libgo: add s390 support

From Dominik Vogt.

* libgo/go/syscall/libcall_linux_s390.go: New file for s390 support.
* libgo/go/syscall/syscall_linux_s390.go: Ditto.
* libgo/go/syscall/libcall_linux_s390x.go: New file for s390x support.
* libgo/go/syscall/syscall_linux_s390x.go: Ditto.
* libgo/go/runtime/pprof/pprof.go (printStackRecord): Support s390 and
s390x.
* libgo/runtime/runtime.c (runtime_cputicks): Add support for s390 and
s390x
* libgo/mksysinfo.sh: Ditto.
(upcase_fields): New helper function

* libgo/go/debug/elf/file.go (applyRelocations): Implement relocations
on s390x.
(applyRelocationsS390x): Ditto.
(DWARF): Ditto.
* libgo/go/debug/elf/elf.go (R_390): New constants for S390 relocations.
(r390Strings): Ditto.
(String): Helper function for S390 relocations.
(GoString): Ditto.

* libgo/go/reflect/makefuncgo_s390.go: New file.
(S390MakeFuncStubGo): Implementation of s390 abi.
* libgo/go/reflect/makefuncgo_s390x.go: New file.
(S390xMakeFuncStubGo): Implementation of s390x abi.
* libgo/go/reflect/makefunc_s390.c: New file.
(makeFuncStub): s390 and s390x specific implementation of function.
* libgo/go/reflect/makefunc.go
(MakeFunc): Add support for s390 and s390x.
(makeMethodValue): Ditto.
(makeValueMethod): Ditto.
* libgo/Makefile.am (go_reflect_makefunc_s_file): Ditto.
(go_reflect_makefunc_file): Ditto.
* libgo/go/reflect/makefunc_dummy.c: Ditto.
* libgo/runtime/runtime.h (__go_makefunc_can_recover): Export prototype
for use in makefunc_s390.c.
(__go_makefunc_returning): Ditto.

* libgo/go/syscall/exec_linux.go (forkAndExecInChild): Fix order of the
arguments of the clone system call for s390[x].

* libgo/configure.ac (is_s390): New variable.
(is_s390x): Ditto
(LIBGO_IS_S390): Ditto.
(LIBGO_IS_S390X): Ditto.
(GOARCH): Support s390 and s390x.
* libgo/go/go/build/build.go (cgoEnabled): Ditto.
* libgo/go/go/build/syslist.go (goarchList): Ditto.

From-SVN: r217106
This commit is contained in:
Ian Lance Taylor 2014-11-04 22:39:30 +00:00
parent f6166a42cc
commit 1fec5f5274
20 changed files with 1309 additions and 18 deletions

View File

@ -943,11 +943,26 @@ go_reflect_makefunc_file = \
go_reflect_makefunc_s_file = \
go/reflect/makefunc_386.S
else
if LIBGO_IS_S390
go_reflect_makefunc_file = \
go/reflect/makefuncgo_s390.go
go_reflect_makefunc_s_file = \
go/reflect/makefunc_s390.c
else
if LIBGO_IS_S390X
go_reflect_makefunc_file = \
go/reflect/makefuncgo_s390x.go \
go/reflect/makefuncgo_s390.go
go_reflect_makefunc_s_file = \
go/reflect/makefunc_s390.c
else
go_reflect_makefunc_file =
go_reflect_makefunc_s_file = \
go/reflect/makefunc_dummy.c
endif
endif
endif
endif
go_reflect_files = \
go/reflect/deepequal.go \

View File

@ -1104,15 +1104,28 @@ go_path_files = \
go/path/match.go \
go/path/path.go
@LIBGO_IS_386_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_file =
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_FALSE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_file =
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_TRUE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_TRUE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefuncgo_s390x.go \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_TRUE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefuncgo_s390.go
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390_TRUE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390_TRUE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefuncgo_s390.go
@LIBGO_IS_386_TRUE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_file = \
@LIBGO_IS_386_TRUE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefuncgo_386.go
@LIBGO_IS_X86_64_TRUE@go_reflect_makefunc_file = \
@LIBGO_IS_X86_64_TRUE@ go/reflect/makefuncgo_amd64.go
@LIBGO_IS_386_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_s_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefunc_dummy.c
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_FALSE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_s_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_FALSE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefunc_dummy.c
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_TRUE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_s_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390X_TRUE@@LIBGO_IS_S390_FALSE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefunc_s390.c
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390_TRUE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_s_file = \
@LIBGO_IS_386_FALSE@@LIBGO_IS_S390_TRUE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefunc_s390.c
@LIBGO_IS_386_TRUE@@LIBGO_IS_X86_64_FALSE@go_reflect_makefunc_s_file = \
@LIBGO_IS_386_TRUE@@LIBGO_IS_X86_64_FALSE@ go/reflect/makefunc_386.S

54
libgo/configure vendored
View File

@ -631,6 +631,10 @@ LIBGO_IS_SPARC64_FALSE
LIBGO_IS_SPARC64_TRUE
LIBGO_IS_SPARC_FALSE
LIBGO_IS_SPARC_TRUE
LIBGO_IS_S390X_FALSE
LIBGO_IS_S390X_TRUE
LIBGO_IS_S390_FALSE
LIBGO_IS_S390_TRUE
LIBGO_IS_PPC64_FALSE
LIBGO_IS_PPC64_TRUE
LIBGO_IS_PPC_FALSE
@ -11118,7 +11122,7 @@ else
lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
lt_status=$lt_dlunknown
cat > conftest.$ac_ext <<_LT_EOF
#line 11121 "configure"
#line 11125 "configure"
#include "confdefs.h"
#if HAVE_DLFCN_H
@ -11224,7 +11228,7 @@ else
lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
lt_status=$lt_dlunknown
cat > conftest.$ac_ext <<_LT_EOF
#line 11227 "configure"
#line 11231 "configure"
#include "confdefs.h"
#if HAVE_DLFCN_H
@ -13620,6 +13624,8 @@ is_m68k=no
mips_abi=unknown
is_ppc=no
is_ppc64=no
is_s390=no
is_s390x=no
is_sparc=no
is_sparc64=no
is_x86_64=no
@ -13739,6 +13745,26 @@ rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
GOARCH=ppc64
fi
;;
s390*-*-*)
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#if defined(__s390x__)
#error 64-bit
#endif
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
is_s390=yes
else
is_s390x=yes
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
if test "$is_s390" = "yes"; then
GOARCH=s390
else
GOARCH=s390x
fi
;;
sparc*-*-*)
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
@ -13856,6 +13882,22 @@ else
LIBGO_IS_PPC64_FALSE=
fi
if test $is_s390 = yes; then
LIBGO_IS_S390_TRUE=
LIBGO_IS_S390_FALSE='#'
else
LIBGO_IS_S390_TRUE='#'
LIBGO_IS_S390_FALSE=
fi
if test $is_s390x = yes; then
LIBGO_IS_S390X_TRUE=
LIBGO_IS_S390X_FALSE='#'
else
LIBGO_IS_S390X_TRUE='#'
LIBGO_IS_S390X_FALSE=
fi
if test $is_sparc = yes; then
LIBGO_IS_SPARC_TRUE=
LIBGO_IS_SPARC_FALSE='#'
@ -15630,6 +15672,14 @@ if test -z "${LIBGO_IS_PPC64_TRUE}" && test -z "${LIBGO_IS_PPC64_FALSE}"; then
as_fn_error "conditional \"LIBGO_IS_PPC64\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
if test -z "${LIBGO_IS_S390_TRUE}" && test -z "${LIBGO_IS_S390_FALSE}"; then
as_fn_error "conditional \"LIBGO_IS_S390\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
if test -z "${LIBGO_IS_S390X_TRUE}" && test -z "${LIBGO_IS_S390X_FALSE}"; then
as_fn_error "conditional \"LIBGO_IS_S390X\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
if test -z "${LIBGO_IS_SPARC_TRUE}" && test -z "${LIBGO_IS_SPARC_FALSE}"; then
as_fn_error "conditional \"LIBGO_IS_SPARC\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5

View File

@ -194,6 +194,8 @@ is_m68k=no
mips_abi=unknown
is_ppc=no
is_ppc64=no
is_s390=no
is_s390x=no
is_sparc=no
is_sparc64=no
is_x86_64=no
@ -271,6 +273,18 @@ changequote([,])dnl
GOARCH=ppc64
fi
;;
s390*-*-*)
AC_COMPILE_IFELSE([
#if defined(__s390x__)
#error 64-bit
#endif],
[is_s390=yes], [is_s390x=yes])
if test "$is_s390" = "yes"; then
GOARCH=s390
else
GOARCH=s390x
fi
;;
sparc*-*-*)
AC_COMPILE_IFELSE([
#if defined(__sparcv9) || defined(__arch64__)
@ -296,6 +310,8 @@ AM_CONDITIONAL(LIBGO_IS_MIPSN64, test $mips_abi = n64)
AM_CONDITIONAL(LIBGO_IS_MIPSO64, test $mips_abi = o64)
AM_CONDITIONAL(LIBGO_IS_PPC, test $is_ppc = yes)
AM_CONDITIONAL(LIBGO_IS_PPC64, test $is_ppc64 = yes)
AM_CONDITIONAL(LIBGO_IS_S390, test $is_s390 = yes)
AM_CONDITIONAL(LIBGO_IS_S390X, test $is_s390x = yes)
AM_CONDITIONAL(LIBGO_IS_SPARC, test $is_sparc = yes)
AM_CONDITIONAL(LIBGO_IS_SPARC64, test $is_sparc64 = yes)
AM_CONDITIONAL(LIBGO_IS_X86_64, test $is_x86_64 = yes)

View File

@ -1340,6 +1340,72 @@ var rppc64Strings = []intName{
func (i R_PPC64) String() string { return stringName(uint32(i), rppc64Strings, false) }
func (i R_PPC64) GoString() string { return stringName(uint32(i), rppc64Strings, true) }
// Relocation types for s390
type R_390 int
const (
R_390_NONE R_390 = 0
R_390_8 R_390 = 1
R_390_12 R_390 = 2
R_390_16 R_390 = 3
R_390_32 R_390 = 4
R_390_PC32 R_390 = 5
R_390_GOT12 R_390 = 6
R_390_GOT32 R_390 = 7
R_390_PLT32 R_390 = 8
R_390_COPY R_390 = 9
R_390_GLOB_DAT R_390 = 10
R_390_JMP_SLOT R_390 = 11
R_390_RELATIVE R_390 = 12
R_390_GOTOFF R_390 = 13
R_390_GOTPC R_390 = 14
R_390_GOT16 R_390 = 15
R_390_PC16 R_390 = 16
R_390_PC16DBL R_390 = 17
R_390_PLT16DBL R_390 = 18
R_390_PC32DBL R_390 = 19
R_390_PLT32DBL R_390 = 20
R_390_GOTPCDBL R_390 = 21
R_390_64 R_390 = 22
R_390_PC64 R_390 = 23
R_390_GOT64 R_390 = 24
R_390_PLT64 R_390 = 25
R_390_GOTENT R_390 = 26
)
var r390Strings = []intName{
{0, "R_390_NONE"},
{1, "R_390_8"},
{2, "R_390_12"},
{3, "R_390_16"},
{4, "R_390_32"},
{5, "R_390_PC32"},
{6, "R_390_GOT12"},
{7, "R_390_GOT32"},
{8, "R_390_PLT32"},
{9, "R_390_COPY"},
{10, "R_390_GLOB_DAT"},
{11, "R_390_JMP_SLOT"},
{12, "R_390_RELATIVE"},
{13, "R_390_GOTOFF"},
{14, "R_390_GOTPC"},
{15, "R_390_GOT16"},
{16, "R_390_PC16"},
{17, "R_390_PC16DBL"},
{18, "R_390_PLT16DBL"},
{19, "R_390_PC32DBL"},
{20, "R_390_PLT32DBL"},
{21, "R_390_GOTPCDBL"},
{22, "R_390_64"},
{23, "R_390_PC64"},
{24, "R_390_GOT64"},
{25, "R_390_PLT64"},
{26, "R_390_GOTENT"},
}
func (i R_390) String() string { return stringName(uint32(i), r390Strings, false) }
func (i R_390) GoString() string { return stringName(uint32(i), r390Strings, true) }
// Relocation types for SPARC.
type R_SPARC int

View File

@ -528,6 +528,9 @@ func (f *File) applyRelocations(dst []byte, rels []byte) error {
if f.Class == ELFCLASS64 && f.Machine == EM_PPC64 {
return f.applyRelocationsPPC64(dst, rels)
}
if f.Class == ELFCLASS64 && f.Machine == EM_S390 {
return f.applyRelocationsS390x(dst, rels)
}
return errors.New("not implemented")
}
@ -659,6 +662,47 @@ func (f *File) applyRelocationsPPC64(dst []byte, rels []byte) error {
return nil
}
func (f *File) applyRelocationsS390x(dst []byte, rels []byte) error {
// 24 is the size of Rela64.
if len(rels)%24 != 0 {
return errors.New("length of relocation section is not a multiple of 24")
}
symbols, _, err := f.getSymbols(SHT_SYMTAB)
if err != nil {
return err
}
b := bytes.NewBuffer(rels)
var rela Rela64
for b.Len() > 0 {
binary.Read(b, f.ByteOrder, &rela)
symNo := rela.Info >> 32
t := R_390(rela.Info & 0xffff)
if symNo == 0 || symNo > uint64(len(symbols)) {
continue
}
sym := &symbols[symNo-1]
switch t {
case R_390_64:
if rela.Off+8 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
f.ByteOrder.PutUint64(dst[rela.Off:rela.Off+8], uint64(rela.Addend)+uint64(sym.Value))
case R_390_32:
if rela.Off+4 >= uint64(len(dst)) || rela.Addend < 0 {
continue
}
f.ByteOrder.PutUint32(dst[rela.Off:rela.Off+4], uint32(rela.Addend)+uint32(sym.Value))
}
}
return nil
}
func (f *File) DWARF() (*dwarf.Data, error) {
// There are many other DWARF sections, but these
// are the required ones, and the debug/dwarf package
@ -681,7 +725,7 @@ func (f *File) DWARF() (*dwarf.Data, error) {
// If there's a relocation table for .debug_info, we have to process it
// now otherwise the data in .debug_info is invalid for x86-64 objects.
rela := f.Section(".rela.debug_info")
if rela != nil && rela.Type == SHT_RELA && (f.Machine == EM_X86_64 || f.Machine == EM_PPC64) {
if rela != nil && rela.Type == SHT_RELA && (f.Machine == EM_X86_64 || f.Machine == EM_PPC64 || f.Machine == EM_S390) {
data, err := rela.Data()
if err != nil {
return nil, err

View File

@ -268,6 +268,8 @@ var cgoEnabled = map[string]bool{
"linux/386": true,
"linux/amd64": true,
"linux/arm": true,
"linux/s390": true,
"linux/s390x": true,
"netbsd/386": true,
"netbsd/amd64": true,
"netbsd/arm": true,

View File

@ -5,4 +5,4 @@
package build
const goosList = "darwin dragonfly freebsd linux nacl netbsd openbsd plan9 solaris windows "
const goarchList = "386 amd64 amd64p32 arm arm64 alpha m68k mipso32 mipsn32 mipsn64 mipso64 ppc ppc64 sparc sparc64 "
const goarchList = "386 amd64 amd64p32 arm arm64 alpha m68k mipso32 mipsn32 mipsn64 mipso64 ppc ppc64 s390 s390x sparc sparc64 "

View File

@ -61,7 +61,7 @@ func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value {
var code uintptr
var ffi *ffiData
switch runtime.GOARCH {
case "amd64", "386":
case "amd64", "386", "s390", "s390x":
// Indirect Go func value (dummy) to obtain actual
// code address. (A Go func value is a pointer to a C
// function pointer. http://golang.org/s/go11func.)
@ -159,7 +159,7 @@ func makeValueMethod(v Value) Value {
}
switch runtime.GOARCH {
case "amd64", "386":
case "amd64", "386", "s390", "s390x":
// Indirect Go func value (dummy) to obtain actual
// code address. (A Go func value is a pointer to a C
// function pointer. http://golang.org/s/go11func.)

View File

@ -0,0 +1,86 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "go-panic.h"
#ifdef __s390x__
# define S390_GO_USE_64_BIT_ABI 1
# define S390_GO_S390X_ARGS , double f4, double f6
# define S390_GO_S390X_FIELDS double f4; double f6;
extern void S390xMakeFuncStubGo(void *, void *)
asm ("reflect.S390xMakeFuncStubGo");
# define S390_GO_MakeFuncStubGo(r, c) S390xMakeFuncStubGo((r), (c))
#else
# define S390_GO_USE_64_BIT_ABI 0
# define S390_GO_S390X_ARGS
# define S390_GO_S390X_FIELDS
extern void S390MakeFuncStubGo(void *, void *)
asm ("reflect.S390MakeFuncStubGo");
# define S390_GO_MakeFuncStubGo(r, c) S390MakeFuncStubGo((r), (c))
/* Needed to make the unused 64 bit abi conditional code compile. */
# define f4 f0
# define f6 f2
#endif
/* Structure to store all registers used for parameter passing. */
typedef struct
{
long r2;
long r3;
long r4;
long r5;
long r6;
/* Pointer to non-register arguments on the stack. */
long stack_args;
double f0;
double f2;
S390_GO_S390X_FIELDS
} s390Regs;
void
makeFuncStub(long r2, long r3, long r4, long r5, long r6,
unsigned long stack_args, double f0, double f2
S390_GO_S390X_ARGS)
asm ("reflect.makeFuncStub");
void
makeFuncStub(long r2, long r3, long r4, long r5, long r6,
unsigned long stack_args, double f0, double f2
S390_GO_S390X_ARGS)
{
s390Regs regs;
void *closure;
/* Store the registers in a structure that is passed on to the Go stub
function. */
regs.r2 = r2;
regs.r3 = r3;
regs.r4 = r4;
regs.r5 = r5;
regs.r6 = r6;
regs.stack_args = (long)&stack_args;
regs.f0 = f0;
regs.f2 = f2;
if (S390_GO_USE_64_BIT_ABI) {
regs.f4 = f4;
regs.f6 = f6;
}
/* For MakeFunc functions that call recover. */
__go_makefunc_can_recover(__builtin_return_address(0));
/* Call the Go stub function. */
closure = __go_get_closure();
S390_GO_MakeFuncStubGo(&regs, closure);
/* MakeFunc functions can no longer call recover. */
__go_makefunc_returning();
/* Restore all possible return registers. */
if (S390_GO_USE_64_BIT_ABI) {
asm volatile ("lg\t%%r2,0(%0)" : : "a" (&regs.r2) : "r2" );
asm volatile ("ld\t%%f0,0(%0)" : : "a" (&regs.f0) : "f0" );
} else {
asm volatile ("l\t%%r2,0(%0)" : : "a" (&regs.r2) : "r2" );
asm volatile ("l\t%%r3,0(%0)" : : "a" (&regs.r3) : "r3" );
asm volatile ("ld\t%%f0,0(%0)" : : "a" (&regs.f0) : "f0" );
}
}

View File

@ -0,0 +1,453 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// MakeFunc s390 implementation.
package reflect
import "unsafe"
// Convenience types and constants.
const s390_arch_stack_slot_align uintptr = 4
const s390_num_gr = 5
const s390_num_fr = 2
type s390_arch_gr_t uint32
type s390_arch_fr_t uint64
// The assembler stub will pass a pointer to this structure.
// This will come in holding all the registers that might hold
// function parameters. On return we will set the registers that
// might hold result values.
type s390_regs struct {
r2 s390_arch_gr_t
r3 s390_arch_gr_t
r4 s390_arch_gr_t
r5 s390_arch_gr_t
r6 s390_arch_gr_t
stack_args s390_arch_gr_t
f0 s390_arch_fr_t
f2 s390_arch_fr_t
}
// Argument classifications that arise for Go types.
type s390_arg_t int
const (
s390_general_reg s390_arg_t = iota
s390_general_reg_pair
s390_float_reg
// Argument passed as a pointer to an in-memory value.
s390_mem_ptr
s390_empty
)
// s390ClassifyParameter returns the register class needed to
// pass the value of type TYP. s390_empty means the register is
// not used. The second and third return values are the offset of
// an rtype parameter passed in a register (second) or stack slot
// (third).
func s390ClassifyParameter(typ *rtype) (s390_arg_t, uintptr, uintptr) {
offset := s390_arch_stack_slot_align - typ.Size()
if typ.Size() > s390_arch_stack_slot_align {
offset = 0
}
switch typ.Kind() {
default:
panic("internal error--unknown kind in s390ClassifyParameter")
case Bool, Int, Int8, Int16, Int32, Uint, Uint8, Uint16, Uint32:
return s390_general_reg, offset, offset
case Int64, Uint64:
return s390_general_reg_pair, 0, 0
case Uintptr, Chan, Func, Map, Ptr, UnsafePointer:
return s390_general_reg, 0, 0
case Float32, Float64:
return s390_float_reg, 0, offset
case Complex64, Complex128:
// Complex numbers are passed by reference.
return s390_mem_ptr, 0, 0
case Array, Struct:
var ityp *rtype
var length int
if typ.Size() == 0 {
return s390_empty, 0, 0
}
switch typ.Size() {
default:
// Pointer to memory.
return s390_mem_ptr, 0, 0
case 1, 2:
// Pass in an integer register.
return s390_general_reg, offset, offset
case 4, 8:
// See below.
}
if typ.Kind() == Array {
atyp := (*arrayType)(unsafe.Pointer(typ))
length = atyp.Len()
ityp = atyp.elem
} else {
styp := (*structType)(unsafe.Pointer(typ))
length = len(styp.fields)
ityp = styp.fields[0].typ
}
if length == 1 {
class, off_reg, off_slot := s390ClassifyParameter(ityp)
if class == s390_float_reg {
// The array (stored in a structure) or struct
// is "equivalent to a floating point type" as
// defined in the S390 Abi. Note that this
// can only be the case in the case 4 of the
// switch above.
return s390_float_reg, off_reg, off_slot
}
}
switch typ.Size() {
case 4:
return s390_general_reg, offset, offset
case 8:
return s390_general_reg_pair, 0, 0
default:
return s390_general_reg, 0, 0
}
case Interface, String:
// Structure of size 8.
return s390_general_reg_pair, 0, 0
case Slice:
return s390_mem_ptr, 0, 0
}
}
// s390ClassifyReturn returns the register classes needed to
// return the value of type TYP. s390_empty means the register is
// not used. The second value is the offset of an rtype return
// parameter if stored in a register.
func s390ClassifyReturn(typ *rtype) (s390_arg_t, uintptr) {
offset := s390_arch_stack_slot_align - typ.Size()
if typ.Size() > s390_arch_stack_slot_align {
offset = 0
}
switch typ.Kind() {
default:
panic("internal error--unknown kind in s390ClassifyReturn")
case Bool, Int, Int8, Int16, Int32,
Uint, Uint8, Uint16, Uint32, Uintptr:
return s390_general_reg, offset
case Int64, Uint64:
return s390_general_reg_pair, 0
case Chan, Func, Map, Ptr, UnsafePointer:
return s390_general_reg, 0
case Float32, Float64:
return s390_float_reg, 0
case Complex64, Complex128:
return s390_mem_ptr, 0
case Interface, Slice, String:
return s390_mem_ptr, 0
case Array, Struct:
if typ.size == 0 {
return s390_empty, 0
}
// No optimization is done for returned structures and arrays.
return s390_mem_ptr, 0
}
}
// Given a value of type *rtype left aligned in an unsafe.Pointer,
// reload the value so that it can be stored in a general or
// floating point register. For general registers the value is
// sign extend and right aligned.
func s390ReloadForRegister(typ *rtype, w uintptr, offset uintptr) uintptr {
var do_sign_extend bool = false
var gr s390_arch_gr_t
switch typ.Kind() {
case Int, Int8, Int16, Int32:
do_sign_extend = true
default:
// Handle all other cases in the next switch.
}
switch typ.size {
case 1:
if do_sign_extend == true {
se := int32(*(*int8)(unsafe.Pointer(&w)))
gr = *(*s390_arch_gr_t)(unsafe.Pointer(&se))
} else {
e := int32(*(*uint8)(unsafe.Pointer(&w)))
gr = *(*s390_arch_gr_t)(unsafe.Pointer(&e))
}
case 2:
if do_sign_extend == true {
se := int32(*(*int16)(unsafe.Pointer(&w)))
gr = *(*s390_arch_gr_t)(unsafe.Pointer(&se))
} else {
e := int32(*(*uint16)(unsafe.Pointer(&w)))
gr = *(*s390_arch_gr_t)(unsafe.Pointer(&e))
}
default:
panic("reflect: bad size in s390ReloadForRegister")
}
return *(*uintptr)(unsafe.Pointer(&gr))
}
// MakeFuncStubGo implements the s390 calling convention for
// MakeFunc. This should not be called. It is exported so that
// assembly code can call it.
func S390MakeFuncStubGo(regs *s390_regs, c *makeFuncImpl) {
ftyp := c.typ
gr := 0
fr := 0
ap := uintptr(regs.stack_args)
// See if the result requires a struct. If it does, the first
// parameter is a pointer to the struct.
var ret_class s390_arg_t
var ret_off_reg uintptr
var ret_type *rtype
switch len(ftyp.out) {
case 0:
ret_type = nil
ret_class, ret_off_reg = s390_empty, 0
case 1:
ret_type = ftyp.out[0]
ret_class, ret_off_reg = s390ClassifyReturn(ret_type)
default:
ret_type = nil
ret_class, ret_off_reg = s390_mem_ptr, 0
}
in := make([]Value, 0, len(ftyp.in))
if ret_class == s390_mem_ptr {
// We are returning a value in memory, which means
// that the first argument is a hidden parameter
// pointing to that return area.
gr++
}
argloop:
for _, rt := range ftyp.in {
class, off_reg, off_slot := s390ClassifyParameter(rt)
fl := flag(rt.Kind()) << flagKindShift
switch class {
case s390_empty:
v := Value{rt, nil, fl | flagIndir}
in = append(in, v)
continue argloop
case s390_general_reg:
// Values stored in a general register are right
// aligned.
if gr < s390_num_gr {
val := s390_general_reg_val(regs, gr)
iw := unsafe.Pointer(&val)
k := rt.Kind()
if k != Ptr && k != UnsafePointer {
ix := uintptr(unsafe.Pointer(&val))
ix += off_reg
iw = unsafe.Pointer(ix)
fl |= flagIndir
}
v := Value{rt, iw, fl}
in = append(in, v)
gr++
} else {
in, ap = s390_add_stackreg(
in, ap, rt, off_slot)
}
continue argloop
case s390_general_reg_pair:
// 64-bit integers and structs are passed in a register
// pair.
if gr+1 < s390_num_gr {
val := uint64(s390_general_reg_val(regs, gr))<<32 + uint64(s390_general_reg_val(regs, gr+1))
iw := unsafe.Pointer(&val)
v := Value{rt, iw, fl | flagIndir}
in = append(in, v)
gr += 2
} else {
in, ap = s390_add_stackreg(in, ap, rt, off_slot)
gr = s390_num_gr
}
continue argloop
case s390_float_reg:
// In a register, floats are left aligned, but in a
// stack slot they are right aligned.
if fr < s390_num_fr {
val := s390_float_reg_val(regs, fr)
ix := uintptr(unsafe.Pointer(&val))
v := Value{
rt, unsafe.Pointer(unsafe.Pointer(ix)),
fl | flagIndir,
}
in = append(in, v)
fr++
} else {
in, ap = s390_add_stackreg(
in, ap, rt, off_slot)
}
continue argloop
case s390_mem_ptr:
if gr < s390_num_gr {
// Register holding a pointer to memory.
val := s390_general_reg_val(regs, gr)
v := Value{
rt, unsafe.Pointer(uintptr(val)),
fl | flagIndir}
in = append(in, v)
gr++
} else {
// Stack slot holding a pointer to memory.
in, ap = s390_add_memarg(in, ap, rt)
}
continue argloop
}
panic("reflect: argtype not handled in MakeFunc:argloop")
}
// All the real arguments have been found and turned into
// Values. Call the real function.
out := c.call(in)
if len(out) != len(ftyp.out) {
panic("reflect: wrong return count from function created by MakeFunc")
}
for i, typ := range ftyp.out {
v := out[i]
if v.typ != typ {
panic(
"reflect: function created by MakeFunc using " +
funcName(c.fn) + " returned wrong type: have " +
out[i].typ.String() + " for " + typ.String())
}
if v.flag&flagRO != 0 {
panic(
"reflect: function created by MakeFunc using " +
funcName(c.fn) + " returned value obtained " +
"from unexported field")
}
}
switch ret_class {
case s390_general_reg, s390_float_reg, s390_general_reg_pair:
// Single return value in a general or floating point register.
v := out[0]
var w uintptr
if v.Kind() == Ptr || v.Kind() == UnsafePointer {
w = uintptr(v.pointer())
} else {
w = uintptr(loadScalar(v.ptr, v.typ.size))
if ret_off_reg != 0 {
w = s390ReloadForRegister(
ret_type, w, ret_off_reg)
}
}
if ret_class == s390_float_reg {
regs.f0 = s390_arch_fr_t(uintptr(w))
} else if ret_class == s390_general_reg {
regs.r2 = s390_arch_gr_t(uintptr(w))
} else {
regs.r2 = s390_arch_gr_t(uintptr(w) >> 32)
regs.r3 = s390_arch_gr_t(uintptr(w) & 0xffffffff)
}
case s390_mem_ptr:
// The address of the memory area was passed as a hidden
// parameter in %r2. Multiple return values are always returned
// in an in-memory structure.
ptr := unsafe.Pointer(uintptr(regs.r2))
off := uintptr(0)
for i, typ := range ftyp.out {
v := out[i]
off = align(off, uintptr(typ.fieldAlign))
addr := unsafe.Pointer(uintptr(ptr) + off)
if v.flag&flagIndir == 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
*(*unsafe.Pointer)(addr) = v.ptr
} else {
memmove(addr, v.ptr, typ.size)
}
off += typ.size
}
case s390_empty:
}
return
}
// The s390_add_stackreg function adds an argument passed on the
// stack that could be passed in a register.
func s390_add_stackreg(in []Value, ap uintptr, rt *rtype, offset uintptr) ([]Value, uintptr) {
// If we're not already at the beginning of a stack slot, round up to
// the beginning of the next one.
ap = align(ap, s390_arch_stack_slot_align)
// If offset is > 0, the data is right aligned on the stack slot.
ap += offset
// We have to copy the argument onto the heap in case the
// function hangs onto the reflect.Value we pass it.
p := unsafe_New(rt)
memmove(p, unsafe.Pointer(ap), rt.size)
v := Value{rt, p, flag(rt.Kind()<<flagKindShift) | flagIndir}
in = append(in, v)
ap += rt.size
ap = align(ap, s390_arch_stack_slot_align)
return in, ap
}
// The s390_add_memarg function adds an argument passed in memory.
func s390_add_memarg(in []Value, ap uintptr, rt *rtype) ([]Value, uintptr) {
// If we're not already at the beginning of a stack slot,
// round up to the beginning of the next one.
ap = align(ap, s390_arch_stack_slot_align)
// We have to copy the argument onto the heap in case the
// function hangs onto the reflect.Value we pass it.
p := unsafe_New(rt)
memmove(p, *(*unsafe.Pointer)(unsafe.Pointer(ap)), rt.size)
v := Value{rt, p, flag(rt.Kind()<<flagKindShift) | flagIndir}
in = append(in, v)
ap += s390_arch_stack_slot_align
return in, ap
}
// The s390_general_reg_val function returns the value of integer register GR.
func s390_general_reg_val(regs *s390_regs, gr int) s390_arch_gr_t {
switch gr {
case 0:
return regs.r2
case 1:
return regs.r3
case 2:
return regs.r4
case 3:
return regs.r5
case 4:
return regs.r6
default:
panic("s390_general_reg_val: bad integer register")
}
}
// The s390_float_reg_val function returns the value of float register FR.
func s390_float_reg_val(regs *s390_regs, fr int) uintptr {
var r s390_arch_fr_t
switch fr {
case 0:
r = regs.f0
case 1:
r = regs.f2
default:
panic("s390_float_reg_val: bad floating point register")
}
return uintptr(r)
}

View File

@ -0,0 +1,435 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// MakeFunc s390x implementation.
package reflect
import "unsafe"
// Convenience types and constants.
const s390x_arch_stack_slot_align uintptr = 8
const s390x_num_gr = 5
const s390x_num_fr = 4
type s390x_arch_gr_t uint64
type s390x_arch_fr_t uint64
// The assembler stub will pass a pointer to this structure.
// This will come in holding all the registers that might hold
// function parameters. On return we will set the registers that
// might hold result values.
type s390x_regs struct {
r2 s390x_arch_gr_t
r3 s390x_arch_gr_t
r4 s390x_arch_gr_t
r5 s390x_arch_gr_t
r6 s390x_arch_gr_t
stack_args s390x_arch_gr_t
f0 s390x_arch_fr_t
f2 s390x_arch_fr_t
f4 s390x_arch_fr_t
f6 s390x_arch_fr_t
}
// Argument classifications that arise for Go types.
type s390x_arg_t int
const (
s390x_general_reg s390x_arg_t = iota
s390x_float_reg
// Argument passed as a pointer to an in-memory value.
s390x_mem_ptr
s390x_empty
)
// s390xClassifyParameter returns the register class needed to
// pass the value of type TYP. s390x_empty means the register is
// not used. The second and third return values are the offset of
// an rtype parameter passed in a register (second) or stack slot
// (third).
func s390xClassifyParameter(typ *rtype) (s390x_arg_t, uintptr, uintptr) {
offset := s390x_arch_stack_slot_align - typ.Size()
switch typ.Kind() {
default:
panic("internal error--unknown kind in s390xClassifyParameter")
case Bool, Int, Int8, Int16, Int32, Uint, Uint8, Uint16, Uint32:
return s390x_general_reg, offset, offset
case Int64, Uint64, Uintptr, Chan, Func, Map, Ptr, UnsafePointer:
return s390x_general_reg, 0, 0
case Float32, Float64:
return s390x_float_reg, 0, offset
case Complex64, Complex128:
// Complex numbers are passed by reference.
return s390x_mem_ptr, 0, 0
case Array, Struct:
var ityp *rtype
var length int
if typ.Size() == 0 {
return s390x_empty, 0, 0
}
switch typ.Size() {
default:
// Pointer to memory.
return s390x_mem_ptr, 0, 0
case 1, 2:
// Pass in an integer register.
return s390x_general_reg, offset, offset
case 4, 8:
// See below.
}
if typ.Kind() == Array {
atyp := (*arrayType)(unsafe.Pointer(typ))
length = atyp.Len()
ityp = atyp.elem
} else {
styp := (*structType)(unsafe.Pointer(typ))
length = len(styp.fields)
ityp = styp.fields[0].typ
}
if length == 1 {
class, off_reg, off_slot := s390xClassifyParameter(ityp)
if class == s390x_float_reg {
// The array (stored in a structure) or struct
// is "equivalent to a floating point type" as
// defined in the S390x Abi. Note that this
// can only be the case in the cases 4 and 8 of
// the switch above.
return s390x_float_reg, off_reg, off_slot
}
}
// Otherwise pass in an integer register.
switch typ.Size() {
case 4, 8:
return s390x_general_reg, offset, offset
default:
return s390x_general_reg, 0, 0
}
case Interface, Slice, String:
return s390x_mem_ptr, 0, 0
}
}
// s390xClassifyReturn returns the register classes needed to
// return the value of type TYP. s390_empty means the register is
// not used. The second value is the offset of an rtype return
// parameter if stored in a register.
func s390xClassifyReturn(typ *rtype) (s390x_arg_t, uintptr) {
offset := s390x_arch_stack_slot_align - typ.Size()
switch typ.Kind() {
default:
panic("internal error--unknown kind in s390xClassifyReturn")
case Bool, Int, Int8, Int16, Int32, Int64,
Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
return s390x_general_reg, offset
case Chan, Func, Map, Ptr, UnsafePointer:
return s390x_general_reg, 0
case Float32, Float64:
return s390x_float_reg, 0
case Complex64, Complex128:
return s390x_mem_ptr, 0
case Interface, Slice, String:
return s390x_mem_ptr, 0
case Array, Struct:
if typ.size == 0 {
return s390x_empty, 0
}
// No optimization is done for returned structures and arrays.
return s390x_mem_ptr, 0
}
}
// Given a value of type *rtype left aligned in an unsafe.Pointer,
// reload the value so that it can be stored in a general or
// floating point register. For general registers the value is
// sign extend and right aligned.
func s390xReloadForRegister(typ *rtype, w uintptr, offset uintptr) uintptr {
var do_sign_extend bool = false
var gr s390x_arch_gr_t
switch typ.Kind() {
case Int, Int8, Int16, Int32, Int64:
do_sign_extend = true
default:
// Handle all other cases in the next switch.
}
switch typ.size {
case 1:
if do_sign_extend == true {
se := int64(*(*int8)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&se))
} else {
e := int64(*(*uint8)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&e))
}
case 2:
if do_sign_extend == true {
se := int64(*(*int16)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&se))
} else {
e := int64(*(*uint16)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&e))
}
case 4:
if do_sign_extend == true {
se := int64(*(*int32)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&se))
} else {
e := int64(*(*uint32)(unsafe.Pointer(&w)))
gr = *(*s390x_arch_gr_t)(unsafe.Pointer(&e))
}
default:
panic("reflect: bad size in s390xReloadForRegister")
}
return *(*uintptr)(unsafe.Pointer(&gr))
}
// MakeFuncStubGo implements the s390x calling convention for
// MakeFunc. This should not be called. It is exported so that
// assembly code can call it.
func S390xMakeFuncStubGo(regs *s390x_regs, c *makeFuncImpl) {
ftyp := c.typ
gr := 0
fr := 0
ap := uintptr(regs.stack_args)
// See if the result requires a struct. If it does, the first
// parameter is a pointer to the struct.
var ret_class s390x_arg_t
var ret_off_reg uintptr
var ret_type *rtype
switch len(ftyp.out) {
case 0:
ret_type = nil
ret_class, ret_off_reg = s390x_empty, 0
case 1:
ret_type = ftyp.out[0]
ret_class, ret_off_reg = s390xClassifyReturn(ret_type)
default:
ret_type = nil
ret_class, ret_off_reg = s390x_mem_ptr, 0
}
in := make([]Value, 0, len(ftyp.in))
if ret_class == s390x_mem_ptr {
// We are returning a value in memory, which means
// that the first argument is a hidden parameter
// pointing to that return area.
gr++
}
argloop:
for _, rt := range ftyp.in {
class, off_reg, off_slot := s390xClassifyParameter(rt)
fl := flag(rt.Kind()) << flagKindShift
switch class {
case s390x_empty:
v := Value{rt, nil, fl | flagIndir}
in = append(in, v)
continue argloop
case s390x_general_reg:
// Values stored in a general register are right
// aligned.
if gr < s390x_num_gr {
val := s390x_general_reg_val(regs, gr)
iw := unsafe.Pointer(val)
k := rt.Kind()
if k != Ptr && k != UnsafePointer {
ix := uintptr(unsafe.Pointer(&val))
ix += off_reg
iw = unsafe.Pointer(ix)
fl |= flagIndir
}
v := Value{rt, iw, fl}
in = append(in, v)
gr++
} else {
in, ap = s390x_add_stackreg(
in, ap, rt, off_slot)
}
continue argloop
case s390x_float_reg:
// In a register, floats are left aligned, but in a
// stack slot they are right aligned.
if fr < s390x_num_fr {
val := s390x_float_reg_val(regs, fr)
ix := uintptr(unsafe.Pointer(&val))
v := Value{
rt, unsafe.Pointer(unsafe.Pointer(ix)),
fl | flagIndir,
}
in = append(in, v)
fr++
} else {
in, ap = s390x_add_stackreg(
in, ap, rt, off_slot)
}
continue argloop
case s390x_mem_ptr:
if gr < s390x_num_gr {
// Register holding a pointer to memory.
val := s390x_general_reg_val(regs, gr)
v := Value{
rt, unsafe.Pointer(val), fl | flagIndir}
in = append(in, v)
gr++
} else {
// Stack slot holding a pointer to memory.
in, ap = s390x_add_memarg(in, ap, rt)
}
continue argloop
}
panic("reflect: argtype not handled in MakeFunc:argloop")
}
// All the real arguments have been found and turned into
// Values. Call the real function.
out := c.call(in)
if len(out) != len(ftyp.out) {
panic("reflect: wrong return count from function created by MakeFunc")
}
for i, typ := range ftyp.out {
v := out[i]
if v.typ != typ {
panic(
"reflect: function created by MakeFunc using " +
funcName(c.fn) + " returned wrong type: have " +
out[i].typ.String() + " for " + typ.String())
}
if v.flag&flagRO != 0 {
panic(
"reflect: function created by MakeFunc using " +
funcName(c.fn) + " returned value obtained " +
"from unexported field")
}
}
switch ret_class {
case s390x_general_reg, s390x_float_reg:
// Single return value in a general or floating point register.
v := out[0]
var w uintptr
if v.Kind() == Ptr || v.Kind() == UnsafePointer {
w = uintptr(v.pointer())
} else {
w = uintptr(loadScalar(v.ptr, v.typ.size))
if ret_off_reg != 0 {
w = s390xReloadForRegister(
ret_type, w, ret_off_reg)
}
}
if ret_class == s390x_float_reg {
regs.f0 = s390x_arch_fr_t(w)
} else {
regs.r2 = s390x_arch_gr_t(w)
}
case s390x_mem_ptr:
// The address of the memory area was passed as a hidden
// parameter in %r2. Multiple return values are always returned
// in an in-memory structure.
ptr := unsafe.Pointer(uintptr(regs.r2))
off := uintptr(0)
for i, typ := range ftyp.out {
v := out[i]
off = align(off, uintptr(typ.fieldAlign))
addr := unsafe.Pointer(uintptr(ptr) + off)
if v.flag&flagIndir == 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
*(*unsafe.Pointer)(addr) = v.ptr
} else {
memmove(addr, v.ptr, typ.size)
}
off += typ.size
}
case s390x_empty:
}
return
}
// The s390x_add_stackreg function adds an argument passed on the
// stack that could be passed in a register.
func s390x_add_stackreg(in []Value, ap uintptr, rt *rtype, offset uintptr) ([]Value, uintptr) {
// If we're not already at the beginning of a stack slot, round up to
// the beginning of the next one.
ap = align(ap, s390x_arch_stack_slot_align)
// If offset is > 0, the data is right aligned on the stack slot.
ap += offset
// We have to copy the argument onto the heap in case the
// function hangs onto the reflect.Value we pass it.
p := unsafe_New(rt)
memmove(p, unsafe.Pointer(ap), rt.size)
v := Value{rt, p, flag(rt.Kind()<<flagKindShift) | flagIndir}
in = append(in, v)
ap += rt.size
ap = align(ap, s390x_arch_stack_slot_align)
return in, ap
}
// The s390x_add_memarg function adds an argument passed in memory.
func s390x_add_memarg(in []Value, ap uintptr, rt *rtype) ([]Value, uintptr) {
// If we're not already at the beginning of a stack slot,
// round up to the beginning of the next one.
ap = align(ap, s390x_arch_stack_slot_align)
// We have to copy the argument onto the heap in case the
// function hangs onto the reflect.Value we pass it.
p := unsafe_New(rt)
memmove(p, *(*unsafe.Pointer)(unsafe.Pointer(ap)), rt.size)
v := Value{rt, p, flag(rt.Kind()<<flagKindShift) | flagIndir}
in = append(in, v)
ap += s390x_arch_stack_slot_align
return in, ap
}
// The s390x_general_reg_val function returns the value of integer register GR.
func s390x_general_reg_val(regs *s390x_regs, gr int) uintptr {
var r s390x_arch_gr_t
switch gr {
case 0:
r = regs.r2
case 1:
r = regs.r3
case 2:
r = regs.r4
case 3:
r = regs.r5
case 4:
r = regs.r6
default:
panic("s390x_general_reg_val: bad integer register")
}
return uintptr(r)
}
// The s390x_float_reg_val function returns the value of float register FR.
func s390x_float_reg_val(regs *s390x_regs, fr int) uintptr {
var r s390x_arch_fr_t
switch fr {
case 0:
r = regs.f0
case 1:
r = regs.f2
case 2:
r = regs.f4
case 3:
r = regs.f6
default:
panic("s390x_float_reg_val: bad floating point register")
}
return uintptr(r)
}

View File

@ -331,6 +331,11 @@ func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
if i > 0 && pc > f.Entry() && !wasPanic {
if runtime.GOARCH == "386" || runtime.GOARCH == "amd64" {
tracepc--
} else if runtime.GOARCH == "s390" || runtime.GOARCH == "s390x" {
// only works if function was called
// with the brasl instruction (or a
// different 6-byte instruction).
tracepc -= 6
} else {
tracepc -= 4 // arm, etc
}

View File

@ -7,6 +7,7 @@
package syscall
import (
"runtime"
"unsafe"
)
@ -65,7 +66,11 @@ func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr
// About to call fork.
// No more allocation or calls of non-assembly functions.
runtime_BeforeFork()
r1, _, err1 = RawSyscall6(SYS_CLONE, uintptr(SIGCHLD)|sys.Cloneflags, 0, 0, 0, 0, 0)
if runtime.GOARCH == "s390x" || runtime.GOARCH == "s390" {
r1, _, err1 = RawSyscall6(SYS_CLONE, 0, uintptr(SIGCHLD)|sys.Cloneflags, 0, 0, 0, 0)
} else {
r1, _, err1 = RawSyscall6(SYS_CLONE, uintptr(SIGCHLD)|sys.Cloneflags, 0, 0, 0, 0, 0)
}
if err1 != 0 {
runtime_AfterFork()
return 0, err1

View File

@ -0,0 +1,7 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// GNU/Linux library calls s390 specific.
package syscall

View File

@ -0,0 +1,7 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// GNU/Linux library calls s390 specific.
package syscall

View File

@ -0,0 +1,21 @@
// syscall_linux_s390.go -- GNU/Linux s390 specific support
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syscall
import "unsafe"
func (r *PtraceRegs) PC() uint64 { return uint64(r.Psw.Addr) }
func (r *PtraceRegs) SetPC(pc uint64) { r.Psw.Addr = uint32(pc) }
func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
}
func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
}

View File

@ -0,0 +1,21 @@
// syscall_linux_s390x.go -- GNU/Linux s390x specific support
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syscall
import "unsafe"
func (r *PtraceRegs) PC() uint64 { return r.Psw.Addr }
func (r *PtraceRegs) SetPC(pc uint64) { r.Psw.Addr = pc }
func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
}
func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
}

View File

@ -439,12 +439,50 @@ if ! grep '^const _PTRACE_TRACEME' ${OUT} > /dev/null 2>&1; then
echo "const _PTRACE_TRACEME = 0" >> ${OUT}
fi
# A helper function that prints a structure from gen-sysinfo.go with the first
# letter of the field names in upper case. $1 is the name of structure. If $2
# is not empty, the structure or type is renamed to $2.
upcase_fields () {
name="$1"
def=`grep "^type $name" gen-sysinfo.go`
fields=`echo $def | sed -e 's/^[^{]*{\(.*\)}$/\1/'`
prefix=`echo $def | sed -e 's/{.*//'`
if test "$2" != ""; then
prefix=`echo $prefix | sed -e "s/$1/$2/"`
fi
if test "$fields" != ""; then
nfields=
while test -n "$fields"; do
field=`echo $fields | sed -e 's/^\([^;]*\);.*$/\1/'`
fields=`echo $fields | sed -e 's/^[^;]*; *\(.*\)$/\1/'`
# capitalize the next character.
f=`echo $field | sed -e 's/^\(.\).*$/\1/'`
r=`echo $field | sed -e 's/^.\(.*\)$/\1/'`
f=`echo $f | tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ`
field="$f$r"
nfields="$nfields $field;"
done
echo "${prefix} {$nfields }"
fi
}
# The registers returned by PTRACE_GETREGS. This is probably
# GNU/Linux specific; it should do no harm if there is no
# _user_regs_struct.
regs=`grep '^type _user_regs_struct struct' gen-sysinfo.go || true`
if test "$regs" == ""; then
# s390
regs=`grep '^type __user_regs_struct struct' gen-sysinfo.go || true`
if test "$regs" != ""; then
# Substructures of __user_regs_struct on s390
upcase_fields "__user_psw_struct" "PtracePsw" >> ${OUT}
upcase_fields "__user_fpregs_struct" "PtraceFpregs" >> ${OUT}
upcase_fields "__user_per_struct" "PtracePer" >> ${OUT}
fi
fi
if test "$regs" != ""; then
regs=`echo $regs | sed -e 's/type _user_regs_struct struct //' -e 's/[{}]//g'`
regs=`echo $regs |
sed -e 's/type __*user_regs_struct struct //' -e 's/[{}]//g'`
regs=`echo $regs | sed -e s'/^ *//'`
nregs=
while test -n "$regs"; do
@ -455,6 +493,10 @@ if test "$regs" != ""; then
r=`echo $field | sed -e 's/^.\(.*\)$/\1/'`
f=`echo $f | tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ`
field="$f$r"
field=`echo "$field" | sed \
-e 's/__user_psw_struct/PtracePsw/' \
-e 's/__user_fpregs_struct/PtraceFpregs/' \
-e 's/__user_per_struct/PtracePer/'`
nregs="$nregs $field;"
done
echo "type PtraceRegs struct {$nregs }" >> ${OUT}
@ -616,7 +658,7 @@ grep '^const _DT_' gen-sysinfo.go |
rusage=`grep '^type _rusage struct' gen-sysinfo.go`
if test "$rusage" != ""; then
# Remove anonymous unions from GNU/Linux <bits/resource.h>.
rusage=`echo $rusage | sed -e 's/Godump_[0-9]* struct {\([^}]*\)};/\1/g'`
rusage=`echo $rusage | sed -e 's/Godump_[0-9][0-9]* struct {\([^}]*\)};/\1/g'`
rusage=`echo $rusage | sed -e 's/type _rusage struct //' -e 's/[{}]//g'`
rusage=`echo $rusage | sed -e 's/^ *//'`
nrusage=
@ -704,12 +746,7 @@ grep '^const _SCM_' gen-sysinfo.go | \
sed -e 's/^\(const \)_\(SCM_[^= ]*\)\(.*\)$/\1\2 = _\2/' >> ${OUT}
# The ucred struct.
grep '^type _ucred ' gen-sysinfo.go | \
sed -e 's/_ucred/Ucred/' \
-e 's/pid/Pid/' \
-e 's/uid/Uid/' \
-e 's/gid/Gid/' \
>> ${OUT}
upcase_fields "_ucred" "Ucred" >> ${OUT}
# The ip_mreq struct.
grep '^type _ip_mreq ' gen-sysinfo.go | \

View File

@ -194,6 +194,14 @@ runtime_cputicks(void)
uint32 low, high;
asm("rdtsc" : "=a" (low), "=d" (high));
return (int64)(((uint64)high << 32) | (uint64)low);
#elif defined (__s390__) || defined (__s390x__)
uint64 clock;
#ifdef S390_HAVE_STCKF
asm("stckf\t%0" : "=Q" (clock) : : );
#else
clock = 0;
#endif
return (int64)clock;
#else
// FIXME: implement for other processors.
return 0;