed_identical (const FIXED_VALUE_TYPE *, const FIXED_VALUE_TYPE *); + +/* Calculate a hash value. */ +extern unsigned int fixed_hash (const FIXED_VALUE_TYPE *); + +#define FIXED_VALUES_IDENTICAL(x, y) fixed_identical (&(x), &(y)) + +/* Determine whether a fixed-point value X is negative. */ +#define FIXED_VALUE_NEGATIVE(x) fixed_isneg (&(x)) + +/* Render F as a decimal floating point constant. */ +extern void fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *, size_t); + +/* Binary or unary arithmetic on tree_code. */ +extern bool fixed_arithmetic (FIXED_VALUE_TYPE *, int, const FIXED_VALUE_TYPE *, + const FIXED_VALUE_TYPE *, bool); + +/* Compare fixed-point values by tree_code. */ +extern bool fixed_compare (int, const FIXED_VALUE_TYPE *, + const FIXED_VALUE_TYPE *); + +/* Determine whether a fixed-point value X is negative. */ +extern bool fixed_isneg (const FIXED_VALUE_TYPE *); + +#endif /* GCC_FIXED_VALUE_H */ diff --git a/gcc/gengtype.c b/gcc/gengtype.c index 9c854a9ad41..80acba0c657 100644 --- a/gcc/gengtype.c +++ b/gcc/gengtype.c @@ -3533,6 +3533,7 @@ main (int argc, char **argv) pos.line = __LINE__ + 1; do_scalar_typedef ("CUMULATIVE_ARGS", &pos); pos.line++; do_scalar_typedef ("REAL_VALUE_TYPE", &pos); pos.line++; + do_scalar_typedef ("FIXED_VALUE_TYPE", &pos); pos.line++; do_scalar_typedef ("double_int", &pos); pos.line++; do_scalar_typedef ("uint8", &pos); pos.line++; do_scalar_typedef ("jword", &pos); pos.line++;